Auricularia auricula Anionic Polysaccharide Nanoparticles for Gastrointestinal Delivery of Pinus koraiensis Polyphenol Used in Bone Protection under Weightlessness
Abstract
:1. Introduction
2. Results
2.1. Extraction, Purification and Molecular Weight of the Anionic Polysaccharide from Auricularia auricular
2.2. SEM Tracking of Rough Surface Assembly of NPs-PP Loaded
2.3. DLS Tracking Size Distributions of NPs-PP Loaded
2.4. PP Loading and Stability
2.5. FT-IR
2.6. Release Kinetics
2.7. Adhesion Properties of NPs-PP Loaded on Colon Ex Vivo
2.8. Delivery Effects of NPs-PP Loaded on PP under Simulated Microgravity In Vivo
3. Materials and Methods
3.1. Materials and Regents
3.2. Extraction and Purification of Anionic Polysaccharide Fragments from Auricularia auricula
3.3. Molecular Weight Analysis
3.4. Preparation of NPs-PP Loaded
3.5. Characterization of NPs-PP Loaded
3.5.1. SEM Tracking
3.5.2. DLS Tracking
3.5.3. FT-IR Spectroscopy
3.6. In Vitro Release Kinetics Profile
3.7. Simulated Microgravity
3.8. Hematoxylin and Eosin (HE) Staining
3.9. Ex Vivo Mucosal Adhesion Studies of NPs-PP Loaded
3.10. Micro-CT Detection
3.11. BALP and PINP Analysis
3.12. Statistical Analysis
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
AAP | Crude polysaccharides of Auricularia auricular |
AAP Iα | an anionic polysaccharide fragment isolated from Auricularia auricula |
ε-PL | ε-poly-L-lysine |
PP | Pinus koraiensis polyphenol |
PECs | polyelectrolyte complexes |
NPs-PP loaded | nanoparticles formed by AAP Iα and ε-PL loaded with PP |
SEM | scanning electron microscope |
DLS | dynamic light scattering |
FT-IR | Fourier-transform infrared |
PDI | Polydispersity index |
SGF | simulated gastric fluid |
SIF | simulated intestinal fluid |
CK | Ground control |
HU | Hindlimb unloading |
CADF | cancellous area from distal femur |
BALP | bone alkaline phosphatase |
PINP | procollagen type I N propeptide |
References
- Wang, R.; Shan, H.; Zhang, G.; Li, Q.; Wang, J.; Yan, Q.; Li, E.; Diao, Y.; Wei, L. An inulin-type fructan (AMP1-1) from Atractylodes macrocephala with anti-weightlessness bone loss activity. Carbohydr. Polym. 2022, 294, 119742. [Google Scholar] [CrossRef]
- Diao, Y.; Chen, B.; Wei, L.; Wang, Z. Polyphenols (S3) Isolated from Cone Scales of Pinus koraiensis Alleviate Decreased Bone Formation in Rat under Simulated Microgravity. Sci. Rep. 2018, 8, 12719. [Google Scholar] [CrossRef]
- Deng, J.; Yang, H.; Capanoglu, E.; Cao, H.; Xiao, J. 9-Technological aspects and stability of polyphenols. In Polyphenols: Properties, Recovery, and Applications; Galanakis, C.M., Ed.; Woodhead Publishing: Sawston, UK, 2018; pp. 295–323. [Google Scholar]
- Wan, M.L.Y.; Co, V.A.; El-Nezami, H. Dietary polyphenol impact on gut health and microbiota. Crit. Rev. Food Sci. Nutr. 2021, 61, 690–711. [Google Scholar] [CrossRef]
- Yang, J.-Q.; Jiang, N.; Li, Z.-P.; Guo, S.; Chen, Z.-Y.; Li, B.-B.; Chai, S.-B.; Lu, S.-Y.; Yan, H.-F.; Sun, P.-M.; et al. The effects of microgravity on the digestive system and the new insights it brings to the life sciences. Life Sci. Space Res. 2020, 27, 74–82. [Google Scholar] [CrossRef]
