Radioactive Molecules 2021–2022
1. The Search Criteria
2. Main Categories
2.1. Non-Medical Applications
2.2. Medical Applications
3. Use of Isotopes
4. Development of New Radiopharmaceuticals for Clinical Use
5. Diagnosing or Treating a Specific Disease
6. Overall Summary
Conflicts of Interest
List of Contributions
- L1.
- Yan, Z.; Qiao, Y.;Wang, J.; Xie, J.; Cui, B.; Fu, Y.; Lu, J.; Yang, Y.; Bu, N.; Yuan, Y.; et al. An Azo-Group-Functionalized Porous Aromatic Framework for Achieving Highly Efficient Capture of Iodine. Molecules 2022, 27, 6297. https://doi.org/10.3390/molecules2719629.
- L2.
- Tian, P.; Ai, Z.; Hu, H.; Wang, M.; Li, Y.; Gao, X.; Qian, J.; Su, X.; Xiao, S.; Xu, H.; et al. Synthesis of Electron-Rich Porous Organic Polymers via Schiff-Base Chemistry for Efficient Iodine Capture. Molecules 2022, 27, 5161. https://doi.org/10.3390/molecules27165161.
- L3.
- Zuo, B.; Cao, M.; Tao, X.; Xu, X.; Leng, H.; Cui, Y.; Bi, K. Metabolic Study of Tetra-PEG-Based Hydrogel after Pelvic Implantation in Rats. Molecules 2022, 27, 5993. https://doi.org/10.3390/molecules27185993.
- L4.
- Planche, C.; Chevolleau, S.; Noguer-Meireles, M.-H.; Jouanin, I.; Mompelat, S.; Ratel, J.; Verdon, E.; Engel, E.; Debrauwer, L. Fate of Sulfonamides and Tetracyclines in Meat during Pan Cooking: Focus on the Thermodegradation of Sulfamethoxazole. Molecules 2022, 27, 6233. https://doi.org/10.3390/molecules27196233.
- L5.
- Dal Fovo, A.; Fedi, M.; Federico, G.; Liccioli, L.; Barone, S.; Fontana, R. Correction: Dal Fovo et al. Multi-Analytical Characterization and Radiocarbon Dating of a Roman Egyptian Mummy Portrait. Molecules 2021, 26, 5268. Molecules 2022, 27, 3822. https://doi.org/10.3390/molecules27123822.
- L6.
- Wodtke, R.; Pietzsch, J.; Löser, R. Solid-Phase Synthesis of Selectively Mono-Fluorobenz(o)ylated Polyamines as a Basis for the Development of 18F-Labeled Radiotracers. Molecules 2021, 26, 7012. https://doi.org/10.3390/molecules26227012.
- L7.
- Jødal, L.; Afzelius, P.; Alstrup, A.K.O.; Jensen, S.B. Radiotracers for Bone Marrow Infection Imaging. Molecules 2021, 26, 3159. https://doi.org/10.3390/molecules26113159.
- L8.
- Kumar, K.; Ghosh, A. Radiochemistry, Production Processes, Labeling Methods, and ImmunoPET Imaging Pharmaceuticals of Iodine-124. Molecules 2021, 26, 414. https://doi.org/10.3390/molecules26020414.
- L9.
- Lin, M.; Coll, R.P.; Cohen, A.S.; Georgiou, D.K.; Manning, H.C. PET Oncological Radiopharmaceuticals: Current Status and Perspectives. Molecules 2022, 27, 6790. https://doi.org/10.3390/molecules27206790.
- L10.
- Nguyen, G.A.; Liang, C.; Mukherjee, J. [124I]IBETA: A New A Plaque Positron Emission Tomography Imaging Agent for Alzheimer’s Disease. Molecules 2022, 27, 4552. https://doi.org/10.3390/molecules27144552.
- L11.
- Fonseca, I.C.F.; Castelo-Branco, M.; Cavadas, C.; Abrunhosa, A.J. PET Imaging of the Neuropeptide Y System: A Systematic Review. Molecules 2022, 27, 3726. https://doi.org/10.3390/molecules27123726.
