Influence of the Extraction Method on the Polyphenolic Profile and the Antioxidant Activity of Psidium guajava L. Leaf Extracts
Abstract
:1. Introduction
2. Results
2.1. Purification of Polyphenolic Compounds
2.2. Antioxidant Activity
2.3. Characterization by FTIR
2.4. UPLC-MS
Extraction Method | No. | Tentative Identity | Tr (min) | m/z exp | m/z Calculated | Molecular Formula | Fragments | Reference |
---|---|---|---|---|---|---|---|---|
Soxhlet with methanol | 1 | Not identified | 0.749 | 249.0305 | 248.034588 | 113.0318, 181.0322, 207.0358 | ||
2 | Vescalagin | 7.71 | 933.2043 | 933.07178 | 466.1265, 179.0356, 289.1466 | [17] | ||
3 | Catechin | 9.587 | 289.147 | 289.079587 | 179.0359, 207.0354, 287.1305, 245.1503 | [17] | ||
4 | Not identified | 18.88 | 603.1823 | 602.181312 | 179.0356, 207.0351, 235.9931, 257.02 | |||
5 | Casuarinin/Casuarictin Isomer | 19.637 | 935.2216 | 935.08743 | 467.1334, 145.9832, 385.2003, 478.1260 | [17] | ||
6 | Not identified | 33.071 | 381.0783 | 380.076847 | 379.0626, 301.1106, 299.0956 | |||
7 | Not identified | 33.475 | 381.0775 | 380.076847 | 299.0951, 301.110, 302.1134, 379.0617, 271.098 | |||
8 | Quercetin glucuronide | 34.788 | 477.1651 | 477.075289 | 463.1837, 299.0954, 301.1106 | [17] | ||
9 | Reynoutrin | 37.414 | 433.1703 | 433.08546 | 431.1533, 181.0318, 235.9926, 300.1021, 415.2863 | [17] | ||
10 | Guajaverin | 40.242 | 433.1713 | 433.08546 | 431.1543, 300.1037, 301.1096, 391.9761 | [17] | ||
11 | Avicularin | 40.798 | 433.1707 | 433.08546 | 431.1534, 300.1033, 302.1121 | [17] | ||
12 | Myrciaphenone B | 48.222 | 481.1956 | 481.106589 | 479.1792, 417.1714, 365.9648, 257.0243, 235.9927, 239.9696, 207.0348, 181.0316, 179.0352 | [17] | ||
13 | Guavinoside C | 57.06 | 585.1982 | 585.096419 | 583.1833, 304.9899, 285.9811, 235.9928, 257.0249, 352.9331 | [17] | ||
14 | Not identified | 63.473 | 551.2103 | 550.207527 | 541.1789, 343.1274, 328.1021, | |||
15 | Guavinoside B | 64.887 | 571.2532 | 571.15354 | 569.2360, 481.2711, 257.0239 | [17] | ||
16 | Not identified | 78.22 | 711.5146 | 710.401989 | 701.4839, 549.4456, 503.4370 | |||
17 | Not identified | 82.967 | 695.5202 | 694.51974 | 685.4873, 533.4503, 487.4390 | |||
18 | Luteolin 7-O-malonyl-glucoside | 86.2 | 533.4523 | 533.101504 | 487.4415, 488.445, 523.4203, 501.4174 | [62] | ||
19 | Kaempferol 3-O-(6″-malonyl-glucoside) | 86.907 | 533.4519 | 533.101504 | 487.4413, 488.4441, 523.4199 | [62] | ||
20 | Chrysoeriol 7-O-(6″-malonyl-glucoside) | 87.816 | 547.4318 | 547.117154 | 501.4212, 502.4242, 427.0584, 533.4493 | [62] |
3. Materials and Methods
3.1. Plant Material
3.2. Extraction of Phytochemicals
3.3. Solvent Elimination
3.4. Purification of Polyphenolic Compounds
3.5. Antioxidant Capacity Tests
3.6. FTIR (Fourier Transform Infrared Spectroscopy)
3.7. UPLC-MS
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Thakur, M.; Singh, K.; Khedkar, R. Phytochemicals. In Functional and Preservative Properties of Phytochemicals; Elsevier: Amsterdam, The Netherlands, 2020; pp. 341–361. [Google Scholar]
