Borane-Pyridine: An Efficient Catalyst for Direct Amidation
Abstract
1. Introduction
2. Results and Discussion
3. Materials and Methods
3.1. General Information
3.2. Experimental
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Magano, J. Large-Scale Amidations in Process Chemistry: Practical Considerations for Reagent Selection and Reaction Execution. Org. Process Res. Dev. 2022, 26, 1562–1689. [Google Scholar] [CrossRef]
- Santos, A.S.; Silva, A.M.S.; Marques, M.M.B. Sustainable Amidation Reactions—Recent Advances. Eur. J. Org. Chem. 2020, 2020, 2501–2516. [Google Scholar] [CrossRef]
- Wang, X. Challenges and outlook for catalytic direct amidation reactions. Nat. Catal. 2019, 2, 98–102. [Google Scholar] [CrossRef]
- Braddock, D.C.; Davies, J.J.; Lickiss, P.D. Methyltrimethoxysilane (MTM) as a Reagent for Direct Amidation of Carboxylic Acids. Org. Lett. 2022, 24, 1175–1179. [Google Scholar] [CrossRef] [PubMed]
- de Figueiredo, R.M.; Suppo, J.S.; Campagne, J.M. Nonclassical Routes for Amide Bond Formation. Chem. Rev. 2016, 116, 12029–12122. [Google Scholar] [CrossRef]
- Mohy El Dine, T.; Erb, W.; Berhault, Y.; Rouden, J.; Blanchet, J. Catalytic Chemical Amide Synthesis at Room Temperature: One More Step Toward Peptide Synthesis. J. Org. Chem. 2015, 80, 4532–4544. [Google Scholar] [CrossRef]
- Al-Zoubi, R.M.; Marion, O.; Hall, D.G. Direct and Waste-Free Amidations and Cycloadditions by Organocatalytic Activation of Carboxylic Acids at Room Temperature. Angew. Chem. Int. Ed. 2008, 47, 2876–2879. [Google Scholar] [CrossRef]
- Arnold, K.; Davies, B.; Giles, R.L.; Grosjean, C.; Smith, G.E.; Whiting, A. To Catalyze or not to Catalyze? Insight into Direct Amide Bond Formation from Amines and Carboxylic Acids under Thermal and Catalyzed Conditions. Adv. Synth. Catal. 2006, 348, 813–820. [Google Scholar] [CrossRef]
- Pan, B.; Huang, D.-M.; Sun, H.-T.; Song, S.-N.; Su, X.-B. Heterocyclic Boron Acid Catalyzed Dehydrative Amidation of Aliphatic/Aromatic Carboxylic Acids with Amines. J. Org. Chem. 2023, 88, 2832–2840. [Google Scholar] [CrossRef]
- Li, J.H.; Wang, Y.; Xie, H.L.; Ren, S.F.; Liu, J.B.; Luo, N.H.; Qiu, G.S. Iron-catalyzed cross-coupling of N-methoxy amides and arylboronic acids for the synthesis of N-aryl amides. Mol. Catal. 2021, 516, 111993. [Google Scholar] [CrossRef]
- Starkov, P.; Sheppard, T.D. Borate esters as convenient reagents for direct amidation of carboxylic acids and transamidation of primary amides. Org. Biomol. Chem. 2011, 9, 1320–1323. [Google Scholar] [CrossRef] [PubMed]
- Tang, P. Boric Acid Catalyzed Amide Formation From Carboxylic Acids And Amines: N-Benzyl-4-Phenylbutyramide [(Benzenebutanamide, N-(Phenylmethyl)-)]. Org. Synth. 2005, 81, 262–272. [Google Scholar] [CrossRef]
- Huang, Z.; Reilly, J.E.; Buckle, R.N. An Efficient Synthesis of Amides and Esters via Triacyloxyboranes. Synlett 2007, 2007, 1026–1030. [Google Scholar] [CrossRef]
- Trapani, G.; Reho, A.; Latrofa, A. Trimethylamine-Borane as Useful Reagent in the N-Acylation or N-Alkylation of Amines by Carboxylic Acids. Synthesis 1983, 1983, 1013–1014. [Google Scholar] [CrossRef]
- Ramachandran, P.V.; Alawaed, A.A.; Hamann, H.J. A Safer Reduction of Carboxylic Acids with Titanium Catalysis. Org. Lett. 2022, 24, 8481–8486. [Google Scholar] [CrossRef] [PubMed]
- Pan, Y.; Luo, Z.; Han, J.; Xu, X.; Chen, C.; Zhao, H.; Xu, L.; Fan, Q.; Xiao, J. B(C6F5)3-Catalyzed Deoxygenative Reduction of Amides to Amines with Ammonia Borane. Adv. Synth. Catal. 2019, 361, 2301–2308. [Google Scholar] [CrossRef]
- Ramachandran, P.V.; Hamann, H.J.; Choudhary, S. Amine-boranes as Dual-Purpose Reagents for Direct Amidation of Carboxylic Acids. Org. Lett. 2020, 22, 8593–8597. [Google Scholar] [CrossRef]
- Ramachandran, P.V.; Hamann, H.J. Ammonia-borane as a Catalyst for the Direct Amidation of Carboxylic Acids. Org. Lett. 2021, 23, 2938–2942. [Google Scholar] [CrossRef]