- L12.
- Wang, L.; Zhou, Y.;Wu, X.; Ma, X.; Li, B.; Ding, R.; Stashko, M.A.; Wu, Z.;Wang, X.; Li, Z. The Synthesis and Initial Evaluation of MerTK Targeted PET Agents. Molecules 2022, 27, 1460. https://doi.org/10.3390/molecules27051460.
- L13.
- Holik, H.A.; Ibrahim, F.M.; Elaine, A.A.; Putra, B.D.; Achmad, A.; Kartamihardja, A.H.S. The Chemical Scaffold of Theranostic Radiopharmaceuticals: Radionuclide, Bifunctional Chelator, and Pharmacokinetics Modifying Linker. Molecules 2022, 27, 3062. https://doi.org/10.3390/molecules27103062.
- L14.
- Campoy, A.-D.T.; Liang, C.; Ladwa, R.M.; Patel, K.K.; Patel, I.H.; Mukherjee, J. [18F]Nifene PET/CT Imaging in Mice: Improved Methods and Preliminary Studies of α4β2*Nicotinic Acetylcholinergic Receptors in Transgenic A53T Mouse Model of -Synucleinopathy and Post-Mortem Human Parkinson’s Disease. Molecules 2021, 26, 7360. https://doi.org/10.3390/molecules26237360.
- L15.
- Handula, M.; Chen, K.-T.; Seimbille, Y. IEDDA: An Attractive Bioorthogonal Reaction for Biomedical Applications. Molecules 2021, 26, 4640. https://doi.org/10.3390/molecules26154640.
- L16.
- Khanapur, S.; Yong, F.F.; Hartimath, S.V.; Jiang, L.; Ramasamy, B.; Cheng, P.; Narayanaswamy, P.; Goggi, J.L.; Robins, E.G. An Improved Synthesis of N-(4-[18F]Fluorobenzoyl)-Interleukin-2 for the Preclinical PET Imaging of Tumour-Infiltrating T-cells in CT26 and MC38 Colon Cancer Models. Molecules 2021, 26, 1728. https://doi.org/10.3390/molecules26061728.
- L17.
- Haskali, M.B.; Roselt, P.D.; O’Brien, T.J.; Hutton, C.A.; Ali, I.; Vivash, L.; Jupp, B. Effective Preparation of [18F]Flumazenil Using Copper-Mediated Late-Stage Radiofluorination of a Stannyl Precursor. Molecules 2022, 27, 5931. https://doi.org/10.3390/molecules27185931.
- L18.
- Stokke, C.; Kvassheim, M.; Blakkisrud, J. Radionuclides for Targeted Therapy: Physical Properties. Molecules 2022, 27, 5429. https://doi.org/10.3390/ molecules27175429.
- L19.
- Sakulpisuti, C.; Charoenphun, P.; Chamroonrat, W. Positron Emission Tomography Radiopharmaceuticals in Differentiated Thyroid Cancer. Molecules 2022, 27, 4936. https://doi.org/10.3390/molecules27154936.
- L20.
- Pyrzynska, K.; Kilian, K.; Pęgier, M. Porphyrins as Chelating Agents for Molecular Imaging in Nuclear Medicine. Molecules 2022, 27, 3311. https://doi.org/10.3390/molecules27103311.
- L21.
- Larenkov, A.A.; Makichyan, A.G.; Iatsenko, V.N. Separation of 44Sc from 44Ti in the Context of A Generator System for Radiopharmaceutical Purposes with the Example of [44Sc]Sc-PSMA-617 and [44Sc]Sc-PSMA-I&T Synthesis. Molecules 2021, 26, 6371. https://doi.org/10.3390/molecules26216371.
- L22.
- Mou, L.; Martini, P.; Pupillo, G.; Cieszykowska, I.; Cutler, C.S.; Mikołajczak, R. 67Cu Production Capabilities: A Mini Review. Molecules 2022, 27, 1501. https://doi.org/10.3390/molecules27051501.
- L23.
