Design and Construction of Enzyme-Based Electrochemical Gas Sensors
Abstract
:1. Introduction
2. The Types and Principles of Enzyme Electrode Electrochemical Gas Sensor
2.1. Three-Electrode Enzyme Electrochemical Gas Sensor
2.2. Field-Effect Transistor (FET) Enzyme Electrochemical Gas Sensor
3. The Immobilization Method of Enzyme
3.1. Physical Adsorption
3.2. Entrapment in Sol-Gels
3.3. Covalent Coupling
3.4. Crosslinking Method
4. Electrodes Materials Selection and Modification
4.1. Selection and Design of Surface-Modified Materials
4.2. Electrode Materials Property and Optimization
5. The Charge Transfer Mechanism of the Enzyme Electrode
5.1. Electrodes with Mediated Electron Transfer
5.2. Electrodes with Direct Electron Transfer
6. Application and Prospect of Enzyme-Based Electrochemical Gas Sensors
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Manavalan, E.; Jayakrishna, K. A review of Internet of Things (IoT) embedded sustainable supply chain for industry 4.0 requirements. Comput. Ind. Eng. 2019, 127, 925–953. [Google Scholar] [CrossRef]
- Qin, C.; Wang, Y.; Hu, J.; Wang, T.; Liu, D.; Dong, J.; Lu, Y. Artificial Olfactory Biohybrid System: An Evolving Sense of Smell. Adv. Sci. 2023, 10, 2204726. [Google Scholar] [CrossRef]
- Son, M.; Lee, J.Y.; Ko, H.J.; Park, T.H. Bioelectronic Nose: An Emerging Tool for Odor Standardization. Trends Biotechnol. 2017, 35, 301–307. [Google Scholar] [CrossRef]
- Achmann, S.; Haemmerle, M.; Moos, R. Amperometric enzyme-based gas sensor for formaldehyde: Impact of possible interferences. Sensors 2008, 8, 1351–1365. [Google Scholar] [CrossRef]
- Cheema, J.A.; Carraher, C.; Plank, N.O.V.; Travas-Sejdic, J.; Kralicek, A. Insect odorant receptor-based biosensors: Current status and prospects. Biotechnol. Adv. 2021, 53, 107840. [Google Scholar] [CrossRef]
- Goncalves, F.; Ribeiro, A.; Silva, C.; Cavaco-Paulo, A. Biotechnological applications of mammalian odorant-binding proteins. Crit. Rev. Biotechnol. 2021, 41, 441–455. [Google Scholar] [CrossRef]
- Goodwin, D.M.; Walters, F.; Ali, M.M.; Ahmadi, E.D.; Guy, O.J. Graphene Bioelectronic Nose for the Detection of Odorants with Human Olfactory Receptor 2AG1. Chemosensors 2021, 9, 174. [Google Scholar] [CrossRef]
- Tertis, M.; Hosu, O.; Feier, B.; Cernat, A.; Florea, A.; Cristea, C. Electrochemical Peptide-Based Sensors for Foodborne Pathogens Detection. Molecules 2021, 26, 3200. [Google Scholar] [CrossRef]
- Wu, J.; Liu, H.; Chen, W.; Ma, B.; Ju, H. Device integration of electrochemical biosensors. Nat. Rev. Bioeng. 2023, 1, 346–360. [Google Scholar] [CrossRef]
- Istrate, O.M.; Rotariu, L.; Bala, C. A Novel Amperometric Biosensor Based on Poly(allylamine hydrochloride) for Determination of Ethanol in Beverages. Sensors 2021, 21, 6510. [Google Scholar] [CrossRef]
- Achmann, S.; Hermann, M.; Hilbrig, F.; Jerome, V.; Haemmerle, M.; Freitag, R.; Moos, R. Direct detection of formaldehyde in air by a novel NAD(+)- and glutathione-independent formaldehyde dehydrogenase-based biosensor. Talanta 2008, 75, 786–791. [Google Scholar] [CrossRef]
- Landini, B.E.; Bravard, S.T. Breath Acetone Concentration Measured Using a Palm-Size Enzymatic Sensor System. IEEE Sens. J. 2009, 9, 1802–1807. [Google Scholar] [CrossRef]
