Synthesis of Seven Indolizine-Derived Pentathiepines: Strong Electronic Structure Response to Nitro Substitution in Position C-9
Abstract
:1. Introduction
2. Results and Discussion
2.1. Synthetic Procedures
2.1.1. Synthesis of 1,2,3,4,5-Pentathiepino [6,7-a]indolizidines 3a–e
Yields (%) for | Air/Commercial DMF | N2/Dry DMF |
---|---|---|
3a | 34 | 45 |
3b | 5 | 11 |
3c | 22 | 31 |
3d | 68 | 38 |
3e | 70 | 70 |
3f | 73 | 0 |
3g | 21 | 32 |
2.1.2. Attempting a Finkelstein Reaction with 3d
2.2. Characterization
2.2.1. UV-vis
2.2.2. Computational Analysis
2.2.3. NMR Spectroscopy
2.2.4. Single Crystal X-ray Diffraction Structural Analyses
3. Materials and Methods
3.1. Materials, Methods and Instrumentation
3.1.1. General Experimental Procedures
3.1.2. Singe-Crystal X-ray Diffraction
3.2. Syntheses
3.2.1. Sonogashira Cross-Coupling Reaction Products
3.2.2. Synthetic Procedures for the Copper-Mediated Finkelstein Nucleophilic Substitution
3.2.3. Synthetic Procedures for Sandmeyer Reaction
3.2.4. Synthetic Procedures for Pentathiepine and Pyrrole Rings Closing
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Fehér, F.; Langer, M. Contribution to the chemistry of sulfur, no. 104 Synthesis of pentathiepin and benzopentathiepin. Tetrahedron Lett. 1971, 12, 2125–2126. [Google Scholar] [CrossRef]
- Searle, P.A.; Molinski, T.F. Five new alkaloids from the tropical ascidian, Lissoclinum sp. lissoclinotoxin A is chiral. J. Org. Chem. 1994, 59, 6600–6605. [Google Scholar] [CrossRef]
- Litaudon, M.; Trigalo, F.; Martin, M.-T.; Frappier, F.; Guyot, M. Lissoclinotoxins: Antibiotic polysulfur derivatives from the tunicate Lissoclinum perforatum. Revised structure of lissoclinotoxin A. Tetrahedron 1994, 50, 5323–5334. [Google Scholar] [CrossRef]
- Guyot, M. Bioactive metabolites from marine invertebrates. Pure Appl. Chem. 1994, 66, 2223–2226. [Google Scholar] [CrossRef]
- Chatterji, T.; Gates, K.S. DNA cleavage by 7-methylbenzopentathiepin: A simple analog of the antitumor antibiotic varacin. Bioorganic Med. Chem. Lett. 1998, 8, 535–538. [Google Scholar] [CrossRef] [PubMed]
- Greer, A. On the origin of cytotoxicity of the natural product varacin. A novel example of a pentathiepin reaction that provides evidence for a triatomic sulfur intermediate. J. Am. Chem. Soc. 2001, 123, 10379–10386. [Google Scholar] [CrossRef] [PubMed]
- Asquith, C.R.M.; Laitinen, T.; Konstantinova, L.S.; Tizzard, G.; Poso, A.; Rakitin, O.A.; Hofmann-Lehmann, R.; Hilton, S.T. Investigation of the Pentathiepin Functionality as an Inhibitor of Feline Immunodeficiency Virus (FIV) via a Potential Zinc Ejection Mechanism, as a Model for HIV Infection. ChemMedChem 2019, 14, 454–461. [Google Scholar] [CrossRef]
- Cheng, Y.; Pham, A.-T.; Kato, T.; Lim, B.; Moreau, D.; Lopez-Andarias, J.; Zong, L.; Sakai, N.; Matile, S. Inhibitors of thiol-mediated uptake. Chem. Sci. 2021, 12, 626–631. [Google Scholar] [CrossRef]