- Moon, E.S.; Van Rymenant, Y.; Battan, S.; De Loose, J.; Bracke, A.; Van der Veken, P.; De Meester, I.; Rösch, F. In Vitro Evaluation of the Squaramide-Conjugated Fibroblast Activation Protein Inhibitor-Based Agents AAZTA5.SA.FAPi and DOTA.SA.FAPi. Molecules 2021, 26, 3482. https://doi.org/10.3390/molecules26123482.
- L24.
- Hörmann, A.A.; Plhak, E.; Klingler, M.; Rangger, C.; Pfister, J.; Schwach, G.; Kvaternik, H.; von Guggenberg, E. Automated Synthesis of 68Ga-Labeled DOTA-MGS8 and Preclinical Characterization of Cholecystokinin-2 Receptor Targeting. Molecules 2022, 27, 2034. https://doi.org/10.3390/molecules27062034.
- L25.
- Trujillo-Benítez, D.; Luna-Gutiérrez, M.; Ferro-Flores, G.; Ocampo-García, B.; Santos-Cuevas, C.; Bravo-Villegas, G.; Morales-Ávila, E.; Cruz-Nova, P.; Díaz-Nieto, L.; García-Quiroz, J.; et al. Design, Synthesis and Preclinical Assessment of 99mTc-iFAP for In Vivo Fibroblast Activation Protein (FAP) Imaging. Molecules 2022, 27, 264. https://doi.org/10.3390/molecules27010264.
- L26.
- Kumar, K.;Woolum, K. A Novel Reagent for Radioiodine Labeling of New Chemical Entities (NCEs) and Biomolecules. Molecules 2021, 26, 4344. https://doi.org/10.3390/molecules26144344.
- L27.
- Martini, P.; Uccelli, L.; Duatti, A.; Marvelli, L.; Esposito, J.; Boschi, A. Highly Efficient Micro-Scale Liquid-Liquid In-Flow Extraction of 99mTc from Molybdenum. Molecules 2021, 26, 5699. https://doi.org/10.3390/molecules26185699.
- L28.
- Papasavva, A.; Shegani, A.; Kiritsis, C.; Roupa, I.; Ischyropoulou, M.; Makrypidi, K.; Pilatis, I.; Loudos, G.; Pelecanou, M.; Papadopoulos, M.; et al. Comparative Study of a Series of 99mTc(CO)3 Mannosylated Dextran Derivatives for Sentinel Lymph Node Detection. Molecules 2021, 26, 4797. https://doi.org/10.3390/.
- L29.
- d’Abadie, P.; Hesse, M.;Louppe, A.; Lhommel, R.;Walrand, S.; Jamar, F. Microspheres Used in Liver Radioembolization: From Conception to Clinical Effects. Molecules 2021, 26, 3966. https://doi.org/10.3390/ molecules26133966.
- L30.
- Jensen, S.B.; Meyer, L.S.; Nielsen, N.S.; Nielsen, S.S. Issues with the European Pharmacopoeia Quality Control Method for 99mTc-Labelled Macroaggregated Albumin. Molecules 2022, 27, 3997. https://doi.org/10.3390/molecules27133997.
- L31.
- Hernández-Jiménez, T.; Ferro-Flores, G.; Morales-Ávila, E.; Isaac-Olivé, K.; Ocampo-García, B.; Aranda-Lara, L.; Santos-Cuevas, C.; Luna-Gutiérrez, M.; De Nardo, L.; Rosato, A.; et al. 225Ac-rHDL Nanoparticles: A Potential Agent for Targeted Alpha-Particle Therapy of Tumors Overexpressing SR-BI Proteins. Molecules 2022, 27, 2156. https://doi.org/10.3390/molecules27072156.
- L32.
- Cruz-Nova, P.; Ocampo-García, B.; Carrión-Estrada, D.A.; Briseño-Diaz, P.; Ferro-Flores, G.; Jiménez-Mancilla, N.; Correa-Basurto, J.; Bello, M.; Vega-Loyo, L.; Thompson-Bonilla, M.d.R.; et al. 131I-C19 Iodide Radioisotope and Synthetic I-C19 Compounds as K-Ras4B–PDE6 Inhibitors: A Novel Approach against Colorectal Cancer—Biological Characterization, Biokinetics and Dosimetry. Molecules 2022, 27, 5446. https://doi.org/10.3390/molecules27175446.
