Beryllium Dimer Reactions with Acetonitrile: Formation of Strong Be−Be Bonds
Abstract
:1. Introduction
2. Results and Discussion
2.1. End-On Products: BeBeNCCH3 and BeNCCH3
2.2. Insertion Products: CNBeBeCH3 and CNBeCH3
2.3. HBeCH2CN and HBeNCCH2
3. Molecular Structures and Bonding
4. Reaction Mechanism
5. Experimental and Computational Methods
6. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Pan, S.; Jana, G.; Saha, R.; Zhao, L.L.; Chattaraj, P.K. Intriguing structural, bonding and reactivity features in some beryllium containing complexes. Phys. Chem. Chem. Phys. 2020, 22, 27476–27495. [Google Scholar] [CrossRef] [PubMed]
- Dutton, J.L.; Frenking, G. New Avenues in s-Block Chemistry: Beryllium(0) Complexes. Angew. Chem. Int. Ed. 2016, 55, 13380–13382. [Google Scholar] [CrossRef] [PubMed]
- Sutton, M.; Burastero, S.R. Beryllium chemical speciation in elemental human biological fluids. Chem. Res. Toxicol. 2003, 16, 1145–1154. [Google Scholar] [CrossRef] [PubMed]
- Puchta, R. A brighter beryllium. Nat. Chem. 2011, 3, 416. [Google Scholar] [CrossRef] [PubMed]
- Yuan, C.X.; Zhao, X.F.; Wu, Y.B.; Wang, X.T. Ultrashort Beryllium-Beryllium Distances Rivalling Those of Metal-Metal Quintuple Bonds Between Transition Metals. Angew. Chem. Int. Ed. 2016, 55, 15651–15655. [Google Scholar] [CrossRef] [PubMed]
- Kalemos, A. The nature of the chemical bond in Be2+, Be2, Be2−, and Be3. J. Chem. Phys. 2016, 145, 214302. [Google Scholar] [CrossRef]
- Zhang, Q.N.; Li, W.L.; Zhao, L.L.; Chen, M.H.; Zhou, M.F.; Li, J.; Frenking, G. A Very Short Be-Be Distance but No Bond: Synthesis and Bonding Analysis of Ng-Be2O2-Ng’ (Ng, Ng’ = Ne, Ar, Kr, Xe). Chem.-Eur. J. 2017, 23, 2035–2039. [Google Scholar] [CrossRef]
- Patkowski, K.; Spirko, V.; Szalewicz, K. On the Elusive Twelfth Vibrational State of Beryllium Dimer. Science 2009, 326, 1382–1384. [Google Scholar] [CrossRef]
- Merritt, J.M.; Bondybey, V.E.; Heaven, M.C. Beryllium Dimer-Caught in the Act of Bonding. Science 2009, 324, 1548–1551. [Google Scholar] [CrossRef]
- Bondybey, V.E. Electronic-Structure and Bonding of Be2. Chem. Phys. Lett. 1984, 109, 436–441. [Google Scholar] [CrossRef]
- Qin, Z.Z.; Wang, Q.; Yuan, C.X.; Yang, Y.T.; Zhao, X.F.; Li, D.B.; Liu, P.; Wu, Y.B. Combining covalent bonding and electrostatic attraction to achieve highly viable species with ultrashort beryllium-beryllium distances: A computational design. Dalton Trans. 2018, 47, 4707–4713. [Google Scholar] [CrossRef] [PubMed]
- Nijesh, K.; De, S.; Parameswaran, P. Homopolar dihydrogen bonding in ligand stabilized diberyllium hydride complexes, Be2(CH3)2H2L2 (L = H−, CO, N-heterocyclic carbene and CN−). Dalton Trans. 2016, 45, 7836–7846. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Q.N.; Jerabek, P.; Chen, M.H.; Zhou, M.; Frenking, G. The Oxygen-Rich Beryllium Oxides BeO4 and BeO6. Angew. Chem. Int. Ed. 2016, 55, 10863–10867. [Google Scholar] [CrossRef] [PubMed]
- Andrews, L.; Tague, T.J.; Kushto, G.P.; Davy, R.D. Infrared-Spectra of Beryllium Carbonyls from Reactions of Beryllium Atoms with Carbon-Monoxide in Solid Argon. Inorg. Chem. 1995, 34, 2952–2961. [Google Scholar] [CrossRef]