- Wang, Z.; Li, S.; Ge, S.; Lin, S. Review of Distribution, Extraction Methods, and Health Benefits of Bound Phenolics in Food Plants. J. Agric. Food Chem. 2020, 68, 3330–3343. [Google Scholar] [CrossRef] [PubMed]
- Albuquerque, B.R.; Heleno, S.A.; Oliveira, M.B.P.P.; Barros, L.; Ferreira, I.C.F.R. Phenolic Compounds: Current Industrial Applications, Limitations and Future Challenges. Food Funct. 2021, 12, 14–29. [Google Scholar] [CrossRef]
- Pisoschi, A.M.; Pop, A.; Iordache, F.; Stanca, L.; Predoi, G.; Serban, A.I. Oxidative Stress Mitigation by Antioxidants—An Overview on Their Chemistry and Influences on Health Status. Eur. J. Med. Chem. 2021, 209, 112891. [Google Scholar] [CrossRef] [PubMed]
- Choe, E.; Min, D.B. Mechanisms of Antioxidants in the Oxidation of Foods. Compr. Rev. Food Sci. Food Saf. 2009, 8, 345–358. [Google Scholar] [CrossRef]
- Abu Bakar, F.I.; Abu Bakar, M.F.; Abdullah, N.; Endrini, S.; Fatmawati, S. Optimization of Extraction Conditions of Phytochemical Compounds and Anti-Gout Activity of Euphorbia Hirta L. (Ara Tanah) Using Response Surface Methodology and Liquid Chromatography-Mass Spectrometry (LC-MS) Analysis. Evid. Based Complement. Altern. Med. 2020, 2020, 4501261. [Google Scholar] [CrossRef] [PubMed]
- Dhanani, T.; Shah, S.; Gajbhiye, N.A.; Kumar, S. Effect of Extraction Methods on Yield, Phytochemical Constituents and Antioxidant Activity of Withania Somnifera. Arab. J. Chem. 2017, 10, S1193–S1199. [Google Scholar] [CrossRef]
- Alara, O.R.; Abdurahman, N.H.; Ukaegbu, C.I. Extraction of Phenolic Compounds: A Review. Curr. Res. Food Sci. 2021, 4, 200–214. [Google Scholar] [CrossRef] [PubMed]
- Osorio-Tobón, J.F. Recent Advances and Comparisons of Conventional and Alternative Extraction Techniques of Phenolic Compounds. J. Food Sci. Technol. 2020, 57, 4299–4315. [Google Scholar] [CrossRef]
- Gutierrez-Montiel, D.; Guerrero-Barrera, A.L.; Chávez-Vela, N.A.; Avelar-Gonzalez, F.J.; Ornelas-García, I.G. Psidium Guajava L.: From Byproduct and Use in Traditional Mexican Medicine to Antimicrobial Agent. Front. Nutr. 2023, 10, 1108306. [Google Scholar] [CrossRef]
- Kuila, A.; Mukhopadhyay, M. Biorefinery Production Technologies for Chemicals and Energy; Kuila, A., Mukhopadhyay, M., Eds.; Wiley: Hoboken, NJ, USA, 2020; ISBN 9781119591429. [Google Scholar]
- Muzaffar, K.; Ahmad Sofi, S.; Mir, S.A. Handbook of Fruit Wastes and By-Products; CRC Press: Boca Raton, FL, USA, 2022; ISBN 9781003164463. [Google Scholar]
- Lim, S.Y.; Tham, P.Y.; Lim, H.Y.L.; Heng, W.S.; Chang, Y.P. Potential Functional Byproducts from Guava Purée Processing. J. Food Sci. 2018, 83, 1522–1532. [Google Scholar] [CrossRef]
- Hardege, J.D. Nereidid Polychaetes as Model Organisms for Marine Chemical Ecology. Hydrobiologia 1999, 402, 145–161. [Google Scholar] [CrossRef]
- Lavola, A.; Salonen, A.; Virjamo, V.; Julkunen-Tiitto, R. Phytochemical Variation in the Plant-Part Specific Phenols of Wild Crowberry (Empetrum Hermaphroditum Hagerup) Populations. Phytochem. Lett. 2017, 21, 11–20. [Google Scholar] [CrossRef]
- Lorena, C.; Ressaissi, A.; Serralheiro, M.L. Bioactives from Psidium Guajava Leaf Decoction: LC-HRMS-MS-Qtof Identification, Bioactivities and Bioavailability Evaluation. Food Chem. Adv. 2022, 1, 100003. [Google Scholar] [CrossRef]