- L33.
- Lau, J.; Lee, H.; Rousseau, J.; Bénard, F.; Lin, K.-S. Application of Cleavable Linkers to Improve Therapeutic Index of Radioligand Therapies. Molecules 2022, 27, 4959. https://doi.org/10.3390/molecules27154959.
- L34.
- Salih, S.; Alkatheeri, A.; Alomaim, W.; Elliyanti, A. Radiopharmaceutical Treatments for Cancer Therapy, Radionuclides Characteristics, Applications, and Challenges. Molecules 2022, 27, 5231. https://doi.org/10.3390/molecules27165231.
References
- Jensen, S.B. Radioactive Molecules 2019–2020. Molecules 2021, 26, 529. [Google Scholar] [CrossRef] [PubMed]
- Xie, Y.; Pan, T.; Lei, Q.; Chen, C.; Dong, X.; Yuan, Y.; Shen, J.; Cai, Y.; Zhou, C.; Pinnau, I.; et al. Ionic Functionalization of Multivariate Covalent Organic Frameworks to Achieve Exceptionally High Iodine Capture Capacity. Angew. Chem. Int. Ed. 2021, 133, 22606–22614. [Google Scholar] [CrossRef]
- Muhire, C.; Reda, A.T.; Zhang, D.; Xu, X.; Cui, C. An overview on metal Oxide-based materials for iodine capture and storage. Chem. Eng. J. 2022, 431, 133816. [Google Scholar] [CrossRef]
- Dai, D.; Yang, J.; Zou, Y.-C.; Wu, J.-R.; Tan, L.-L.; Wang, Y.; Li, B.; Lu, T.; Wang, L.B.; Yang, Y.-W. MacrocyclicArenes-Based Conjugated Macrocycle Polymers for Highly Selective CO2 Capture and Iodine Adsorption. Angew. Chem. Int. Ed. 2021, 60, 8967–8975. [Google Scholar] [CrossRef] [PubMed]
- He, L.; Chen, L.; Dong, X.; Zhang, S.; Zhang, M.; Dai, X.; Liu, X.; Lin, P.; Li, K.F.; Chen, C.L.; et al. A nitrogen-rich covalent organic framework for simultaneous dynamic capture of iodine and methyl iodide. Chem 2021, 7, 699–714. [Google Scholar] [CrossRef]
- Boros, E.; Packard, A.B. Radioactive Transition Metals for Imaging and Therapy. Chem. Rev. 2019, 119, 870–901. [Google Scholar] [CrossRef] [PubMed]
- Kyriakou, I.; Sakata, D.; Tran, H.N.; Perrot, Y.; Shin, W.G.; Lampe, N.; Zein, S.; Bordage, M.C.; Guatelli, S.; Villagrasa, C.; et al. Review of the Geant4-DNA Simulation Toolkit for Radiobiological Applications at the Cellular and DNA Level. Cancers 2022, 14, 35. [Google Scholar] [CrossRef] [PubMed]
- Damont, A.; Roeda, D.; Dollé, F. The potential of carbon-11 and fluorine-18 chemistry: Illustration through the development of positron emission tomography radioligands targeting the translocator protein 18 kDa. J. Label. Compd. Radiopharm. 2013, 56, 96–104. [Google Scholar] [CrossRef] [PubMed]
- Campbell, E.; Jordan, C.; Gilmour, R. Fluorinated carbohydrates for 18F-positron emission tomography (PET). Chem. Soc. Rev. 2023, 52, 3599–3626. [Google Scholar] [CrossRef] [PubMed]
- Schillaci, O.; Spanu, A.; Danieli, R.; Madeddu, G. Molecular breast imaging with gamma emitters. Q. J. Nucl. Med. Mol. Imaging 2013, 57, 340–351. [Google Scholar] [PubMed]