- Liu, X.M.; Zhang, M.; Yu, S.; Geng, Y.; Zhang, X.X.; Ding, Y.H.; Su, Z.M. Beryllium-beryllium double-pi bonds in the octahedral cluster of Be2(μ2-X)4 (X = Li, Cu, BeF). Phys. Chem. Chem. Phys. 2018, 20, 23898–23902. [Google Scholar] [CrossRef] [PubMed]
- Cui, Z.H.; Yang, W.S.; Zhao, L.L.; Ding, Y.H.; Frenking, G. Unusually Short Be-Be Distances with and without a Bond in Be2F2 and in the Molecular Discuses Be2B8 and Be2B7−. Angew. Chem. Int. Ed. 2016, 55, 7841–7846. [Google Scholar] [CrossRef]
- Brea, O.; Corral, I. Super Strong Be−Be Bonds: Theoretical Insight into the Electronic Structure of Be-Be Complexes with Radical Ligands. J. Phys. Chem. A 2018, 122, 2258–2265. [Google Scholar] [CrossRef]
- Boronski, J.T.; Crumpton, A.E.; Wales, L.L.; Aldridge, S. Diberyllocene, a stable compound of Be(I) with a Be-Be bond. Science 2023, 380, 1147–1149. [Google Scholar] [CrossRef]
- West, T. The elusive Be–Be bond. Nat. Synth 2023, 2, 696. [Google Scholar] [CrossRef]
- Li, X.Y.; Huo, S.H.; Zeng, Y.L.; Sun, Z.; Zheng, S.J.; Meng, L.P. Metal-Metal and Metal-Ligand Bonds in (η5-C5H5)2M2 (M = Be, Mg, Ca, Ni, Cu, Zn). Organometallics 2013, 32, 1060–1066. [Google Scholar] [CrossRef]
- Wu, S.L.; Su, J.H.; Lu, Y.; Chen, B.W.; Huang, C.Y.; Wen, Z.H.; Kuo, Y.H.; Sheu, J.H. Simplexins J-O, Eunicellin-Based Diterpenoids from a Dongsha Atoll Soft Coral Klyxum simplex. B Chem. Soc. Jpn. 2011, 84, 626–632. [Google Scholar] [CrossRef]
- Vos, E.; Montero-Campillo, M.M.; Corral, I.; Yanez, M.; Alkorta, I.; Elguero, J. From Very Strong to Inexistent Be-Be Bonds in the Interactions of Be2 with pi-Systems. ChemPhysChem 2020, 21, 2701–2708. [Google Scholar] [CrossRef] [PubMed]
- Rezaie, F.; Noorizadeh, S. Strong Be-Be bonds in double-aromatic bridged Be2(μ-SO) molecules. Dalton Trans. 2022, 51, 12596–12603. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.M.; Zhang, M.; Zhong, R.L.; Wu, S.X.; Liu, Y.Y.; Geng, Y.; Su, Z.M. Computational Study of spx(x = 1–3)-Hybridized Be-Be Bonds Stabilized by Amidinate Ligands. Chem.-Eur. J. 2020, 26, 10891–10895. [Google Scholar] [CrossRef] [PubMed]
- Sarmah, K.; Kalita, A.J.; Guha, A.K. A theoretical investigation of Zn-Zn and Be-Be one electron bond. Int. J. Quantum Chem. 2023, 123, e27006. [Google Scholar] [CrossRef]
- Rohman, S.S.; Kashyap, C.; Ullah, S.S.; Guha, A.K.; Mazumder, L.J.; Sharma, P.K. Ultra-Weak Metal-Metal Bonding: Is There a Beryllium-Beryllium Triple Bond? ChemPhysChem 2019, 20, 516–518. [Google Scholar] [CrossRef]
- Liu, X.M.; Zhong, R.L.; Zhang, M.; Wu, S.X.; Geng, Y.; Su, Z.M. Be≡Be triple bond in Be2X4Y2 clusters (X = Li, Na and Y = Li, Na, K) and a perfect classical Be≡Be triple bond presented in Be2Na4K2. Dalton Trans. 2019, 48, 14590–14594. [Google Scholar] [CrossRef]
- Saha, R.; Pan, S.; Merino, G.; Chattaraj, P.K. Unprecedented Bonding Situation in Viable E2(NHBMe)2 (E=Be, Mg; NHBMe=(HCNMe)2B) Complexes: Neutral E2 Forms a Single E-E Covalent Bond. Angew. Chem. Int. Ed. 2019, 58, 8372–8377. [Google Scholar] [CrossRef]