- Cheng, Y.; Zong, L.; Lopez-Andarias, J.; Bartolami, E.; Okamoto, Y.; Ward, T.R.; Sakai, N.; Matile, S. Cell-penetrating dynamic-covalent benzopolysulfane networks. Angew. Chem. Int. Ed. 2019, 58, 9522–9526. [Google Scholar] [CrossRef]
- Khomenko, T.M.; Korchagina, D.V.; Baev, D.S.; Vassiliev, P.M.; Volcho, K.P.; Salakhutdinov, N.F. Antimicrobial Activity of Substituted Benzopentathiepin-6-amines. J. Antibiot. 2019, 72, 590–599. [Google Scholar] [CrossRef]
- Laurent, Q.; Martinent, R.; Moreau, D.; Winssinger, N.; Sakai, N.; Matile, S. Oligonucleotide Phosphorothioates Enter Cells by Thiol-Mediated Uptake. Angew. Chem. Int. Ed. 2021, 60, 19102–19106. [Google Scholar] [CrossRef] [PubMed]
- Lopez-Andarias, J.; Saarbach, J.; Moreau, D.; Cheng, Y.; Derivery, E.; Laurent, Q.; Gonzalez-Gaitan, M.; Winssinger, N.; Sakai, N.; Matile, S. Cell-Penetrating Streptavidin: A General Tool for Bifunctional Delivery with Spatiotemporal Control, Mediated by Transport Systems Such as Adaptive Benzopolysulfane Networks. J. Am. Chem. Soc. 2020, 142, 4784–4792. [Google Scholar] [CrossRef] [PubMed]
- Giles, G.I.; Tasker, K.M.; Jacob, C. Hypothesis: The role of reactive sulfur species in oxidative stress. Free Radic. Biol. Med. 2001, 31, 1279–1283. [Google Scholar] [CrossRef] [PubMed]
- De Sciscio, M.L.; D’Annibale, V.; D’Abramo, M. Theoretical Evaluation of Sulfur-Based Reactions as a Model for Biological Antioxidant Defense. Int. J. Mol. Sci. 2022, 23, 14515. [Google Scholar] [CrossRef] [PubMed]
- Miller, C.G.; Schmidt, E.E. Sulfur Metabolism Under Stress. Antioxid. Redox Signal. 2020, 33, 1158–1173. [Google Scholar] [CrossRef] [PubMed]
- Mukwevho, E.; Ferreira, Z.; Ayeleso, A. Potential role of sulfur-containing antioxidant systems in highly oxidative environments. Molecules 2014, 19, 19376–19389. [Google Scholar] [CrossRef]
- Chatterji, T.; Gates, K.S. Reaction of Thiols with 7-Methylbenzopentathiepin. Bioorganic Med. Chem. Lett. 2003, 13, 1349–1352. [Google Scholar] [CrossRef]
- Chenard, B.L.; Harlow, R.L.; Johnson, A.L.; Vladuchick, S.A. Synthesis, structure, and properties of pentathiepins. J. Am. Chem. Soc. 1985, 107, 3871–3879. [Google Scholar] [CrossRef]
- Houk, J.; Whitesides, G.M. Characterization and stability of cyclic disulfides and cyclic dimeric bis(disulfides). Tetrahedron 1989, 45, 91–102. [Google Scholar] [CrossRef]
- Jacobsen, L.M.; Tallarita, R.; Bandaru, S.S.M.; Schulzke, C. Chapter 14 Synthesis of pharmacologically significant pentathiepins: A journey from harsh to mild conditions. In Non-Conventional Synthesis; György, K., Bubun, B., Eds.; De Gruyter: Berlin, Germany; Boston, MA, USA, 2024; pp. 403–466. [Google Scholar]
- Zubair, M.; Ghosh, A.C.; Schulzke, C. The unexpected and facile molybdenum mediated formation of tri- and tetracyclic pentathiepins from pyrazine-alkynes and sulfur. Chem. Comm. 2013, 49, 4343–4345. [Google Scholar] [CrossRef]