- Waksman, R.; Raizner, A.; Popma, J.J. Beta emitter systems and results from clinical trials. state of the art. Cardiovasc. Radiat. Med. 2003, 4, 54–63. [Google Scholar] [CrossRef] [PubMed]
- Pirovano, G.; Wilson, T.C.; Reiner, T. Auger: The future of precision medicine. Nucl. Med. Biol. 2021, 96–97, 50–53. [Google Scholar] [CrossRef]
- Kunikowska, J.; Królicki, L. Targeted α-Emitter Therapy of Neuroendocrine Tumors. Semin. Nucl. Med. 2020, 50, 171–176. [Google Scholar] [CrossRef] [PubMed]
- Rachel Levine, R.; Krenning, E.P. Clinical History of the Theranostic Radionuclide Approach to Neuroendocrine Tumors and Other Types of Cancer: Historical Review Based on an Interview of Eric P. Krenning by Rachel Levine. J. Nuc. Med. 2017, 58, 3S–9S. [Google Scholar] [CrossRef]
- Alati, S.; Singh, R.; Pomper, M.G.; Rowe, S.P.; Banerjee, S.R. Preclinical Development in Radiopharmaceutical Therapy for Prostate Cancer. Semin. Nucl. Med. 2023, 53, 663–686. [Google Scholar] [CrossRef] [PubMed]
2019 | 2020 | 2021 | 2022 | |
---|---|---|---|---|
Radioa* | 12 | 16 | 12 | 23 |
Radioactive | 11 | 15 | 12 | 26 |
Isotope | 46 | 42 | 51 | 56 |
Isotop* | 46 | 42 | 50 | 54 |
Radio* | 68 | 117 | 126 | 150 |
Relevant papers | 109 | 78 | 94 | |
Not relevant | 76 | 48 | 56 |
Diagnostic | Therapy | Synthesis | Nuclide Preparation | Review | Articles Concerning Medical Use of Radioactive Isotopes | |
---|---|---|---|---|---|---|
2019–2020 | 73 articles (71%) | 24 articles (23%) | 41 articles (40%) | 9 articles (9%) | 21 articles (20%) | 103 articles (100%) |
2021–2022 | 129 articles (87%) | 57 articles (39%) | 96 articles (65%) | 21 articles (14%) | 42 articles (28%) | 148 articles (100%) |
Total Number of Articles | Diagnostic | Synthesis/ Chelation | Isotope Preparation | Selected Articles | |
---|---|---|---|---|---|
11C | 26 | 26 | 9 | - | [L6–L12] |
13N | 7 | 7 | - | - | [L8, L9, L11, L13] |
15O | 7 | 7 | - | - | [L7–L9, L13] |
18F | 59 | 57 | 25 | - | [L6–L20] |
22Na | 2 | 2 | - | - | - |
43Sc | 1 | 1 | - | - | - |
44Sc | 10 | 8 | 5 | 3 | [L20, L21] |
52Mn | 5 | 3 | 3 | 3 | [L8, L20] |
55Co | 2 | 2 | - | 1 | - |
61Cu | 2 | 2 | - | 1 | [L13, L22] |
64Cu | 33 | 32 | 7 | 4 | [L8, L9, L11, L13, L15, L18, L20, L22] |
66Ga ¤ | 3 | 1 | 1 | [L7] | |
68Ga | 51 | 48 | 22 | 4 | [L7–L9, L11, L13, L18–L20, L23–L25] |
82Rb | 3 | 3 | - | - | [L9, L13] |
86Y/86gY | 4 | 3 | 2 | 1 | [L20] |
89Zr | 19 | 17 | 8 | 3 | [L8, L13, L15, L20] |
124I | 13 | 11 | 6 | 1 | [L8, L10, L13, L19, L26] |
Positron emitter isotopes mentioned only in one article: 43Sc, 152Tb, 44Ti, 76Br, and 120I |
Total Number of Articles | Diagnostic | Synthesis/ Chelation | Isotope Preparation | Selected Articles | |
---|---|---|---|---|---|
57Co | 2 | 2 | - | 1 | [L20] |
62Zn | 2 | 2 | - | - | [L18, L20] |
66Ga | 3 | 3 | 1 | 1 | [L7] |
67Ga ¤ | 10 | 10 | 2 | 1 | [L7, L11, L13, L18, L22] |
99mTc | 47 | 43 | 20 | 4 | [L6, L8, L9, L13, L18, L20, L25, L27-L31] |
