Evaluation of Anti-Trypanosoma cruzi Activity of Chemical Constituents from Baccharis sphenophylla Isolated Using High-Performance Countercurrent Chromatography
Abstract
:1. Introduction
2. Results and Discussion
3. Materials and Methods
3.1. General Experimental Procedures
3.2. Solvent System Selection and Determinaiton of Distribution Coefficient (KD)
3.3. High-Performance Countercurrent Chromatography, Spiral Coil Apparatus, and Peripheral Devices
3.4. Plant Material and Extraction
3.5. Fractionation of MeOH Extract of B. sphenophyllla
3.6. Animal Models, Mammalian Cells, and Parasites Maintenance
3.7. Determination of Activity (EC50) of Compounds 1–8 against Trypomastigote and Amastigote Forms of Trypanosoma cruzi
3.8. Determination of Cytotoxicity (CC50) against Mammalian Cells of Compounds 1–8
3.9. Statistical Analysis
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Lidani, K.C.F.; Andrade, F.A.; Bavia, L.; Damasceno, F.S.; Beltrame, M.H.; Messias-Reason, I.J.; Sandri, T.L. Chagas disease: From discovery to a worldwide health problem. Front. Public Health 2019, 7, 166. [Google Scholar] [CrossRef] [PubMed]
- Avaria, A.; Ventura-Garcia, L.; Sanmartino, M.; Van der Laat, C. Population movements, borders, and Chagas disease. Memórias Inst. Oswaldo Cruz 2022, 117, e210151. [Google Scholar] [CrossRef] [PubMed]
- Guggenbühl Noller, J.M.; Froeschl, G.; Eisermann, P.; Jochum, J.; Theuring, S.; Reiter-Owona, I.; Bissinger, A.L.; Hoelscher, M.; Bakuli, A.; Von Sonnenburg, F.-J.F.; et al. Describing nearly two decades of chagas disease in Germany and the lessons learned: A retrospective study on screening, detection, diagnosis, and treatment of Trypanosoma cruzi infection from 2000–2018. BMC Infect. Dis. 2020, 20, 919. [Google Scholar] [CrossRef] [PubMed]
- Bern, C.; Messenger, L.A.; Whitman, J.D.; Maguire, J.H. Chagas disease in the United States: A public health approach. Clin. Microbiol. Rev. 2019, 33, 10–1128. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization. Chagas Disease (American Trypanosomiasis). 2023. Available online: https://www.who.int/health-topics/chagas-disease (accessed on 25 November 2023).
- Junior, P.A.S.; Molina, I.; Murta, S.M.F.; Sánchez-Montalvá, A.; Salvador, F.; Corrêa-Oliveira, R.; Carneiro, C.M. Experimental and clinical treatment of Chagas disease: A review. Am. J. Trop. Med. Hyg. 2017, 97, 1289. [Google Scholar] [CrossRef]
- Villalta, F.; Rachakonda, G. Advances in preclinical approaches to Chagas disease drug discovery. Expert Opin. Drug Discov. 2019, 14, 1161–1174. [Google Scholar] [CrossRef]
- Chatelain, E. Chagas disease research and development: Is there light at the end of the tunnel? Comput. Struct. Biotechnol. J. 2017, 15, 98–103. [Google Scholar] [CrossRef]
- Morillo, C.A.; Marin-Neto, J.A.; Avezum, A.; Sosa-Estani, S.; Rassi, A., Jr.; Rosas, F.; Yusuf, S. Randomized trial of benznidazole for chronic Chagas’ cardiomyopathy. N. Engl. J. Med. 2015, 373, 1295–1306. [Google Scholar] [CrossRef]
- Newman, D.J.; Cragg, G.M. Natural products as sources of new drugs over the nearly four decades from 01/1981 to 09/2019. J. Nat. Prod. 2020, 83, 770–803. [Google Scholar] [CrossRef]
- Gong, Y.; Huang, X.Y.; Pei, D.; Duan, W.D.; Zhang, X.; Sun, X.; Di, D.L. The applicability of high-speed counter current chromatography to the separation of natural antioxidants. J. Chromatogr. A 2020, 1623, 461150. [Google Scholar] [CrossRef]