- Pople, J.M.M.; Nicholls, T.P.; Pham, L.N.; Bloch, W.M.; Lisboa, L.S.; Perkins, M.V.; Gibson, C.T.; Coote, M.L.; Jia, Z.; Chalker, J.M. Electrochemical Synthesis of Poly(trisulfides). J. Am. Chem. Soc. 2023, 145, 11798–11810. [Google Scholar] [CrossRef] [PubMed]
- Behnisch-Cornwell, S.; Bandaru, S.S.M.; Napierkowski, M.; Wolff, L.; Zubair, M.; Urbainsky, C.; Lillig, C.; Schulzke, C.; Bednarski, P.J. Pentathiepins: A Novel Class of Glutathione Peroxidase 1 Inhibitors that Induce Oxidative Stress, Loss of Mitochondrial Membrane Potential and Apoptosis in Human Cancer Cells. ChemMedChem 2020, 15, 1515–1528. [Google Scholar] [CrossRef] [PubMed]
- Wolff, L.; Bandaru, S.S.M.; Eger, E.; Lam, H.-N.; Napierkowski, M.; Baecker, D.; Schulzke, C.; Bednarski, P.J. Comprehensive Evaluation of Biological Effects of Pentathiepins on Various Human Cancer Cell Lines and Insights into Their Mode of Action. Int. J. Mol. Sci. 2021, 22, 7631. [Google Scholar] [CrossRef] [PubMed]
- Napierkowski, M.; Janke, U.; Rong, A.; Delcea, M.; Bandaru, S.S.M.; Schulzke, C.; Bednarski, P.J. Liposomal formulation of model pentathiepin improves solubility and stability toward glutathione while preserving anticancer activity. Arch. Pharm. 2023, 356, e2300087. [Google Scholar] [CrossRef] [PubMed]
- Benedetto Tiz, D.; Bagnoli, L.; Rosati, O.; Marini, F.; Sancineto, L.; Santi, C. New Halogen-Containing Drugs Approved by FDA in 2021: An Overview on Their Syntheses and Pharmaceutical Use. Molecules 2022, 27, 1643. [Google Scholar] [CrossRef]
- Hammett, L.P. The Effect of Structure upon the Reactions of Organic Compounds. Benzene Derivatives. J. Am. Chem. Soc. 1937, 59, 96–103. [Google Scholar] [CrossRef]
- Álvarez-Martínez, F.J.; Barrajón-Catalán, E.; Micol, V. Tackling Antibiotic Resistance with Compounds of Natural Origin: A Comprehensive Review. Biomedicines 2020, 8, 405. [Google Scholar] [CrossRef]
- Hansch, C.; Leo, A.J.; Taft, R.W. A survey of Hammett substituent constants and resonance and field parameters. Chem. Rev. 1991, 91, 165–195. [Google Scholar] [CrossRef]
- González-Bello, C.; Castedo, L. Six-Membered Heterocycles: Pyridines. In Modern Heterocyclic Chemistry; Wiley-VCH: Weinheim, Germany, 2011; pp. 1431–1525. [Google Scholar]
- Hodgson, H.H. The Sandmeyer Reaction. Chem. Rev. 1947, 40, 251–277. [Google Scholar] [CrossRef]
- Klapars, A.; Buchwald, S.L. Copper-Catalyzed Halogen Exchange in Aryl Halides: An Aromatic Finkelstein Reaction. J. Am. Chem. Soc. 2002, 124, 14844–14845. [Google Scholar] [CrossRef]
- Finkelstein Reaction. Comprehensive Organic Name Reactions and Reagents; John Wiley & Sons: Hoboken, NJ, USA, 2010; pp. 1060–1063. [Google Scholar]
- Konstantinova, L.S.; Rakitin, O.A.; Rees, C.W. Pentathiepins. Chem. Rev. 2004, 104, 2617–2630. [Google Scholar] [CrossRef] [PubMed]
- Wei, R.; Dickson, C.L.; Uhrín, D.; Lloyd-Jones, G.C. Rapid Estimation of T1 for Quantitative NMR. J. Org. Chem. 2021, 86, 9023–9029. [Google Scholar] [CrossRef] [PubMed]
- Amal Joseph, P.J.; Priyadarshini, S. Copper-Mediated C–X Functionalization of Aryl Halides. Org. Process. Res. Dev. 2017, 21, 1889–1924. [Google Scholar] [CrossRef]