- Couchman, S.A.; Holzmann, N.; Frenking, G.; Wilson, D.J.D.; Dutton, J.L. Beryllium chemistry the safe way: A theoretical evaluation of low oxidation state beryllium compounds. Dalton Trans. 2013, 42, 11375–11384. [Google Scholar] [CrossRef]
- Cho, H.G.; Andrews, L. Infrared spectra and density functional calculations of the M←NCCCH3, M-η2-(NC)-CH3, CH3-MNC, CH2=M(H)NC, and CH≡M(H)2NC complexes produced by reactions of Group 6 metal atoms with acetonitrile. J. Organomet. Chem. 2012, 703, 25–33. [Google Scholar] [CrossRef]
- Cho, H.G.; Andrews, L. IR Spectra and DFT Calculations of M-η2-(NC)-CH3, CH3-MNC, and CH2=M(H)NC Prepared by Reactions of Laser-Ablated Hf and Ti Atoms with Acetonitrile. Eur. J. Inorg. Chem. 2015, 2015, 4379–4387. [Google Scholar] [CrossRef]
- Cho, H.G.; Andrews, L. Infrared Spectra of the Complexes Os←NCCH3, Re←NCCH3, CH3-ReNC, CH2=Re(H)NC, and CH≡Re(H)2NC and their Mn Counterparts Prepared by Reactions of Laser-Ablated Os, Re, and Mn Atoms with Acetonitrile in Excess Argon. Organometallics 2012, 31, 6095–6105. [Google Scholar] [CrossRef]
- Cho, H.G.; Andrews, L. Infrared Spectra of CH2=M(H)NC, CH3-MNC, and M-η2-(NC)-CH3 Produced by Reactions of Laser-Ablated Group 5 Metal Atoms with Acetonitrile. J. Phys. Chem. A 2010, 114, 5997–6006. [Google Scholar] [CrossRef] [PubMed]
- Cho, H.G.; Andrews, L. Infrared Spectra of CH2=Zr(H)NC, CH3-ZrNC, and Zr-η2-(NC)-CH3 Produced by Reactions of Laser-Ablated Zr Atoms with Acetonitrile. J. Phys. Chem. A 2010, 114, 891–897. [Google Scholar] [CrossRef] [PubMed]
- Cho, H.G.; Andrews, L. Infrared Spectra of CH3CN→M, M-η2-(NC)-CH3, CH3-MNC Prepared by Reactions of Laser-Ablated Fe, Ru, and Pt Atoms with Acetonitrile in Excess Argon. Inorg. Chem. 2019, 58, 16194–16204. [Google Scholar] [CrossRef] [PubMed]
- Cho, H.G.; Andrews, L. Infrared Spectra of the M-η2-(NC)-CH3, CH3-MNC, and CH2=M(H)NC Complexes Prepared by Reactions of Thorium and Uranium Atoms with Acetonitrile. Organometallics 2012, 31, 535–544. [Google Scholar] [CrossRef]
- Cong, F.; Cheng, J.J.; Cho, H.G.; Huang, T.F.; Wang, X.F.; Andrews, L. M←NCCH3, M-η2-(NC)-CH3, and CN−M-CH3 Prepared by Reactions of Ce, Sm, Eu, and Lu Atoms with Acetonitrile: Matrix Infrared Spectra and Theoretical Calculations. Inorg. Chem. 2021, 60, 17649–17656. [Google Scholar] [CrossRef]
- Bader, R.F.W. Atoms in Molecules. Acc. Chem. Res. 1985, 18, 9–15. [Google Scholar] [CrossRef]
- Cong, F.; Cai, L.Y.; Cheng, J.J.; Wang, X.F.; Andrews, L. Boron-Mediated C-C and C-N Bond Cleavage of Acetonitrile: Matrix Infrared Spectra and Theoretical Calculations. Organometallics 2023, 42, 995–1004. [Google Scholar] [CrossRef]
- Huang, T.F.; Yu, W.J.; Cheng, J.J.; Cong, F.; Xu, B.; Wang, X.F. CO2 activation by ligand-free manganese hydrides in a parahydrogen matrix. Chem. Commun. 2021, 57, 2301–2304. [Google Scholar] [CrossRef]
- Xu, B.; Beckers, H.; Ye, H.Y.; Lu, Y.; Cheng, J.J.; Wang, X.F.; Riedel, S. Cleavage of the N≡N Triple Bond and Unpredicted Formation of the Cyclic 1,3-Diaza-2,4-Diborete (FB)2N2 from N2 and Fluoroborylene BF. Angew. Chem. Int. Ed. 2021, 60, 17205–17210. [Google Scholar] [CrossRef] [PubMed]