- Kim, S.; Huang, J.; Lee, Y.; Dutta, S.; Yoo, H.Y.; Jung, Y.M.; Jho, Y.; Zeng, H.; Hwang, D.S. Complexation and coacervation of like-charged polyelectrolytes inspired by mussels. Proc. Natl. Acad. Sci. USA 2016, 113, E847–E853. [Google Scholar] [CrossRef]
- Yang, Q.; Peng, J.; Xiao, H.; Xu, X.; Qian, Z. Polysaccharide hydrogels: Functionalization, construction and served as scaffold for tissue engineering. Carbohydr. Polym. 2022, 278, 118952. [Google Scholar] [CrossRef]
- Cai, M.; Zhang, G.; Li, C.; Chen, X.; Cui, H.; Lin, L. Pleurotus eryngii polysaccharide nanofiber containing pomegranate peel polyphenol/chitosan nanoparticles for control of E. coli O157:H7. Int. J. Biol. Macromol. 2021, 192, 939–949. [Google Scholar] [CrossRef]
- Sun, C.; Yue, P.; Chen, R.; Wu, S.; Ye, Q.; Weng, Y.; Liu, H.; Fang, Y. Chitin-glucan composite sponge hemostat with rapid shape-memory from Pleurotus eryngii for puncture wound. Carbohydr. Polym. 2022, 291, 119553. [Google Scholar] [CrossRef]
- He, X.; Wang, X.; Fang, J.; Chang, Y.; Ning, N.; Guo, H.; Huang, L.; Huang, X.; Zhao, Z. Structures, biological activities, and industrial applications of the polysaccharides from Hericium erinaceus (Lion’s Mane) mushroom: A review. Int. J. Biol. Macromol. 2017, 97, 228–237. [Google Scholar] [CrossRef]
- Wang, H.; Wang, C.; Zou, Y.; Hu, J.; Li, Y.; Cheng, Y. Natural polyphenols in drug delivery systems: Current status and future challenges. Giant 2020, 3, 100022. [Google Scholar] [CrossRef]
- Chen, N.; Zhang, H.; Zong, X.; Li, S.; Wang, J.; Wang, Y.; Jin, M. Polysaccharides from Auricularia auricula: Preparation, structural features and biological activities. Carbohydr. Polym. 2020, 247, 116750. [Google Scholar] [CrossRef]
- Liang, J.; Rao, Z.-H.; Jiang, S.-L.; Wang, S.; Kuang, H.-X.; Xia, Y.-G. Structure of an unprecedent glucuronoxylogalactoglucomannan from fruit bodies of Auricularia auricula-judae (black woody ear). Carbohydr. Polym. 2023, 315, 120968. [Google Scholar] [CrossRef]
- Su, Y.; Li, L. Structural characterization and antioxidant activity of polysaccharide from four auriculariales. Carbohydr. Polym. 2020, 229, 115407. [Google Scholar] [CrossRef]
- Guo, R.; Chen, M.; Ding, Y.; Yang, P.; Wang, M.; Zhang, H.; He, Y.; Ma, H. Polysaccharides as Potential Anti-tumor Biomacromolecules —A Review. Front. Nutr. 2022, 9, 838179. [Google Scholar] [CrossRef]
- Jing, Y.S.; Ma, Y.F.; Pan, F.B.; Li, M.S.; Zheng, Y.G.; Wu, L.F.; Zhang, D.S. An Insight into Antihyperlipidemic Effects of Polysaccharides from Natural Resources. Molecules 2022, 27, 1903. [Google Scholar] [CrossRef]
- Li, S.; Mao, Y.; Zhang, L.; Wang, M.; Meng, J.; Liu, X.; Bai, Y.; Guo, Y. Recent advances in microbial ε-poly-L-lysine fermentation and its diverse applications. Biotechnol. Biofuels Bioprod. 2022, 15, 65. [Google Scholar] [CrossRef]
- Bankar, S.B.; Singhal, R.S. Panorama of poly-ε-lysine. RSC Adv. 2013, 3, 8586–8603. [Google Scholar] [CrossRef]
- Liu, W.; Liu, Y.; Zhu, R.; Yu, J.; Lu, W.; Pan, C.; Yao, W.; Gao, X. Structure characterization, chemical and enzymatic degradation, and chain conformation of an acidic polysaccharide from Lycium barbarum L. Carbohydr. Polym. 2016, 147, 114–124. [Google Scholar] [CrossRef]