- Ramachandran, P.V.; Hamann, H.J.; Lin, R.; Singh, A. Scalable, Green Synthesis of Heteroaromatic Amine-boranes. Org. Process Res. Dev. 2023, 27, 775–783. [Google Scholar] [CrossRef]
- Ramachandran, P.V.; Kulkarni, A.S.; Zhao, Y.; Mei, J. Amine–boranes bearing borane-incompatible functionalities: Application to selective amine protection and surface functionalization. Chem. Comm. 2016, 52, 11885–11888. [Google Scholar] [CrossRef]
- Ohshima, T.; Hayashi, Y.; Agura, K.; Fujii, Y.; Yoshiyama, A.; Mashima, K. Sodium methoxide: A simple but highly efficient catalyst for the direct amidation of esters. Chem. Comm. 2012, 48, 5434–5436. [Google Scholar] [CrossRef] [PubMed]
- Shao, J.; Huang, X.M.; Wang, S.Y.; Liu, B.X.; Xu, B. A straightforward synthesis of N-monosubstituted α-keto amides via aerobic benzylic oxidation of amides. Tetrahedron 2012, 68, 573–579. [Google Scholar] [CrossRef]
- Xiao, K.-J.; Wang, A.-E.; Huang, Y.-H.; Huang, P.-Q. Versatile and Direct Transformation of Secondary Amides into Ketones by Deaminative Alkylation with Organocerium Reagents. Asian J. Org. Chem. 2012, 1, 130–132. [Google Scholar] [CrossRef]
- Duangkamol, C.; Jaita, S.; Wangngae, S.; Phakhodee, W.; Pattarawarapan, M. An efficient mechanochemical synthesis of amides and dipeptides using 2,4,6-trichloro-1,3,5-triazine and PPh3. RSC Adv. 2015, 5, 52624–52628. [Google Scholar] [CrossRef]
- Gabriel, C.M.; Keener, M.; Gallou, F.; Lipshutz, B.H. Amide and Peptide Bond Formation in Water at Room Temperature. Org. Lett. 2015, 17, 3968–3971. [Google Scholar] [CrossRef] [PubMed]
- Gockel, S.N.; Hull, K.L. Chloroform as a Carbon Monoxide Precursor: In or Ex Situ Generation of CO for Pd-Catalyzed Aminocarbonylations. Org. Lett. 2015, 17, 3236–3239. [Google Scholar] [CrossRef] [PubMed]
- Nozawa-Kumada, K.; Kadokawa, J.; Kameyama, T.; Kondo, Y. Copper-Catalyzed sp3 C–H Aminative Cyclization of 2-Alkyl-N-arylbenzamides: An Approach for the Synthesis of N-Aryl-isoindolinones. Org. Lett. 2015, 17, 4479–4481. [Google Scholar] [CrossRef] [PubMed]
- Sirgamalla, R.; Kommakula, A.; Banoth, S.; Dharavath, R.; Adem, K.; P, M.; Boda, S. Synthesis of Amides from Aliphatic Acids and Amines by using of I2/TBHP at Room Temperature. ChemistrySelect 2018, 3, 1062–1065. [Google Scholar] [CrossRef]
- Yu, W.; Yang, S.; Xiong, F.; Fan, T.; Feng, Y.; Huang, Y.; Fu, J.; Wang, T. Palladium-catalyzed carbonylation of benzylic ammonium salts to amides and esters via C–N bond activation. Org. Biomol. Chem. 2018, 16, 3099–3103. [Google Scholar] [CrossRef]
- Ling, L.; Chen, C.; Luo, M.; Zeng, X. Chromium-Catalyzed Activation of Acyl C–O Bonds with Magnesium for Amidation of Esters with Nitroarenes. Org. Lett. 2019, 21, 1912–1916. [Google Scholar] [CrossRef]
- Manasa, K.L.; Tangella, Y.; Krishna, N.H.; Alvala, M. A metal-free approach for the synthesis of amides/esters with pyridinium salts of phenacyl bromides via oxidative C–C bond cleavage. Beilstein J. Org. Chem. 2019, 15, 1864–1871. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ramachandran, P.V.; Singh, A.; Walker, H.; Hamann, H.J. Borane-Pyridine: An Efficient Catalyst for Direct Amidation. Molecules 2024, 29, 268. https://doi.org/10.3390/molecules29010268
Ramachandran PV, Singh A, Walker H, Hamann HJ. Borane-Pyridine: An Efficient Catalyst for Direct Amidation. Molecules. 2024; 29(1):268. https://doi.org/10.3390/molecules29010268
Chicago/Turabian StyleRamachandran, P. Veeraraghavan, Aman Singh, Harry Walker, and Henry J. Hamann. 2024. "Borane-Pyridine: An Efficient Catalyst for Direct Amidation" Molecules 29, no. 1: 268. https://doi.org/10.3390/molecules29010268
APA StyleRamachandran, P. V., Singh, A., Walker, H., & Hamann, H. J. (2024). Borane-Pyridine: An Efficient Catalyst for Direct Amidation. Molecules, 29(1), 268. https://doi.org/10.3390/molecules29010268