- Díaz-de-Cerio, E.; Verardo, V.; Gómez-Caravaca, A.; Fernández-Gutiérrez, A.; Segura-Carretero, A. Exploratory Characterization of Phenolic Compounds with Demonstrated Anti-Diabetic Activity in Guava Leaves at Different Oxidation States. Int. J. Mol. Sci. 2016, 17, 699. [Google Scholar] [CrossRef] [PubMed]
- Purba, R.A.P.; Paengkoum, P. Farang (Psidium Guajava L.) Dried Leaf Extracts: Phytochemical Profiles, Antioxidant, Anti-Diabetic, and Anti-Hemolytic Properties for Ruminant Health and Production. Molecules 2022, 27, 8987. [Google Scholar] [CrossRef]
- Rosales, T.K.O.; Fabi, J.P. Valorization of Polyphenolic Compounds from Food Industry By-Products for Application in Polysaccharide-Based Nanoparticles. Front. Nutr. 2023, 10, 1144677. [Google Scholar] [CrossRef]
- Farag, R.S.; Abdel-Latif, M.S.; Abd El Baky, H.H.; Tawfeek, L.S. Phytochemical Screening and Antioxidant Activity of Some Medicinal Plants’ Crude Juices. Biotechnol. Rep. 2020, 28, e00536. [Google Scholar] [CrossRef]
- Sowmya, B.H.; Anandhi, D.U. Quantification of Total Phenolics, Flavonoids and Evaluation of in Vitro Free Radical Scavenging Activities in Psidium Guajava L. Indian. J. Pharm. Sci. 2020, 82, 578–585. [Google Scholar] [CrossRef]
- Laily, N.; Kusumaningtyas, R.W.; Sukarti, I.; Rini, M.R.D.K. The Potency of Guava Psidium Guajava (L.) Leaves as a Functional Immunostimulatory Ingredient. Procedia Chem. 2015, 14, 301–307. [Google Scholar] [CrossRef]
- Lawag, I.L.; Nolden, E.S.; Schaper, A.A.M.; Lim, L.Y.; Locher, C. A Modified Folin-Ciocalteu Assay for the Determination of Total Phenolics Content in Honey. Appl. Sci. 2023, 13, 2135. [Google Scholar] [CrossRef]
- Jiménez-Moreno, N.; Volpe, F.; Moler, J.A.; Esparza, I.; Ancín-Azpilicueta, C. Impact of Extraction Conditions on the Phenolic Composition and Antioxidant Capacity of Grape Stem Extracts. Antioxidants 2019, 8, 597. [Google Scholar] [CrossRef]
- Huang, D.; Ou, B.; Prior, R.L. The Chemistry behind Antioxidant Capacity Assays. J. Agric. Food Chem. 2005, 53, 1841–1856. [Google Scholar] [CrossRef]
- Kumar, M.; Tomar, M.; Amarowicz, R.; Saurabh, V.; Nair, M.S.; Maheshwari, C.; Sasi, M.; Prajapati, U.; Hasan, M.; Singh, S.; et al. Guava (Psidium Guajava L.) Leaves: Nutritional Composition, Phytochemical Profile, and Health-Promoting Bioactivities. Foods 2021, 10, 752. [Google Scholar] [CrossRef]
- Barbosa-Pereira, L.; Pocheville, A.; Angulo, I.; Paseiro-Losada, P.; Cruz, J.M. Fractionation and Purification of Bioactive Compounds Obtained from a Brewery Waste Stream. Biomed. Res. Int. 2013, 2013, 408491. [Google Scholar] [CrossRef]
- Le, T.B.; Le, T.D.; Nguyen, T.T.; Do, X.C.; Lam, C.D.; Bui, N.A.; Nguyen, H.T.L.; Tran, N.G.H.; Bui, T.B.H. Chemical Composition and Antioxidant Activity of Psidium Guajava L. Leaves. Can. Tho Univ. J. Sci. 2021, 13, 66–70. [Google Scholar] [CrossRef]
- Wang, L.; Wu, Y.; Bei, Q.; Shi, K.; Wu, Z. Fingerprint Profiles of Flavonoid Compounds from Different Psidium Guajava Leaves and Their Antioxidant Activities. J. Sep. Sci. 2017, 40, 3817–3829. [Google Scholar] [CrossRef]