- Xue, H.; Li, P.; Bian, J.; Gao, Y.; Sang, Y.; Tan, J. Extraction, purification, structure, modification, and biological activity of traditional Chinese medicine polysaccharides: A review. Front. Nutr. 2022, 9, 1005181. [Google Scholar] [CrossRef]
- Qin, H.; Huang, L.; Teng, J.; Wei, B.; Xia, N.; Ye, Y. Purification, characterization, and bioactivity of Liupao tea polysaccharides before and after fermentation. Food Chem. 2021, 353, 129419. [Google Scholar] [CrossRef]
- Nielsen, S.S. Phenol-Sulfuric Acid Method for Total Carbohydrates. In Food Analysis Laboratory Manual; Nielsen, S.S., Ed.; Springer: Boston, MA, USA, 2010; pp. 47–53. [Google Scholar]
- Ponnudurai, A.; Schulze, P.; Seidel-Morgenstern, A.; Lorenz, H. Fractionation and Absolute Molecular Weight Determination of Organosolv Lignin and Its Fractions: Analysis by a Novel Acetone-Based SEC─MALS Method. ACS Sustain. Chem. Eng. 2023, 11, 766–776. [Google Scholar] [CrossRef]
- Zinovyev, G.; Sulaeva, I.; Podzimek, S.; Rössner, D.; Kilpeläinen, I.; Sumerskii, I.; Rosenau, T.; Potthast, A. Getting Closer to Absolute Molar Masses of Technical Lignins. ChemSusChem 2018, 11, 3259–3268. [Google Scholar] [CrossRef] [PubMed]
- Yi, Z.; Sun, Z.; Chen, G.; Zhang, H.; Ma, X.; Su, W.; Cui, X.; Li, X. Size-controlled, colloidally stable and functional nanoparticles based on the molecular assembly of green tea polyphenols and keratins for cancer therapy. J. Mater. Chem. B 2018, 6, 1373–1386. [Google Scholar] [CrossRef] [PubMed]
- Martins, G.R.; Monteiro, A.F. A validated Folin-Ciocalteu method for total phenolics quantification of condensed tannin-rich açaí (Euterpe oleracea Mart.) seeds extract. J. Food Sci. Technol. 2021, 58, 4693–4702. [Google Scholar] [CrossRef]
- Loron, A.; Navikaitė-Šnipaitienė, V.; Rosliuk, D.; Rutkaitė, R.; Gardrat, C.; Coma, V. Polysaccharide Matrices for the Encapsulation of Tetrahydrocurcumin—Potential Application as Biopesticide against Fusarium graminearum. Molecules 2021, 26, 3873. [Google Scholar] [CrossRef] [PubMed]
- Stetefeld, J.; McKenna, S.A.; Patel, T.R. Dynamic light scattering: A practical guide and applications in biomedical sciences. Biophys. Rev. 2016, 8, 409–427. [Google Scholar] [CrossRef] [PubMed]
- Li, G.-B.; Wang, J.; Kong, X.-P. Coprecipitation-based synchronous pesticide encapsulation with chitosan for controlled spinosad release. Carbohydr. Polym. 2020, 249, 116865. [Google Scholar] [CrossRef]
- Ritger, P.L.; Peppas, N.A. A simple equation for description of solute release I. Fickian and non-fickian release from non-swellable devices in the form of slabs, spheres, cylinders or discs. J. Control. Release 1987, 5, 23–36. [Google Scholar] [CrossRef]
- Mhatre, S.D.; Iyer, J.; Puukila, S.; Paul, A.M.; Tahimic, C.G.T.; Rubinstein, L.; Lowe, M.; Alwood, J.S.; Sowa, M.B.; Bhattacharya, S.; et al. Neuro-consequences of the spaceflight environment. Neurosci. Biobehav. Rev. 2022, 132, 908–935. [Google Scholar] [CrossRef]
- Liu, H.; Cai, Z.; Wang, F.; Hong, L.; Deng, L.; Zhong, J.; Wang, Z.; Cui, W. Colon-Targeted Adhesive Hydrogel Microsphere for Regulation of Gut Immunity and Flora. Adv. Sci. 2021, 8, e2101619. [Google Scholar] [CrossRef]