- Li, L.; Zhao, J.; Yang, T.; Sun, B. High-speed countercurrent chromatography as an efficient technique for large separation of plant polyphenols: A review. Food Res. Int. 2022, 153, 110956. [Google Scholar] [CrossRef] [PubMed]
- Wang, T.; Wang, Q.; Li, P.; Yang, H. High-speed countercurrent chromatography-based method for simultaneous recovery and separation of natural products from deep eutectic solvent extracts. ACS Sustain. Chem. Eng. 2020, 8, 2073–2080. [Google Scholar] [CrossRef]
- Ito, Y.; Conway, W.D. High-Speed Countercurrent Chromatography; John Wiley & Sons: New York, NY, USA, 1996. [Google Scholar]
- Ito, Y. Golden rules and pitfalls in selecting optimum conditions for high-speed counter-current chromatography. J. Chromatogr. A 2005, 1065, 145–168. [Google Scholar] [CrossRef] [PubMed]
- Grecco, S.S.; Letsyo, E.; Tempone, A.G.; Lago, J.H.G.; Jerz, G. Electrospray mass-spectrometry guided target isolation of neolignans from Nectandra leucantha (Lauraceae) by high performance-and spiral-coil countercurrent chromatography. J. Chromatogr. A 2019, 1608, 460422. [Google Scholar] [CrossRef] [PubMed]
- Grecco, S.S.; Costa-Silva, T.A.; Jerz, G.; de Sousa, F.S.; Conserva, G.A.A.; Mesquita, J.T.; Lago, J.H.G. Antitrypanosomal activity and evaluation of the mechanism of action of dehydrodieugenol isolated from Nectandra leucantha (Lauraceae) and its methylated derivative against Trypanosoma cruzi. Phytomedicine 2017, 24, 62–67. [Google Scholar] [CrossRef]
- Verdi, L.G.; Brighente, I.M.C.; Pizzolati, M.G. O gênero Baccharis (Asteraceae): Aspectos químicos, econômicos e biológicos. Quim. Nova 2005, 28, 85–94. [Google Scholar] [CrossRef]
- Gazim, Z.C.; Valle, J.S.; Carvalho dos Santos, I.; Rahal, I.L.; Silva, G.C.C.; Lopes, A.D.; Ruiz, S.P.; Faria, M.G.I.F.; Piau Junior, R.; Gonçalves, D.D. Ethnomedicinal, phytochemical and pharmacological investigations of Baccharis dracunculifolia DC. (Asteraceae). Front. Pharmacol. 2022, 13, 1048688. [Google Scholar] [CrossRef]
- Llaure-Mora, A.M.; Ganoza-Yupanqui, M.L.; Suárez-Rebaza, L.A.; Bussmann, R.W. Baccharis genistelloides (Lam.) Pers. “carqueja”: A review of uses in traditional medicine, phytochemical composition and pharmacological studies. Ethnobot. Res. Appl. 2021, 21, 1–37. [Google Scholar] [CrossRef]
- Romero-Benavides, J.C.; Ortega-Torres, G.C.; Villacis, J.; Vivanco-Jaramillo, S.L.; Galarza-Urgilés, K.I.; Bailon-Moscoso, N. Phytochemical study and evaluation of the cytotoxic properties of methanolic extract from Baccharis obtusifolia. Int. J. Med. Chem. 2018, 2018, 8908435. [Google Scholar] [CrossRef]
- Lam-Gutiérrez, A.; Ayora-Talavera, T.R.; Garrido-Ramírez, E.R.; Gutiérrez-Miceli, F.A.; Montes-Molina, J.A.; Lagunas-Rivera, S.; Ruíz-Valdiviezo, V.M. Phytochemical profile of methanolic extracts from Chilca (Baccharis glutinosa) roots and its activity against Aspergillus ochraceus and Fusarium moniliforme. J. Environ. Biol. 2019, 40, 302–308. [Google Scholar] [CrossRef]
- Silva, M.L.; Costa-Silva, T.A.; Antar, G.M.; Tempone, A.G.; Lago, J.H.G. Chemical constituents from aerial parts of Baccharis sphenophylla and effects against intracellular forms of Trypanosoma cruzi. Chem. Biodivers. 2021, 18, e2100466. [Google Scholar] [CrossRef] [PubMed]
- Costa-Silva, T.A.; Silva, M.L.; Antar, G.M.; Tempone, A.G.; Lago, J.H.G. Ent-kaurane diterpenes isolated from n-hexane extract of Baccharis sphenophylla by bioactivity-guided fractionation target the acidocalcisomes in Trypanosoma cruzi. Phytomedicine 2021, 93, 153748. [Google Scholar] [CrossRef] [PubMed]