- Bowman, W.R.; Heaney, H.; Smith, P.H.G. Copper(1) catalysed aromatic nucleophilic substitution: A mechanistic and synthetic comparison with the SRN1 reaction. Tetrahedron Lett. 1984, 25, 5821–5824. [Google Scholar] [CrossRef]
- Arora, H.; Sahoo, P.R.; Kumar, A.; Kumar, R.; Kumar, S. The direct synthesis of a substituted naphthopentathiepin for selective Co2+ ion recognition in aqueous solution. J. Incl. Phenom. Macrocycl. Chem. 2019, 95, 135–145. [Google Scholar] [CrossRef]
- Argyle, M.D.; Bartholomew, C.H. Heterogeneous Catalyst Deactivation and Regeneration: A Review. Catalysts 2015, 5, 145–269. [Google Scholar] [CrossRef]
- Oudar, J. Sulfur Adsorption and Poisoning of Metallic Catalysts. Catal. Rev. 1980, 22, 171–195. [Google Scholar] [CrossRef]
- Takeda, N.; Tokitoh, N.; Okazaki, R. Polysulfido Complexes of Main Group and Transition Metals. In Elemental Sulfur und Sulfur-Rich Compounds II; Steudel, R., Ed.; Springer: Berlin/Heidelberg, Germany, 2003; pp. 153–202. [Google Scholar]
- Almy, J.; Martinez Alverez, R.; Fernandez, A.H.; Vazquez, A.S. Useful Examples for Discussion of Proton-NMR Spectroscopy: N-Substituted alpha-Aminobenzenebutanenitriles. Anisotropy of Diastereotopic Methylene Protons. J. Chem. Ed. 1997, 74, 1479. [Google Scholar] [CrossRef]
- Sato, R.; Alam, A.; Ohta, H.; Mori, K.-e.; Sato, Y.; Okawa, M.; Tada, M.; Nakajo, S.; Ogawa, S.; Yamamoto, T. Novel chiral cyclic polysulfides with a biphenyl backbone: Investigation of atropisomerism and pentathiepin ring inversion. Tetrahedron 2008, 64, 3751–3759. [Google Scholar] [CrossRef]
- Sonnefeld, A.; Razanahoera, A.; Pelupessy, P.; Bodenhausen, G.; Sheberstov, K. Long-lived states of methylene protons in achiral molecules. Sci. Adv. 2022, 8, eade2113. [Google Scholar] [CrossRef]
- Groom, C.; Bruno, I.; Lightfoot, M.; Ward, S. The Cambridge Structural Database. Acta Crystallogr. B Struct. Sci. Cryst. Eng. Mater. 2016, 72, 171–179. [Google Scholar] [CrossRef] [PubMed]
- Cottrell, S.J.; Olsson, T.S.G.; Taylor, R.; Cole, J.C.; Liebeschuetz, J.W. Validating and Understanding Ring Conformations Using Small Molecule Crystallographic Data. J. Chem. Inf. Model. 2012, 52, 956–962. [Google Scholar] [CrossRef] [PubMed]
- Chou, J.-H.; Rauchfuss, T.B. Notizen: C4S82− and C16S184−: Intermediates in the Synthesis of PoIy(Carbon Sulfide). Z. Naturforschung B 1997, 52, 1549–1552. [Google Scholar] [CrossRef]
- Tokitoh, N.; Hayakawa, H.; Goto, M.; Ando, W. Novel reactions of 1,1,4,4-tetraaryl-1,2,3-butatrienes with elemental sulfur and selenium. Tetrahedron Lett. 1988, 29, 1935–1938. [Google Scholar] [CrossRef]
- Rybalova, T.V.; Rogachev, A.D.; Khomenko, T.M.; Volcho, K.P.; Salakhutdinov, N.F. Molecular and Supramolecular Structure of 8-(Trifluoromethyl)Benzo[f][1,2,3,4,5]Pentathiepin-6-Amine—A Representative of Condensed Arene Pentathiepines. J. Struct. Chem. 2018, 59, 1753–1758. [Google Scholar] [CrossRef]