105Rh | 2 | 2 | - | - | [L18] |
111In | 24 | 23 | 3 | 2 | [L7, L9, L11, L13, L15, L18, L20, L24] |
123I | 16 | 14 | 4 | - | [L8, L10, L11, L13, L18, L19, L26] |
125I | 18 | 17 | 6 | [L8, L10, L13, L18, L26, L32, L33] | |
133Xe | 2 | 2 | - | - | [L13] |
201Tl | 2 | 2 | - | - | [L13] |
Isotopes mentioned only in one article: 51Cr [L13], 51Mn, and 155Tb. Reference [L19] is the only article to mention: 76As, 77Br, 82Br, 86Rb, 90Nb |
Total Number of Articles | Therapy/ Detection | Synthesis/ Chelation | Isotope Preparation | Selected Articles | |
---|---|---|---|---|---|
3H | 15 | 14 | 5 | - | [L9] |
14C | 1 | 1 | - | - | - |
32P | 5 | 4 | 1 | 2 | [L18, L34] |
35S | 3 | 3 | 1 | 1 | - |
47Sc | 8 | 7 | 1 | - | [L18, L20, L22] |
67Cu * | 9 | 8 | 2 | 1 | [L18, L20, L22] |
89Sr | 3 | 3 | - | - | [L18] |
90Y | 18 | 17 | 4 | 1 | [L8, L13, L18, L25, L29, L34] |
117mSn | 2 | 2 | - | - | [L13, L18] |
131I * | 25 | 18 | 11 | - | [L8, L13, L18, L19, L26, L29, L32, L34] |
153Sm | 9 | 9 | - | 1 | [L13, L25, L34] |
161Tb | 3 | 3 | - | - | [L18] |
166Ho | 4 | 4 | 1 | - | [L13, L18, L29, L34] |
177Lu | 42 | 39 | 7 | 2 | [L8, L13, L15, L18–L20, L22–L25, L34] |
186Re | 7 | 7 | 1 | 2 | [L13, L18, L22, L34] |
188Re | 12 | 12 | 1 | 2 | [L13, L18, L25, L29, L34] |
198Au | 3 | 3 | - | 1 | [L18, L34] |
Isotopes mentioned only in one article: 14C, 33P, 90Sr, 129I, 210Pb, 169Er [L34] | |||||
Reference [L19] is the only article to mention: 24Na, 33P, 54Mn, 76As, 77As, 77Br, 80Br, 91Y, 109Pd, 111Ag, 121Sn, 135La, 142Pr, 143Pr, 165Dy, 185W, 212Pb |
Total Number of Articles | Therapy | Synthesis/ Chelation | Isotope Preparation | Selected Articles | |
---|---|---|---|---|---|
58Co/58mCo | 2 | 2 | - | 1 | [L18] |
165Er | 2 | 2 | 1 | 1 | [L18] |
193mPt | 2 | 2 | 1 | - | [L18] |
195mPt | 2 | 2 | 1 | - | [L18] |
Isotopes mentioned in only one article: 114mIn, 134Ce [L18] |
Number of Articles | Therapy | Synthesis/ Chelation | Isotopes Preparation | Selected Articles | |
---|---|---|---|---|---|
149Tb | 2 | 2 | - | - | [L18] |
211At | 6 | 6 | - | - | [L18, L34] |
212Bi | 2 | 2 | - | - | [L18] |
213Bi | 5 | 4 | 1 | - | [L18, L34] |
223Ra | 7 | 7 | - | - | [L13, L18, L34] |
225Ac | 14 | 13 | 2 | 1 | [L13, L15, L18, L25, L31, L34] |
227Th | 2 | 2 | 1 | 1 | |
Reference [L18] is the only article to mention: 224Ra, 255Fm |
Number of Articles | Selected Articles | |
---|---|---|
All articles concerning cancer | 78 | [L8, L9, L12, L13, L15, L16, L18, L19, L24, L31, L32, L34] |
Prostate cancer | 14 | [L8, L9, L12, L13, L31, L34] |
Lymphoma (including B-cell) | 2 | [L8] |
Neuroendocrine | 13 | [L8, L9, L13, L24] |
Breast cancer | 20 | [L8, L9, L13, L31] |
Gastric cancer | 3 | [L8] |
Leukaemia | 7 | [L8, L12, L13, L34] |
Renal cell carcinoma | 4 | [L8, L9] |
Solid tumour/multiple myeloma | 7 | [L9, L12, L13] |