- Abdulbari, H.A.; Basheer, E.A.M. Electrochemical Biosensors: Electrode Development, Materials, Design, and Fabrication. Chembioeng Rev. 2017, 4, 92–105. [Google Scholar] [CrossRef]
- Hausmanna, N.Z.; Meredithb, M.T.; Minteerb, S.D. Towards the Design of an Acetone Breath Biosensor. ECS Trans. 2013, 45, 1. [Google Scholar] [CrossRef]
- Zhao, C.-E.; Gai, P.; Song, R.; Chen, Y.; Zhang, J.; Zhu, J.-J. Nanostructured material-based biofuel cells: Recent advances and future prospects. Chem. Soc. Rev. 2017, 46, 1545–1564. [Google Scholar] [CrossRef]
- Wan, H.; Yin, H.; Lin, L.; Zeng, X.; Mason, A.J. Miniaturized planar room temperature ionic liquid electrochemical gas sensor for rapid multiple gas pollutants monitoring. Sens. Actuators B-Chem. 2018, 255, 638–646. [Google Scholar] [CrossRef]
- Lansdorp, B.; Ramsay, W.; Hamid, R.; Strenk, E. Wearable Enzymatic Alcohol Biosensor. Sensors 2019, 19, 2380. [Google Scholar] [CrossRef]
- Chung, P.-R.; Tzeng, C.-T.; Ke, M.-T.; Lee, C.-Y. Formaldehyde Gas Sensors: A Review. Sensors 2013, 13, 4468–4484. [Google Scholar] [CrossRef]
- Cinti, S.; Basso, M.; Moscone, D.; Arduini, F. A paper-based nanomodified electrochemical biosensor for ethanol detection in beers. Anal. Chim. Acta 2017, 960, 123–130. [Google Scholar] [CrossRef]
- Lutz, B.J.; Fan, Z.H.; Burgdorf, T.; Friedrich, B. Hydrogen sensing by enzyme-catalyzed electrochemical detection. Anal. Chem. 2005, 77, 4969–4975. [Google Scholar] [CrossRef] [PubMed]
- Colozza, N.; Kehe, K.; Dionisi, G.; Popp, T.; Tsoutsoulopoulos, A.; Steinritz, D.; Moscone, D.; Arduini, F. A wearable origami-like paper-based electrochemical biosensor for sulfur mustard detection. Biosens. Bioelectron. 2019, 129, 15–23. [Google Scholar] [CrossRef]
- Wang, L.; Wang, X.; Wu, Y.; Guo, M.; Gu, C.; Dai, C.; Kong, D.; Wang, Y.; Zhang, C.; Qu, D.; et al. Rapid and ultrasensitive electromechanical detection of ions, biomolecules and SARS-CoV-2 RNA in unamplified samples. Nat. Biomed. Eng. 2022, 6, 276–285. [Google Scholar] [CrossRef]
- Hong, S.; Wu, M.; Hong, Y.; Jeong, Y.; Jung, G.; Shin, W.; Park, J.; Kim, D.; Jang, D.; Lee, J.-H. FET-type gas sensors: A review. Sens. Actuators B-Chem. 2021, 330, 129240. [Google Scholar] [CrossRef]
- Vianello, F.; Stefani, A.; Di Paolo, M.L.; Rigo, A.; Lui, A.; Margesin, B.; Zen, m.; Scarpa, M.; Soncini, G. Potentiometric detection of formaldehyde in air by an aldehyde dehydrogenase FET. Sens. Actuators B-Chem. 1996, 37, 49–54. [Google Scholar] [CrossRef]
- Luo, S.; Wang, R.; Wang, L.; Qu, H.; Zheng, L. Breath alcohol sensor based on hydrogel-gated graphene field-effect transistor. Biosens. Bioelectron. 2022, 210, 114319. [Google Scholar] [CrossRef]
- Yabuki, S.; Mizutani, F.; Hirata, Y.; Iap, I.A.P. In Hydrogen peroxide determination based on a glassy carbon electrode covered with polyion complex membrane containing peroxidase and mediator. In Proceedings of the 7th International Meeting on Chemical Sensors (IMCS-7), Beijing, China, 27–30 July 1998. [Google Scholar]
- Mateo, C.; Abian, O.; Fernandez-Lafuente, R.; Guisan, J.M. Reversible enzyme immobilization via a very strong and nondistorting ionic adsorption on support-polyethylenimine composites. Biotechnol. Bioeng. 2000, 68, 98–105. [Google Scholar] [CrossRef]