- You, D.-H.; Park, J.-W.; Yuk, H.-G.; Lee, S.-C. Antioxidant and Tyrosinase Inhibitory Activities of Different Parts of Guava (Psidium Guajava L.). Food Sci. Biotechnol. 2011, 20, 1095–1100. [Google Scholar] [CrossRef]
- Chirinos, R.; Rogez, H.; Campos, D.; Pedreschi, R.; Larondelle, Y. Optimization of Extraction Conditions of Antioxidant Phenolic Compounds from Mashua (Tropaeolum Tuberosum Ruíz & Pavón) Tubers. Sep. Purif. Technol. 2007, 55, 217–225. [Google Scholar] [CrossRef]
- Castro-López, C.; Bautista-Hernández, I.; González-Hernández, M.D.; Martínez-Ávila, G.C.G.; Rojas, R.; Gutiérrez-Díez, A.; Medina-Herrera, N.; Aguirre-Arzola, V.E. Polyphenolic Profile and Antioxidant Activity of Leaf Purified Hydroalcoholic Extracts from Seven Mexican Persea Americana Cultivars. Molecules 2019, 24, 173. [Google Scholar] [CrossRef]
- Saini, A.; Pandey, A.; Sharma, S.; Suradkar, U.S.; Ambedkar, Y.R.; Meena, P.; Raman, R.; Gurjar, A.S. Assessment of Antioxidant Activity of Rosemary (Rosmarinus Officinalis) Leaves Extract. J. Pharmacogn. Phytochem. 2020, 9, 14–17. [Google Scholar]
- Singh, G.; Passsari, A.K.; Leo, V.V.; Mishra, V.K.; Subbarayan, S.; Singh, B.P.; Kumar, B.; Kumar, S.; Gupta, V.K.; Lalhlenmawia, H.; et al. Evaluation of Phenolic Content Variability along with Antioxidant, Antimicrobial, and Cytotoxic Potential of Selected Traditional Medicinal Plants from India. Front. Plant Sci. 2016, 7, 407. [Google Scholar] [CrossRef] [PubMed]
- Shabbir, H.; Kausar, T.; Noreen, S.; Rehman, H.U.; Hussain, A.; Huang, Q.; Gani, A.; Su, S.; Nawaz, A. In Vivo Screening and Antidiabetic Potential of Polyphenol Extracts from Guava Pulp, Seeds and Leaves. Animals 2020, 10, 1714. [Google Scholar] [CrossRef] [PubMed]
- Dorta, E.; Lobo, M.G.; Gonzalez, M. Reutilization of Mango Byproducts: Study of the Effect of Extraction Solvent and Temperature on Their Antioxidant Properties. J. Food Sci. 2012, 77, C80–C88. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Q.-W.; Lin, L.-G.; Ye, W.-C. Techniques for Extraction and Isolation of Natural Products: A Comprehensive Review. Chin. Med. 2018, 13, 20. [Google Scholar] [CrossRef] [PubMed]
- Suzery, M.; Nudin, B.; Nurwahyu Bima, D.; Cahyono, B. Effects of Temperature and Heating Time on Degradation and Antioxidant Activity of Anthocyanin from Roselle Petals (Hibiscus Sabdariffa L.). Int. J. Sci. Technol. Manag. 2020, 1, 238–288. [Google Scholar] [CrossRef]
- Ghafoor, K.; Ahmed, I.A.M.; Doğu, S.; Uslu, N.; Fadimu, G.J.; Al Juhaimi, F.; Babiker, E.E.; Özcan, M.M. The Effect of Heating Temperature on Total Phenolic Content, Antioxidant Activity, and Phenolic Compounds of Plum and Mahaleb Fruits. Int. J. Food Eng. 2019, 15, 20170302. [Google Scholar] [CrossRef]
- Liu, R.; Mabury, S.A. Synthetic Phenolic Antioxidants: A Review of Environmental Occurrence, Fate, Human Exposure, and Toxicity. Environ. Sci. Technol. 2020, 54, 11706–11719. [Google Scholar] [CrossRef]
- Rumpf, J.; Burger, R.; Schulze, M. Statistical Evaluation of DPPH, ABTS, FRAP, and Folin-Ciocalteu Assays to Assess the Antioxidant Capacity of Lignins. Int. J. Biol. Macromol. 2023, 233, 123470. [Google Scholar] [CrossRef]