- Fullas, F.; Hussain, R.A.; Chai, H.B.; Pezzuto, J.M.; Soejarto, D.D.; Kinghorn, A.D. Cytotoxic constituents of Baccharis gaudichaudiana. J. Nat. Prod. 1994, 57, 801–807. [Google Scholar] [CrossRef] [PubMed]
- Chao, S.W.; Su, M.Y.; Chiou, L.C.; Chen, L.C.; Chang, C.I.; Huang, W.J. Total synthesis of hispidulin and the structural basis for its inhibition of proto-oncogene kinase Pim-1. J. Nat. Prod. 2015, 78, 1969–1976. [Google Scholar] [CrossRef] [PubMed]
- Nagao, T.; Abe, F.; Kinjo, J.; Okabe, H. Antiproliferative constituents in plants 10. Flavones from the leaves of Lantana montevidensis B RIQ. and consideration of structure–activity relationship. Biol. Pharm. Bull. 2002, 25, 875–879. [Google Scholar] [CrossRef] [PubMed]
- Wei, J.; Ding, Y.; Liu, X.; Liu, Q.; Lu, Y.; He, S.; Zhang, J. Eupafolin induces apoptosis and autophagy of breast cancer cells through PI3K/AKT, MAPKs and NF-κB signaling pathways. Sci. Rep. 2021, 11, 21478. [Google Scholar] [CrossRef] [PubMed]
- Grecco, S.D.S.; Felix, M.J.P.; Lago, J.H.G.; Pinto, E.G.; Tempone, A.G.; Romoff, P.; Sartorelli, P. Anti-trypanosomal phenolic derivatives from Baccharis uncinella. Nat. Prod. Commun. 2014, 9, 171–173. [Google Scholar] [CrossRef] [PubMed]
- Ge, L.; Wan, H.; Tang, S.; Chen, H.; Li, J.; Zhang, K.; Zeng, X. Novel caffeoylquinic acid derivatives from Lonicera japonica Thunb. flower buds exert pronounced anti-HBV activities. RSC Adv. 2018, 8, 35374–35385. [Google Scholar] [CrossRef]
- Retamozo, M.H.; Silva, C.C.; Tamayose, C.I.; Carvalho, J.C.; Romoff, P.; Fávero, O.A.; Ferreira, M.J. Chemical constituents from leaves of Baccharis sphenophylla (Asteraceae) and their antioxidant effects. Plants 2023, 12, 1262. [Google Scholar] [CrossRef]
- Guo, Y.; Li, Y.; Xu, J.; Li, N.; Yamakuni, T.; Ohizumi, Y. Clerodane diterpenoids and flavonoids with NGF-potentiating activity from the aerial parts of Baccharis gaudichaudiana. Chem. Pharm. Bull. 2007, 55, 1532–1534. [Google Scholar] [CrossRef]
- Dai, J.; Suttisri, R.; Bordas, E.; Soejarto, D.D.; Kinghorn, A.D. Clerodane diterpenoids from Baccharis articulata. Phytochemistry 1993, 34, 1087–1090. [Google Scholar] [CrossRef]
- Cyr, A.; Wilderman, P.R.; Determan, M.; Peters, R.J. A modular approach for facile biosynthesis of labdane-related diterpenes. J. Am. Chem. Soc. 2007, 129, 6684–6685. [Google Scholar] [CrossRef] [PubMed]
- Peters, R.J. Two rings in them all: The labdane-related diterpenoids. Nat. Prod. Rep. 2010, 27, 1521–1530. [Google Scholar] [CrossRef] [PubMed]
- Silva, M.L.; Gimenes, L.; Romoff, P.; Soares, M.G.; Camilo, F.F.; Levatti, E.V.D.C.; Lago, J.H.G. Fenilpropanoides com ação anti-Trypanosoma cruzi isolados de Baccharis ligustrina C. DC. (Asteraceae). Química Nova 2023, 46, 39–42. [Google Scholar] [CrossRef]
- Katsuno, K.; Burrows, J.N.; Duncan, K.; Hooft van Huijsduijnen, R.; Kaneko, T.; Kita, K.; Mowbray, C.E.; Schmatz, D.; Warner, P.; Slingsby, B.T. Hit and lead criteria in drug discovery for infectious diseases of the developing world. Nat. Rev. Drug Discov. 2015, 14, 751–758. [Google Scholar] [CrossRef]
- Ioset, J.R.; Brun, R.; Wenzler, T.; Kaiser, M.; Yardley, V. Drug Screening for Kinetoplastids Diseases. A Training Manual for Screening in Neglected Diseases. DNDi. 2009. 74p. Available online: https://dndi.org/wp-content/uploads/2009/04/kinetoplastid_drug_screening_manual_final.pdf (accessed on 25 November 2023).