- Yan, Y.; Sun, Y.; Wang, P.; Zhang, R.; Huo, C.; Gao, T.; Song, C.; Xing, J.; Dong, Y. Mucoadhesive nanoparticles-based oral drug delivery systems enhance ameliorative effects of low molecular weight heparin on experimental colitis. Carbohydr. Polym. 2020, 246, 116660. [Google Scholar] [CrossRef] [PubMed]
- Voorhies, A.A.; Mark Ott, C.; Mehta, S.; Pierson, D.L.; Crucian, B.E.; Feiveson, A.; Oubre, C.M.; Torralba, M.; Moncera, K.; Zhang, Y.; et al. Study of the impact of long-duration space missions at the International Space Station on the astronaut microbiome. Sci. Rep. 2019, 9, 9911. [Google Scholar] [CrossRef] [PubMed]
- Chu, J.N.; Traverso, G. Foundations of gastrointestinal-based drug delivery and future developments. Nat. Rev. Gastroenterol. Hepatol. 2022, 19, 219–238. [Google Scholar] [CrossRef] [PubMed]
- Zheng, C.; Chen, M.; Chen, Y.; Qu, Y.; Shi, W.; Shi, L.; Qiao, Y.; Li, X.; Guo, X.; Wang, L.; et al. Preparation of polysaccharide-based nanoparticles by chitosan and flaxseed gum polyelectrolyte complexation as carriers for bighead carp (Aristichthys nobilis) peptide delivery. Int. J. Biol. Macromol. 2023, 249, 126121. [Google Scholar] [CrossRef]
- Boddohi, S.; Kipper, M.J. Engineering Nanoassemblies of Polysaccharides. Adv. Mater. 2010, 22, 2998–3016. [Google Scholar] [CrossRef]
- Jin, M.; Wang, Y.; Xu, C.; Lu, Z.; Huang, M.; Wang, Y. Preparation and biological activities of an exopolysaccharide produced by Enterobacter cloacae Z0206. Carbohydr. Polym. 2010, 81, 607–611. [Google Scholar] [CrossRef]
- Gericke, M.; Gabriel, L.; Geitel, K.; Benndorf, S.; Trivedi, P.; Fardim, P.; Heinze, T. Synthesis of xylan carbonates—An approach towards reactive polysaccharide derivatives showing self-assembling into nanoparticles. Carbohydr. Polym. 2018, 193, 45–53. [Google Scholar] [CrossRef]
- Rich, P.R.; Maréchal, A. Carboxyl group functions in the heme-copper oxidases: Information from mid-IR vibrational spectroscopy. Biochim. Biophys. Acta 2008, 1777, 912–918. [Google Scholar] [CrossRef]
- Globus, R.K.; Morey-Holton, E. Hindlimb unloading: Rodent analog for microgravity. J. Appl. Physiol. 2016, 120, 1196–1206. [Google Scholar] [CrossRef]
- Xie, Z.; Huang, J.; Xu, X.; Jin, Z. Antioxidant activity of peptides isolated from alfalfa leaf protein hydrolysate. Food Chem. 2008, 111, 370–376. [Google Scholar] [CrossRef]
- Chen, Y.-C.; Yu, S.-H.; Tsai, G.-J.; Tang, D.-W.; Mi, F.-L.; Peng, Y.-P. Novel Technology for the Preparation of Self-Assembled Catechin/Gelatin Nanoparticles and Their Characterization. J. Agric. Food Chem. 2010, 58, 6728–6734. [Google Scholar] [CrossRef] [PubMed]
- Eran Nagar, E.; Okun, Z.; Shpigelman, A. Digestive fate of polyphenols: Updated view of the influence of chemical structure and the presence of cell wall material. Curr. Opin. Food Sci. 2020, 31, 38–46. [Google Scholar] [CrossRef]
- Zhang, J.; Zhan, P.; Tian, H. Recent updates in the polysaccharides-based Nano-biocarriers for drugs delivery and its application in diseases treatment: A review. Int. J. Biol. Macromol. 2021, 182, 115–128. [Google Scholar] [CrossRef] [PubMed]
- Salhotra, A.; Shah, H.N.; Levi, B.; Longaker, M.T. Mechanisms of bone development and repair. Nat. Rev. Mol. Cell Biol. 2020, 21, 696–711. [Google Scholar] [CrossRef]
Items | Results |
---|---|
Mn (Daltons) | 110,144 |
Mw (Daltons) | 133,304 |