- Sedenho, G.C.; Hassan, A.; Macedo, L.J.A.; Crespilho, F.N. Stabilization of bilirubin oxidase in a biogel matrix for high-performance gas diffusion electrodes. J. Power Sources 2021, 482, 229035. [Google Scholar] [CrossRef]
- Suresh, R.; Rajendran, S.; Khoo, K.S.; Soto-Moscoso, M. Enzyme Immobilized Nanomaterials: An Electrochemical Bio-Sensing and Biocatalytic Degradation Properties Toward Organic Pollutants. Top. Catal. 2023, 66, 691–706. [Google Scholar] [CrossRef]
- Duca, M.; Weeks, J.R.; Fedor, J.G.; Weiner, J.H.; Vincent, K.A. Combining Noble Metals and Enzymes for Relay Cascade Electrocatalysis of Nitrate Reduction to Ammonia at Neutral pH. Chemelectrochem 2015, 2, 1086–1089. [Google Scholar] [CrossRef]
- Sheldon, R.A. Enzyme immobilization: The quest for optimum performance. Adv. Synth. Catal. 2007, 349, 1289–1307. [Google Scholar] [CrossRef]
- Milton, R.D.; Wang, T.; Knoche, K.L.; Minteer, S.D. Tailoring Biointerfaces for Electrocatalysis. Langmuir 2016, 32, 2291–2301. [Google Scholar] [CrossRef]
- Bagchi, S.; Sengupta, S.; Mondal, S. Development and Characterization of Carbonic Anhydrase-Based CO2 Biosensor for Primary Diagnosis of Respiratory Health. IEEE Sens. J. 2017, 17, 1384–1390. [Google Scholar] [CrossRef]
- Shimomura, T.; Sumiya, T.; Ono, M.; Itoh, T.; Hanaoka, T.-a. In An electrochemical biosensor for the determination of lactic acid in expiration. In Proceedings of the 2nd International Conference on Bio-Sensing Technology, Amsterdam, The Netherlands, 10–12 October 2012; pp. 46–51. [Google Scholar]
- Razmshoar, P.; Besbes, F.; Madaci, A.; Mlika, R.; Bahrami, S.H.; Rabiee, M.; Martin, M.; Errachid, A.; Jaffrezic-Renault, N. A conductometric enzymatic methanol sensor based on polystyrene-PAMAM dendritic polymer electrospun nanofibers. Talanta 2023, 260, 124630. [Google Scholar] [CrossRef]
- Kudo, H.; Goto, T.; Saito, T.; Saito, H.; Otsuka, K.; Mitsubayashi, K. Biochemical sniffer with choline oxidase for measurement of choline vapour. Microchim. Acta 2008, 160, 421–426. [Google Scholar] [CrossRef]
- Premaratne, G.; Farias, S.; Krishnan, S. Pyrenyl carbon nanostructures for ultrasensitive measurements of formaldehyde in urine. Anal. Chim. Acta 2017, 970, 23–29. [Google Scholar] [CrossRef]
- Voronova, E.A.; Iliasov, P.V.; Reshetilov, A.N. Development, investigation of parameters and estimation of possibility of adaptation of Pichia angusta based microbial sensor for ethanol detection. Anal. Lett. 2008, 41, 377–391. [Google Scholar] [CrossRef]
- Jiang, X.; Zhu, L.; Yang, D.; Mao, X.; Wu, Y. Amperometric Ethanol Biosensor Based on Integration of Alcohol Dehydrogenase with Meldola’s Blue/Ordered Mesoporous Carbon Electrode. Electroanalysis 2009, 21, 1617–1623. [Google Scholar] [CrossRef]
- Kundu, M.; Rajesh; Krishnan, P.; Gajjala, S. Comparative Studies of Screen-Printed Electrode Based Electrochemical Biosensor with the Optical Biosensor for Formaldehyde Detection in Corn. Food Bioprocess Technol. 2021, 14, 726–738. [Google Scholar] [CrossRef]
- Ormategui, N.; Veloso, A.; Patricia Leal, G.; Rodriguez-Couto, S.; Tomovska, R. Design of Stable and Powerful Nanobiocatalysts, Based on Enzyme Laccase Immobilized on Self-Assembled 3D Graphene/Polymer Composite Hydrogels. ACS Appl. Mater. Interfaces 2015, 7, 14104–14112. [Google Scholar] [CrossRef]