- Brent Friesen, J.; Pauli, G.F. GUESS—A generally useful estimate of solvent systems for CCC. J. Liq. Chromatogr. Relat. Technol. 2005, 28, 2777–2806. [Google Scholar] [CrossRef]
- Conway, W.D. Counter-current chromatography: Simple process and confusing terminology. J. Chromatogr. A 2011, 1218, 6015–6023. [Google Scholar] [CrossRef]
Compound | T. cruzi Trypomastigote EC50 (μM) ± SD | T. cruzi Amastigote EC50 (μM) ± SD | NCTC Mammalian Cell CC50 (μM) ± SD | T. cruzi Trypomastigote SI | T. cruzi Amastigote SI |
---|---|---|---|---|---|
1 | 20.1 ± 1.5 | NA | >200 | >10.0 | - |
2 | 2.9 ± 1.5 | NA | >200 | >68.7 | - |
3 | 10.6 ± 4.4 | NA | >200 | >18.8 | - |
4 | NA | 12.8 ± 0.3 | >200 | - | >12.6 |
5 | NA | 2.7 ± 0.2 | >200 | - | >74.1 |
6–8 | NA | 24.9 ± 1.3 | >200 | - | >8.0 |
Benznidazole | 18.7 ± 4.1 | 5.5 ± 2.2 | >200 | >10.7 | >36.4 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Silva, M.L.; Sales, F.S.; Levatti, E.V.C.; Antar, G.M.; Tempone, A.G.; Lago, J.H.G.; Jerz, G. Evaluation of Anti-Trypanosoma cruzi Activity of Chemical Constituents from Baccharis sphenophylla Isolated Using High-Performance Countercurrent Chromatography. Molecules 2024, 29, 212. https://doi.org/10.3390/molecules29010212
Silva ML, Sales FS, Levatti EVC, Antar GM, Tempone AG, Lago JHG, Jerz G. Evaluation of Anti-Trypanosoma cruzi Activity of Chemical Constituents from Baccharis sphenophylla Isolated Using High-Performance Countercurrent Chromatography. Molecules. 2024; 29(1):212. https://doi.org/10.3390/molecules29010212
Chicago/Turabian StyleSilva, Matheus L., Felipe S. Sales, Erica V. C. Levatti, Guilherme M. Antar, Andre G. Tempone, João Henrique G. Lago, and Gerold Jerz. 2024. "Evaluation of Anti-Trypanosoma cruzi Activity of Chemical Constituents from Baccharis sphenophylla Isolated Using High-Performance Countercurrent Chromatography" Molecules 29, no. 1: 212. https://doi.org/10.3390/molecules29010212
APA StyleSilva, M. L., Sales, F. S., Levatti, E. V. C., Antar, G. M., Tempone, A. G., Lago, J. H. G., & Jerz, G. (2024). Evaluation of Anti-Trypanosoma cruzi Activity of Chemical Constituents from Baccharis sphenophylla Isolated Using High-Performance Countercurrent Chromatography. Molecules, 29(1), 212. https://doi.org/10.3390/molecules29010212