Mz (Daltons) | 151,340 |
Mp (Daltons) | 145,663 |
Mw/Mn | 1.210 |
Peak RV | 9.211 |
Concentration (μg/mL) | PDI | |
---|---|---|
AAP Iα | 400 | 0.232 ± 0.011 |
500 | 0.197 ± 0.015 | |
600 | 0.193 ± 0.008 | |
700 | 0.157 ± 0.01 | |
800 | 0.151 ± 0.009 | |
900 | 0.176 ± 0.007 | |
ε-PL | 10 | 0.235 ± 0.013 |
15 | 0.213 ± 0.015 | |
20 | 0.157 ± 0.008 | |
25 | 0.165 ± 0.012 | |
30 | 0.211 ± 0.009 | |
35 | 0.225 ± 0.01 | |
PP | 40 | 0.164 ± 0.008 |
50 | 0.162 ± 0.011 | |
60 | 0.158 ± 0.009 | |
70 | 0.163 ± 0.01 | |
80 | 0.16 ± 0.012 | |
90 | 0.168 ± 0.007 |
Formulation | Kinetic Model | Regression Equation | Slope | R2 |
---|---|---|---|---|
NP-PP loaded (SGF) | Zero-order | Mt/Mi = 0.0066t + 0.0295 | 0.0066 | 0.904 |
First-order | Ln (1 − Mt/Mi) = −0.007t − 0.0298 | −0.007 | 0.9063 | |
Higuchi | Mt/Mi = 0.0237t1/2 + 0.0098 | 0.0237 | 0.9613 | |
Hixcon-Crowell | (1 − Mt/Mi)1/3 = −0.0023t + 0.9901 | −0.0023 | 0.9056 | |
Ritger-Peppas | Ln (Mt/Mi) = 0.4189Ln t − 3.4341 | 0.4189 | 0.9777 | |
NP-PP loaded (SIF) | Zero-order | Mt/Mi = 0.1036t + 0.2427 | 0.1036 | 0.9792 |
First-order | Ln (1 − Mt/Mi) = −0.3111t + 0.0264 | −0.3111 | 0.9083 | |
Higuchi | Mt/Mi = 0.917t1/2 − 0.6413 | 0.917 | 0.9583 | |
Hixcon-Crowell | (1 − Mt/Mi)1/3 = −0.0703t + 0.9595 | −0.0703 | 0.9477 | |
Ritger-Peppas | Ln (Mt/Mi) = 0.5277Ln t − 1.1293 | 0.5277 | 0.9822 |
Formulation | AAP Iα (μg/mL) | ε-PL (μg/mL) | PP (μg/mL) |
---|---|---|---|
A | 400 | 20 | 90 |
B | 500 | 20 | 90 |
C | 600 | 20 | 90 |
D | 700 | 20 | 90 |
E | 800 | 20 | 90 |
F | 900 | 20 | 90 |
G | 800 | 10 | 90 |
H | 800 | 15 | 90 |
I | 800 | 20 | 90 |
G | 800 | 25 | 90 |
K | 800 | 30 | 90 |
L | 800 | 35 | 90 |
M | 800 | 20 | 40 |
N | 800 | 20 | 50 |
O | 800 | 20 | 60 |
P | 800 | 20 | 70 |
Q | 800 | 20 | 80 |
R | 800 | 20 | 90 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kang, L.; Li, Q.; Jing, Y.; Ren, F.; Li, E.; Zeng, X.; Xu, Y.; Wang, D.; Wang, Q.; Sun, G.; et al. Auricularia auricula Anionic Polysaccharide Nanoparticles for Gastrointestinal Delivery of Pinus koraiensis Polyphenol Used in Bone Protection under Weightlessness. Molecules 2024, 29, 245. https://doi.org/10.3390/molecules29010245
Kang L, Li Q, Jing Y, Ren F, Li E, Zeng X, Xu Y, Wang D, Wang Q, Sun G, et al. Auricularia auricula Anionic Polysaccharide Nanoparticles for Gastrointestinal Delivery of Pinus koraiensis Polyphenol Used in Bone Protection under Weightlessness. Molecules. 2024; 29(1):245. https://doi.org/10.3390/molecules29010245
Chicago/Turabian StyleKang, Li, Qiao Li, Yonghui Jing, Feiyan Ren, Erzhuo Li, Xiangyin Zeng, Yier Xu, Dongwei Wang, Qiang Wang, Guicai Sun, and et al. 2024. "Auricularia auricula Anionic Polysaccharide Nanoparticles for Gastrointestinal Delivery of Pinus koraiensis Polyphenol Used in Bone Protection under Weightlessness" Molecules 29, no. 1: 245. https://doi.org/10.3390/molecules29010245
APA StyleKang, L., Li, Q., Jing, Y., Ren, F., Li, E., Zeng, X., Xu, Y., Wang, D., Wang, Q., Sun, G., Wei, L., & Diao, Y. (2024). Auricularia auricula Anionic Polysaccharide Nanoparticles for Gastrointestinal Delivery of Pinus koraiensis Polyphenol Used in Bone Protection under Weightlessness. Molecules, 29(1), 245. https://doi.org/10.3390/molecules29010245