- Tran, T.T.T.; Ton, N.M.N.; Nguyen, T.T.; Le, V.V.M.; Sajeev, D.; Schilling, M.W.; Dinh, T.T.N. Application of Natural Antioxidant Extract from Guava Leaves (Psidium Guajava L.) in Fresh Pork Sausage. Meat Sci. 2020, 165, 108106. [Google Scholar] [CrossRef]
- Chiari-Andréo, B.G.; Trovatti, E.; Marto, J.; Almeida-Cincotto, M.G.J.D.; Melero, A.; Corrêa, M.A.; Chiavacci, L.A.; Ribeiro, H.; Garrigues, T.; Isaac, V.L.B. Guava: Phytochemical Composition of a Potential Source of Antioxidants for Cosmetic and/or Dermatological Applications. Braz. J. Pharm. Sci. 2017, 53, e16141. [Google Scholar] [CrossRef]
- Cherubim, D.J.; Martins, C.V.; Fariña, L.; Lucca, R.A. Polyphenols as Natural Antioxidants in Cosmetics Applications. J. Cosmet. Dermatol. 2020, 19, 33–37. [Google Scholar] [CrossRef]
- Khan, M.K.; Paniwnyk, L.; Hassan, S. Polyphenols as Natural Antioxidants: Sources, Extraction and Applications in Food, Cosmetics and Drugs. In Plant Based “Green Chemistry 2.0”. Green Chemistry and Sustainable Technology; Springer: Singapore, 2019; pp. 197–235. [Google Scholar]
- Eze, F.N.; Ovatlarnporn, C.; Nalinbenjapun, S.; Sripetthong, S. Ultra-Fast Sustainable Synthesis, Optimization and Characterization of Guava Phenolic Extract Functionalized Nanosilver with Enhanced Biomimetic Attributes. Arab. J. Chem. 2022, 15, 104167. [Google Scholar] [CrossRef]
- Wang, L.; Wu, Y.; Xie, J.; Wu, S.; Wu, Z. Characterization, Antioxidant and Antimicrobial Activities of Green Synthesized Silver Nanoparticles from Psidium Guajava L. Leaf Aqueous Extracts. Mater. Sci. Eng. C 2018, 86, 1–8. [Google Scholar] [CrossRef]
- Lobo, V.; Patil, A.; Phatak, A.; Chandra, N. Free Radicals, Antioxidants and Functional Foods: Impact on Human Health. Pharmacogn. Rev. 2010, 4, 118. [Google Scholar] [CrossRef]
- Lok, B.; Sandai, D.; Baharetha, H.M.; Nazari, V.M.; Asif, M.; Tan, C.S.; Majid, A.A. Anticancer Effect of Psidium Guajava (Guava) Leaf Extracts against Colorectal Cancer through Inhibition of Angiogenesis. Asian Pac. J. Trop. Biomed. 2020, 10, 293. [Google Scholar] [CrossRef]
- Nagpal, T.; Alam, S.; Khare, S.K.; Satya, S.; Chaturvedi, S.; Sahu, J.K. Effect of Psidium Guajava Leaves Extracts on Thermo-Lipid Oxidation and Maillard Pathway Born Food Toxicant Acrylamide in Indian Staple Food. J. Food Sci. Technol. 2022, 59, 86–94. [Google Scholar] [CrossRef]
- Lahlou, J.; Amraoui, B.E.; El-Wahidi, M.; Bamhaoud, T. Chemical Composition, Antioxidant and Antimicrobial Activities of Moroccan Species of Psidium Guajava Extracts. Rocz. Panstw. Zakl. Hig. 2022, 73, 65–77. [Google Scholar] [CrossRef]
- Naseer, S.; Hussain, S.; Naeem, N.; Pervaiz, M.; Rahman, M. The Phytochemistry and Medicinal Value of Psidium Guajava (Guava). Clin. Phytoscience 2018, 4, 32. [Google Scholar] [CrossRef]
- Nguyen, T.L.A.; Bhattacharya, D. Antimicrobial Activity of Quercetin: An Approach to Its Mechanistic Principle. Molecules 2022, 27, 2494. [Google Scholar] [CrossRef]