- Adhikari, B.-R.; Schraft, H.; Chen, A. A high-performance enzyme entrapment platform facilitated by a cationic polymer for the efficient electrochemical sensing of ethanol. Analyst 2017, 142, 2595–2602. [Google Scholar] [CrossRef] [PubMed]
- Das, M.; Goswami, P. Direct electrochemistry of alcohol oxidase using multiwalled carbon nanotube as electroactive matrix for biosensor application. Bioelectrochemistry 2013, 89, 19–25. [Google Scholar] [CrossRef]
- Soylemez, S.; Goker, S.; Toppare, L. A promising enzyme anchoring probe for selective ethanol sensing in beverages. Int. J. Biol. Macromol. 2019, 133, 1228–1235. [Google Scholar] [CrossRef]
- Soylemez, S.; Kanik, F.E.; Uzun, S.D.; Hacioglu, S.O.; Toppare, L. Development of an efficient immobilization matrix based on a conducting polymer and functionalized multiwall carbon nanotubes: Synthesis and its application to ethanol biosensors. J. Mater. Chem. B 2014, 2, 511–521. [Google Scholar] [CrossRef]
- Niculescu, M.; Mieliauskiene, R.; Laurinavicius, V.; Csoregi, E. Simultaneous detection of ethanol, glucose and glycerol in wines using pyrroloquinoline quinone-dependent dehydrogenases based biosensors. Food Chem. 2003, 82, 481–489. [Google Scholar] [CrossRef]
- Petrov, A.L.; Erankin, S.V.; Petrov, L.A.; Shishmakov, A.B. Sol-Gel Synthesis of an Organic-Inorganic Composite for Preparation of an Active Carrier of α-Amylase. Glass Phys. Chem. 2012, 38, 105–108. [Google Scholar] [CrossRef]
- Li, Z.; Huang, Y.; Chen, L.; Qin, X.; Huang, Z.; Zhou, Y.; Meng, Y.; Li, J.; Huang, S.; Liu, Y.; et al. Amperometric biosensor for NADH and ethanol based on electroreduced graphene oxide-polythionine nanocomposite film. Sens. Actuators B-Chem. 2013, 181, 280–287. [Google Scholar] [CrossRef]
- Gumpu, M.B.; Nesakumar, N.; Sethuraman, S.; Krishnan, U.M.; Rayappan, J.B.B. Determination of Putrescine in Tiger Prawn Using an Amperometric Biosensor Based on Immobilization of Diamine Oxidase onto Ceria Nanospheres. Food Bioprocess Technol. 2016, 9, 717–724. [Google Scholar] [CrossRef]
- Kundu, M.; Bhardwaj, H.; Pandey, M.K.; Krishnan, P.; Kotnala, R.K.; Sumana, G. Development of electrochemical biosensor based on CNT-Fe3O4 nanocomposite to determine formaldehyde adulteration in orange juice. J. Food Sci. Technol.-Mysore 2019, 56, 1829–1840. [Google Scholar] [CrossRef]
- Bilgi, M.; Ayranci, E. Biosensor application of screen-printed carbon electrodes modified with nanomaterials and a conducting polymer: Ethanol biosensors based on alcohol dehydrogenase. Sens. Actuators B-Chem. 2016, 237, 849–855. [Google Scholar] [CrossRef]
- Semwal, V.; Shrivastav, A.M.; Verma, R.; Gupta, B.D. Surface plasmon resonance based fiber optic ethanol sensor using layers of silver/silicon/hydrogel entrapped with ADH/NAD. Sens. Actuators B-Chem. 2016, 230, 485–492. [Google Scholar] [CrossRef]
- Kandimalla, V.B.; Tripathi, V.S.; Ju, H. Immobilization of biomolecules in sol-gels: Biological and analytical applications. Crit. Rev. Anal. Chem. 2006, 36, 73–106. [Google Scholar] [CrossRef]