Non-Hodgkin’s lymphoma | 7 | [L8, L9, L18, L34] |
Pancreatic cancer | 9 | [L8, L9, L15, L24] |
Ovarian cancer | 12 | [L9, L18, L24, L31, L34] |
Bone-metastases, -pain, and -cancer | 15 | [L8, L9, L13, L18, L34] |
Thyroid cancer | 11 | [L8, L9, L13, L19, L24, L34] |
Non-small-cell lung cancer/lung cancer | 12 | [L12, L24] |
Skin cancer | 8 | [L8, L12, L18, L34] |
Bladder cancer | 3 | [L8] |
Liver cancer | 11 | [L8, L9, L12, L13, L31, L34] |
Colon/colorectal cancer | 8 | [L8, L9, L13, L16, L32] |
Hypoxia | 3 | [L9, L13] |
Head and neck cancer | 2 | [L9] |
Oesophagus cancer/oesophageal squamous cell carcinoma | 3 | [L9] |
Sarcoma cancer/Ewing sarcoma | 2 | [L9] |
Types of cancer mentioned only once: stomach cancer [L8], αvβ3 integrin (examination of tumour cells to survive during therapy), sentinel lymph node, neuroblastoma, cancer immunotherapy [L16], thymus cancer [L9], circulating cancer cells (CCC) [L9], cancer of unknown primary (CUP) [L9], oral cancer, small intestine cancer [L9], and pleural mesothelioma |
Number of Articles | Selected Articles | |
---|---|---|
All articles concerning brain disorders/brain function | 24 | [L10, L11, L13, L14, L17] |
Alzheimer’s disease | 8 | [L10] |
Parkinson’s disease | 9 | [L13, L14] |
Anxiety | 2 | [L11] |
Regulates/chronic pain treatment | 2 | |
Opioid receptor | 3 | |
Substance use disorder | 2 | [L17] |
Compulsive behaviour disorder like feeding disorders/obesity, gambling, addition | 2 | [L11] |
Neurodegenerative | 2 | [L11] |
Epilepsy | 2 | [L17] |
Type of brain disorders/brain functions mentioned only once: neurological disorders, serotonin neurotransmitter, mood disorder, spinal cord injury, CNS-modulating agents, hallucinogens, Huntington’s disease, bipolar disorder, dementia, benzodiazepine receptors, monoamine oxidase-B (MAO-B), schizophrenia [L17], autism [L17], metabolic diseases [L11], and depression |
Number of Articles | Selected Articles | |
---|---|---|
All articles concerning inflammation/infection | 15 | [L7, L13] |
Osteomyelitis | 3 | [L7] |
Neuroinflammation | 4 | |
Bone infection | 5 | [L7, L13] |
Rheumatoid arthritis | 2 | [L13] |
Types of inflammation/infection mentioned only once: vascular inflammation, inflammatory joint disease, and arthritis. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jensen, S.B. Radioactive Molecules 2021–2022. Molecules 2024, 29, 265. https://doi.org/10.3390/molecules29010265
Jensen SB. Radioactive Molecules 2021–2022. Molecules. 2024; 29(1):265. https://doi.org/10.3390/molecules29010265
Chicago/Turabian StyleJensen, Svend Borup. 2024. "Radioactive Molecules 2021–2022" Molecules 29, no. 1: 265. https://doi.org/10.3390/molecules29010265
APA StyleJensen, S. B. (2024). Radioactive Molecules 2021–2022. Molecules, 29(1), 265. https://doi.org/10.3390/molecules29010265