- Tian, C.; Liu, X.; Chang, Y.; Wang, R.; Lv, T.; Cui, C.; Liu, M. Investigation of the Anti-Inflammatory and Antioxidant Activities of Luteolin, Kaempferol, Apigenin and Quercetin. South Afr. J. Bot. 2021, 137, 257–264. [Google Scholar] [CrossRef]
- Azeem, M.; Hanif, M.; Mahmood, K.; Ameer, N.; Chughtai, F.R.S.; Abid, U. An Insight into Anticancer, Antioxidant, Antimicrobial, Antidiabetic and Anti-Inflammatory Effects of Quercetin: A Review. Polym. Bull. 2023, 80, 241–262. [Google Scholar] [CrossRef]
- Fan, F.-Y.; Sang, L.-X.; Jiang, M. Catechins and Their Therapeutic Benefits to Inflammatory Bowel Disease. Molecules 2017, 22, 484. [Google Scholar] [CrossRef]
- Sharifi-Rad, J.; Quispe, C.; Castillo, C.M.S.; Caroca, R.; Lazo-Vélez, M.A.; Antonyak, H.; Polishchuk, A.; Lysiuk, R.; Oliinyk, P.; De Masi, L.; et al. Ellagic Acid: A Review on Its Natural Sources, Chemical Stability, and Therapeutic Potential. Oxid. Med. Cell Longev. 2022, 2022, 3848084. [Google Scholar] [CrossRef]
- Patel, D.K.; Patel, K. Therapeutic Importance of Avicularin for the Treatment of Liver Inflammatory Disorders. Metabolism 2021, 116, 154549. [Google Scholar] [CrossRef]
- Jamieson, S.; Wallace, C.E.; Das, N.; Bhattacharyya, P.; Bishayee, A. Guava (Psidium Guajava L.): A Glorious Plant with Cancer Preventive and Therapeutic Potential. Crit. Rev. Food Sci. Nutr. 2023, 63, 192–223. [Google Scholar] [CrossRef]
- Li, Y.; Xu, J.; Li, D.; Ma, H.; Mu, Y.; Huang, X.; Li, L. Guavinoside B from Psidium Guajava Alleviates Acetaminophen-Induced Liver Injury via Regulating the Nrf2 and JNK Signaling Pathways. Food Funct. 2020, 11, 8297–8308. [Google Scholar] [CrossRef]
- Jan, R.; Khan, M.; Asaf, S.; Lubna; Asif, S.; Kim, K.-M. Bioactivity and Therapeutic Potential of Kaempferol and Quercetin: New Insights for Plant and Human Health. Plants 2022, 11, 2623. [Google Scholar] [CrossRef]
- Rothwell, J.A.; Perez-Jimenez, J.; Neveu, V.; Medina-Remon, A.; M’Hiri, N.; Garcia-Lobato, P.; Manach, C.; Knox, C.; Eisner, R.; Wishart, D.S.; et al. Phenol-Explorer 3.0: A Major Update of the Phenol-Explorer Database to Incorporate Data on the Effects of Food Processing on Polyphenol Content. Database 2013, 2013, bat070. [Google Scholar] [CrossRef]
- Rajput, R.; Kumar, K. Protective Effect of Ethanolic Extract of Guava Leaves (Psidium Guajava L.) in Alloxan-Induced Diabetic Mice. Mater. Today Proc. 2021, 47, 437–439. [Google Scholar] [CrossRef]
- Azizan, N.A.; Wahab, N.Z.A.; Mohamad, N.A.; Shambely, A.S.; Othman, A.S. Antimicrobial Activity of Psidium Guajava Leaves Extract Against Foodborne Pathogens. Int. J. Psychosoc. Rehabil. 2020, 24, 318–326. [Google Scholar]
- Truong, D.-H.; Nguyen, D.H.; Ta, N.T.A.; Bui, A.V.; Do, T.H.; Nguyen, H.C. Evaluation of the Use of Different Solvents for Phytochemical Constituents, Antioxidants, and In Vitro Anti-Inflammatory Activities of Severinia Buxifolia. J. Food Qual. 2019, 2019, 8178294. [Google Scholar] [CrossRef]
- Nobossé, P.; Fombang, E.N.; Mbofung, C.M.F. Effects of Age and Extraction Solvent on Phytochemical Content and Antioxidant Activity of Fresh Moringa Oleifera L. Leaves. Food Sci. Nutr. 2018, 6, 2188–2198. [Google Scholar] [CrossRef]