- Sundari, R.; Hadibarata, T.; Heng, L.-Y.; Ahmad, M. A new biosensor based on nanogold doping in P-HEMA alcohol oxidase detects formaldehyde in fresh food. Trends Appl. Sci. Res. 2012, 7, 737–747. [Google Scholar] [CrossRef]
- Zhang, N.Y.; Xie, J.N.; Varadan, V.K. Functional carbon nanotube material-based enzyme biosensors for glucose sensing. In Proceedings of the Smart Structures and Materials Conference, San Diego, CA, USA, 7–10 March 2005. [Google Scholar]
- Zeng, Q.; Cheng, J.; Tang, L.; Liu, X.; Liu, Y.; Li, J.; Jiang, J. Self-Assembled Graphene-Enzyme Hierarchical Nanostructures for Electrochemical Biosensing. Adv. Funct. Mater. 2010, 20, 3366–3372. [Google Scholar] [CrossRef]
- Xia, T.Z.; Liu, G.Y.; Wang, J.J.; Hou, S.L.; Hou, S.F. MXene-based enzymatic sensor for highly sensitive and selective detection of cholesterol. Biosens. Bioelectron. 2021, 183, 113243. [Google Scholar] [CrossRef] [PubMed]
- Shimomura, T.; Itoh, T.; Sumiya, T.; Mizukami, F.; Ono, M. Electrochemical biosensor for the detection of formaldehyde based on enzyme immobilization in mesoporous silica materials. Sens. Actuators B-Chem. 2008, 135, 268–275. [Google Scholar] [CrossRef]
- Heng, L.Y.; Hall, E.A.H. Methacrylate-acrylate based polymers of low plasticiser content for potassium ion-selective membranes. Anal. Chim. Acta 1996, 324, 47–56. [Google Scholar] [CrossRef]
- Nurlely; Ahmad, M.; Heng, L.Y.; Tan, L.L. Potentiometric enzyme biosensor for rapid determination of formaldehyde based on succinimide-functionalized polyacrylate ion-selective membrane. Measurement 2021, 175, 109112. [Google Scholar] [CrossRef]
- Chaubey, A.; Malhotra, B.D. Mediated biosensors. Biosens. Bioelectron. 2002, 17, 441–456. [Google Scholar] [CrossRef]
- Heller, A.; Feldman, B. Electrochemical glucose sensors and their applications in diabetes management. Chem. Rev. 2008, 108, 2482–2505. [Google Scholar] [CrossRef]
- Kumar, A.; Rajesh; Chaubey, A.; Grover, S.K.; Malhotra, B.D. Immobilization of cholesterol oxidase and potassium ferricyanide on dodecylbenzene sulfonate ion-doped polypyrrole film. J. Appl. Polym. Sci. 2001, 82, 3486–3491. [Google Scholar] [CrossRef]
- Haemmerle, M.; Achmann, S.; Moos, R. Gas Diffusion Electrodes for Use in an Amperometric Enzyme Biosensor. Electroanalysis 2008, 20, 2279–2286. [Google Scholar] [CrossRef]
- Dennison, M.J.; Apf, T.; Hall, J.M. Gas-Phase Microbiosensor for Monitoring Phenol Vapor at ppb Levels. Anal. Chem. 1995, 67, 3922–3927. [Google Scholar] [CrossRef]
- Otsuka, K.; Goto, T.; Amagai, H.; Ishii, N.; Endo, H.; Mitsubayashi, K. Biochemical sniffer for odourless hydrogen peroxide vapour. Int. J. Environ. Anal. Chem. 2006, 86, 1049–1056. [Google Scholar] [CrossRef]
- Kuretake, T.; Kawahara, S.; Motooka, M.; Uno, S. An Electrochemical Gas Biosensor Based on Enzymes Immobilized on Chromatography Paper for Ethanol Vapor Detection. Sensors 2017, 17, 281. [Google Scholar] [CrossRef] [PubMed]
- Strehlitz, B.; Gründig, B.; Kopinke, H. Sensor for amperometric determination of ammonia and ammonia-forming enzyme reactions. Anal. Chim. Acta 2000, 403, 11–23. [Google Scholar] [CrossRef]
- Dzyadevych, S.V.; Arkhypova, V.N.; Korpan, Y.I.; El’skaya, A.V.; Soldatkin, A.P.; Jaffrezic-Renault, N.; Martelet, C. Conductometric formaldehyde sensitive biosensor with specifically adapted analytical characteristics. Anal. Chim. Acta 2001, 445, 47–55. [Google Scholar] [CrossRef]