- Jamshaid, S.; Lee, Y.R. Lewis-Acid-Catalyzed Regioselective Construction of Diversely Functionalized Polycyclic Fused Furans. Organic Lett. 2022, 24, 1351–1356. [Google Scholar] [CrossRef]
- Klementyeva, S.V.; Abramov, P.A.; Somov, N.V.; Dudkina, Y.B.; Budnikova, Y.H.; Poddel’sky, A.I. Deprotonation of Benzoxazolium Salt: Trapping of a Radical-Cation Intermediate. Organic Lett. 2019, 21, 946–950. [Google Scholar] [CrossRef]
- Brzostowska, E.M.; Paulynice, M.; Bentley, R.; Greer, A. Planar chirality due to a polysulfur ring in natural pentathiepin cytotoxins. Implications of planar chirality for enantiospecific biosynthesis and toxicity. Chem. Res. Toxicol. 2007, 20, 1046–1052. [Google Scholar] [CrossRef]
- Brzostowska, E.M.; Greer, A. Polysulfane Antitumor Agents from o-Benzyne. An Odd−Even Alternation Found in the Stability of Products o-C6H4Sx (x = 1−8). J. Org. Chem. 2004, 69, 5483–5485. [Google Scholar] [CrossRef]
- Hendrickson, J.B.; Pitzer, K.S. Transition State in the Inversion of Cyclohexane. Nature 1966, 212, 749. [Google Scholar] [CrossRef]
- Chinchilla, R.; Nájera, C. The Sonogashira Reaction: A Booming Methodology in Synthetic Organic Chemistry. Chem. Rev. 2007, 107, 874–922. [Google Scholar] [CrossRef] [PubMed]
- Farrugia, L.J. WinGX and ORTEP for Windows: An update. J. Appl. Crystallogr. 2012, 45, 849–854. [Google Scholar] [CrossRef]
- Sheldrick, G.M. SHELXT—Integrated space-group and crystal-structure determination. Acta Crystallogr. A Found. Adv. 2015, 71 Pt 1, 3–8. [Google Scholar] [CrossRef] [PubMed]
- Sheldrick, G.M. Crystal structure refinement with SHELXL. Acta Crystallogr. C Struct. Chem. 2015, 71 Pt 1, 3–8. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tallarita, R.; Jacobsen, L.M.; Elvers, B.J.; Richter, S.; Bandaru, S.S.M.; Correia, J.V.; Schulzke, C. Synthesis of Seven Indolizine-Derived Pentathiepines: Strong Electronic Structure Response to Nitro Substitution in Position C-9. Molecules 2024, 29, 216. https://doi.org/10.3390/molecules29010216
Tallarita R, Jacobsen LM, Elvers BJ, Richter S, Bandaru SSM, Correia JV, Schulzke C. Synthesis of Seven Indolizine-Derived Pentathiepines: Strong Electronic Structure Response to Nitro Substitution in Position C-9. Molecules. 2024; 29(1):216. https://doi.org/10.3390/molecules29010216
Chicago/Turabian StyleTallarita, Roberto, Lukas Manuel Jacobsen, Benedict J. Elvers, Stefan Richter, Siva S. M. Bandaru, Jevy V. Correia, and Carola Schulzke. 2024. "Synthesis of Seven Indolizine-Derived Pentathiepines: Strong Electronic Structure Response to Nitro Substitution in Position C-9" Molecules 29, no. 1: 216. https://doi.org/10.3390/molecules29010216
APA StyleTallarita, R., Jacobsen, L. M., Elvers, B. J., Richter, S., Bandaru, S. S. M., Correia, J. V., & Schulzke, C. (2024). Synthesis of Seven Indolizine-Derived Pentathiepines: Strong Electronic Structure Response to Nitro Substitution in Position C-9. Molecules, 29(1), 216. https://doi.org/10.3390/molecules29010216