- Nagaraja, S.K.; Nayaka, S.; Kumar, R.S. Phytochemical Analysis, GC–MS Profiling, and In Vitro Evaluation of Biological Applications of Different Solvent Extracts of Leonotis Nepetifolia (L.) R.Br. Flower Buds. Appl. Biochem. Biotechnol. 2023, 195, 1197–1215. [Google Scholar] [CrossRef]
- Aguilar-Morones, S.; Guerrero-Barrera, A.L.; Díaz-Villaseñor, J.M. Efecto Del Extracto de Hoja de Psidium Guajava L. En La Formación de Biopelículas de Escherichia Coli Uropatógena in-Vitro. Bachelor’s Thesis, Universidad Autonoma de Aguascalientes, Aguascalientes, Mexico, 2018. [Google Scholar]
- Tachakittirungrod, S.; Okonogi, S.; Chowwanapoonpohn, S. Study on Antioxidant Activity of Certain Plants in Thailand: Mechanism of Antioxidant Action of Guava Leaf Extract. Food Chem. 2007, 103, 381–388. [Google Scholar] [CrossRef]
- Palomares Salvador, I. Obtención de Fenoles Totales de Extractos Hidroalcohólicos en Diferentes Tiempos de Maceración de Hojas de Guayaba (Psidium Guajava L.) y de Aguacate (Persea Americana Mill.). 2019. Available online: https://repositorioslatinoamericanos.uchile.cl/handle/2250/2909123 (accessed on 18 May 2023).
- Coelho, J.M.P.; Johann, G.; da Silva, E.A.; Palú, F.; Vieira, M.G.A. Extraction of Natural Antioxidants from Strawberry Guava Leaf by Conventional and Non-Conventional Techniques. Chem. Eng. Commun. 2021, 208, 1131–1142. [Google Scholar] [CrossRef]
- Li, J.; Wu, C.; Li, F.; Yu, R.; Wu, X.; Shen, L.; Liu, Y.; Zeng, W. Optimization of Ultrasound-Assisted Water Extraction of Flavonoids from Psidium Guajava Leaves by Response Surface Analysis. Prep. Biochem. Biotechnol. 2019, 49, 21–29. [Google Scholar] [CrossRef]
- Amalia, A.; Suryono, S.; Endro Suseno, J.; Kurniawati, R. Ultrasound–Assisted Extraction Optimization of Phenolic Compounds from Psidium Guajava L. Using Artificial Neural Network-Genetic Algorithm. J. Phys. Conf. Ser. 2018, 1025, 012020. [Google Scholar] [CrossRef]
- Ratu Ayu, H.; Suryono, S.; Endro Suseno, J.; Kurniawati, R. Determination of the Ultrasound Power Effects on Flavonoid Compounds from Psidium Guajava L. Using ANFIS. J. Phys. Conf. Ser. 2018, 1025, 012024. [Google Scholar] [CrossRef]
- Setyaningsih, W.; Saputro, I.E.; Palma, M.; Barroso, C.G. Stability of 40 Phenolic Compounds during Ultrasound-Assisted Extractions (UAE). AIP Conf. Proc. 2016, 1755, 080009. [Google Scholar]
- Saraya, S.; Kanta, J.; Sarisuta, N.; Temsiririrkkul, R.; Suvathi, Y.; Samranri, K.; Chumnumwat, S. Development of Guava Extract Chewable Tablets for Anticariogenic Activity against Streptococcus Mutans. Mah Univ. J. Pharma Sci. 2008, 35, 18–23. [Google Scholar]
- Hernández, C.; Ascacio-Valdés, J.; De la Garza, H.; Wong-Paz, J.; Aguilar, C.N.; Martínez-Ávila, G.C.; Castro-López, C.; Aguilera-Carbó, A. Polyphenolic Content, in Vitro Antioxidant Activity and Chemical Composition of Extract from Nephelium Lappaceum L. (Mexican Rambutan) Husk. Asian Pac. J. Trop. Med. 2017, 10, 1201–1205. [Google Scholar] [CrossRef] [PubMed]
- Castro-López, C.; Sánchez-Alejo, E.J.; Saucedo-Pompa, S.; Rojas, R.; Aranda-Ruiz, J.; Martínez-Avila, G.C.G. Fluctuations in Phenolic Content, Ascorbic Acid and Total Carotenoids and Antioxidant Activity of Fruit Beverages during Storage. Heliyon 2016, 2, e00152. [Google Scholar] [CrossRef] [PubMed]