- Saito, H.; Suzuki, Y.; Gessei, T.; Miyajima, K.; Arakawa, T.; Mitsubayashi, K. Bioelectronic Sniffer (Biosniffer) Based on Enzyme Inhibition of Butyrylcholinesterase for Toluene Detection. Sens. Mater. 2014, 26, 121–129. [Google Scholar]
- de Prada, A.G.V.; Pena, N.; Mena, M.L.; Reviejo, A.J.; Pingarron, J.M. Graphite-Teflon composite bienzyme amperometric biosensors for monitoring of alcohols. Biosens. Bioelectron. 2003, 18, 1279–1288. [Google Scholar] [CrossRef]
- Ghindilis, A.L.; Atanasov, P.; Wilkins, E. Enzyme-catalyzed direct electron transfer: Fundamentals and analytical applications. Electroanalysis 1997, 9, 661–674. [Google Scholar] [CrossRef]
- Cass, A.E.; Davis, G.; Francis, G.D.; Hill, H.A.; Aston, W.J.; Higgins, I.J.; Plotkin, E.V.; Scott, L.D.; Turner, A.P. Ferrocene-mediated enzyme electrode for amperometric determination of glucose. Anal. Chem. 1984, 56, 667–671. [Google Scholar] [CrossRef]
- Bilgi, M.; Sahin, E.M.; Ayranci, E. Sensor and biosensor application of a new redox mediator: Rosmarinic acid modified screen-printed carbon electrode for electrochemical determination of NADH and ethanol. J. Electroanal. Chem. 2018, 813, 67–74. [Google Scholar] [CrossRef]
- Prasanna Kumar, S.; Parashuram, L.; Suhas, D.P.; Krishnaiah, P. Carboxylated graphene-alcohol oxidase thin films modified graphite electrode as an electrochemical sensor for electro-catalytic detection of ethanol. Mater. Sci. Energy Technol. 2020, 3, 159–166. [Google Scholar] [CrossRef]
Gases | Enzyme | Immobilization Methods | Ref. |
---|---|---|---|
Ethanol | Alcohol oxidase | Entrapment | [25] |
Carbon dioxide | Carbonic anhydrase | Entrapment | [33] |
Lactic acid | Lactate oxidase | Physical adsorption | [34] |
Methanol | Alcohol oxidase | Crosslinking | [35] |
Choline | Choline oxidase | Entrapment | [36] |
Formaldehyde | Formaldehyde dehydrogenase | Covalent Coupling | [37] |
Gases | Enzyme | LOD | Materials | Ref. |
---|---|---|---|---|
Acetone | Secondary alcohol dehydrogenase | 0.25 ppm | - | [12] |
Ethanol | Alcohol oxidase | 46 ppb | Hydrogel | [25] |
Phenol | Polyphenol oxidase | 29 ppb | Hydrogel | [65] |
Hydrogen peroxide | Catalase | - | Polyvinyl alcohol | [66] |
Ethanol | Alcohol oxidase | 55 ppb | - | [67] |
Methyl mercaptan | Monoamine oxidase | - | - | [68] |
Formaldehyde | Alcohol oxidase | 0.15 ppm | Poly(allylamine) | [69] |
Toluene | Butyrylcholinesterase | - | Polyvinyl alcohol | [70] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, W.; Chen, X.; Xing, Y.; Chen, J.; Guo, L.; Huang, Q.; Li, H.; Liu, H. Design and Construction of Enzyme-Based Electrochemical Gas Sensors. Molecules 2024, 29, 5. https://doi.org/10.3390/molecules29010005
Zhang W, Chen X, Xing Y, Chen J, Guo L, Huang Q, Li H, Liu H. Design and Construction of Enzyme-Based Electrochemical Gas Sensors. Molecules. 2024; 29(1):5. https://doi.org/10.3390/molecules29010005
Chicago/Turabian StyleZhang, Wenjian, Xinyi Chen, Yingying Xing, Jingqiu Chen, Lanpeng Guo, Qing Huang, Huayao Li, and Huan Liu. 2024. "Design and Construction of Enzyme-Based Electrochemical Gas Sensors" Molecules 29, no. 1: 5. https://doi.org/10.3390/molecules29010005