- Bautista-Hernández, I.; Aranda-Ledesma, N.E.; Rojas, R.; Tafolla-Arellano, J.C.; Martínez-Ávila, G.C.G. Antioxidant Activity of Polyphenolic Compounds Obtained from Euphorbia Antisyphilitica By-Products. Heliyon 2021, 7, e06734. [Google Scholar] [CrossRef] [PubMed]
- Aranda-Ledesma, N.E.; González-Hernández, M.D.; Rojas, R.; Paz-González, A.D.; Rivera, G.; Luna-Sosa, B.; Martínez-Ávila, G.C.G. Essential Oil and Polyphenolic Compounds of Flourensia Cernua Leaves: Chemical Profiling and Functional Properties. Agronomy 2022, 12, 2274. [Google Scholar] [CrossRef]
Extraction Method | Extraction Yield | |||
---|---|---|---|---|
Technique | Solvent | Temperature (°C) | Time (min) | mg of Phenolic Compounds/g of Guava Leaf |
Soxhlet | Methanol | 65 | 5 | 44 |
Soxhlet | Distilled water | 100 | 5 | 24 |
Maceration | Methanol | 37 | 192 | 21 |
Maceration | Methanol | 25 | 192 | 22 |
Ultrasound | Methanol | 30 | 0.66 | 18 |
Ultrasound | Methanol | 23 | 0.66 | 19 |
Ultrasound | Distilled water | 30 | 0.66 | 45 |
Extraction Method | (µg·mL−1) |
---|---|
Soxhlet, methanol, 65 °C, 5 h | |
Soxhlet, distilled water, 100 °C, 5 h | |
Maceration, methanol, 37 °C, 192 h | |
Maceration, methanol, 25 °C, 192 h | |
Ultrasound, methanol, 30 °C, 0.66 h | |
Ultrasound, methanol, 23 °C, 0.66 h | |
Ultrasound, distilled water, 30 °C, 0.66 h | |
Ultrasound, distilled water, 23 °C, 0.66 h |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gutierrez Montiel, D.; Guerrero Barrera, A.L.; Martínez Ávila, G.C.G.; Gonzalez Hernandez, M.D.; Chavez Vela, N.A.; Avelar Gonzalez, F.J.; Ramírez Castillo, F.Y. Influence of the Extraction Method on the Polyphenolic Profile and the Antioxidant Activity of Psidium guajava L. Leaf Extracts. Molecules 2024, 29, 85. https://doi.org/10.3390/molecules29010085
Gutierrez Montiel D, Guerrero Barrera AL, Martínez Ávila GCG, Gonzalez Hernandez MD, Chavez Vela NA, Avelar Gonzalez FJ, Ramírez Castillo FY. Influence of the Extraction Method on the Polyphenolic Profile and the Antioxidant Activity of Psidium guajava L. Leaf Extracts. Molecules. 2024; 29(1):85. https://doi.org/10.3390/molecules29010085
Chicago/Turabian StyleGutierrez Montiel, Daniela, Alma Lilian Guerrero Barrera, Guillermo Cristian Guadalupe Martínez Ávila, María Dolores Gonzalez Hernandez, Norma Angelica Chavez Vela, Francisco Javier Avelar Gonzalez, and Flor Yazmin Ramírez Castillo. 2024. "Influence of the Extraction Method on the Polyphenolic Profile and the Antioxidant Activity of Psidium guajava L. Leaf Extracts" Molecules 29, no. 1: 85. https://doi.org/10.3390/molecules29010085
APA StyleGutierrez Montiel, D., Guerrero Barrera, A. L., Martínez Ávila, G. C. G., Gonzalez Hernandez, M. D., Chavez Vela, N. A., Avelar Gonzalez, F. J., & Ramírez Castillo, F. Y. (2024). Influence of the Extraction Method on the Polyphenolic Profile and the Antioxidant Activity of Psidium guajava L. Leaf Extracts. Molecules, 29(1), 85. https://doi.org/10.3390/molecules29010085