- Cheng, J.J.; Cai, L.Y.; Cong, F.; Qiu, R.Z.; Pan, C.W.; Xu, B.; Wang, X.F. Complex with Linear B-B-B Skeleton Trapped in Dinitrogen Matrix: Matrix Infrared Spectra and Quantum Chemical Calculations. Inorg. Chem. 2023, 62, 6314–6322. [Google Scholar] [CrossRef] [PubMed]
- Frisch, M.J.; Trucks, G.W.; Schlegel, H.B.; Scuseria, G.E.; Robb, M.A.; Cheeseman, J.R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G.A. Gaussian 09, Revision A.02; Gaussian, Inc.: Wallingford, CT, USA, 2009. [Google Scholar]
- Becke, A.D. Density-Functional Thermochemistry. 3. The Role of Exact Exchange. J. Chem. Phys. 1993, 98, 5648–5652. [Google Scholar] [CrossRef]
- Lee, C.T.; Yang, W.T.; Parr, R.G. Development of the Colle-Salvetti Correlation-Energy Formula into a Functional of the Electron-Density. Phys. Rev. B 1988, 37, 785–789. [Google Scholar] [CrossRef] [PubMed]
- Grimme, S.; Antony, J.; Ehrlich, S.; Krieg, H. A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. J. Chem. Phys. 2010, 132, 154104. [Google Scholar] [CrossRef] [PubMed]
- Dunning, T.H. Gaussian-Basis Sets for Use in Correlated Molecular Calculations. 1. The Atoms Boron through Neon and Hydrogen. J. Chem. Phys. 1989, 90, 1007–1023. [Google Scholar] [CrossRef]
- Kendall, R.A.; Dunning, T.H.; Harrison, R.J. Electron-Affinities of the 1st-Row Atoms Revisited—Systematic Basis-Sets and Wave-Functions. J. Chem. Phys. 1992, 96, 6796–6806. [Google Scholar] [CrossRef]
- Bloino, J. A VPT2 Route to Near-Infrared Spectroscopy: The Role of Mechanical and Electrical Anharmonicity. J. Phys. Chem. A 2015, 119, 5269–5287. [Google Scholar] [CrossRef]
- Barone, V. Anharmonic vibrational properties by a fully automated second-order perturbative approach. J. Chem. Phys. 2005, 122, 014108. [Google Scholar] [CrossRef]
- Scuseria, G.E.; Schaefer, H.F. The Unimolecular Triple Dissociation of Glyoxal—Transition-State Structures Optimized by Configuration-Interaction and Coupled Cluster-Methods. J. Am. Chem. Soc. 1989, 111, 7761–7765. [Google Scholar] [CrossRef]
- Bartlett, R.J.; Musial, M. Coupled-cluster theory in quantum chemistry. Rev. Mod. Phys. 2007, 79, 291–352. [Google Scholar] [CrossRef]
- Raghavachari, K.; Trucks, G.W.; Pople, J.A.; Headgordon, M. A 5th-Order Perturbation Comparison of Electron Correlation Theories. Chem. Phys. Lett. 1989, 157, 479–483. [Google Scholar] [CrossRef]
- Purvis, G.D.; Bartlett, R.J. A Full Coupled-Cluster Singles and Doubles Model—The Inclusion of Disconnected Triples. J. Chem. Phys. 1982, 76, 1910–1918. [Google Scholar] [CrossRef]
- Schmider, H.L.; Becke, A.D. Chemical content of the kinetic energy density. J. Mol. Struc. THEOCHEM 2000, 527, 51–61. [Google Scholar] [CrossRef]
- Reed, A.E.; Curtiss, L.A.; Weinhold, F. Intermolecular Interactions from a Natural Bond Orbital, Donor-Acceptor Viewpoint. Chem. Rev. 1988, 88, 899–926. [Google Scholar] [CrossRef]
- Lu, T.; Chen, F.W. Multiwfn: A multifunctional wavefunction analyzer. J. Comput. Chem. 2012, 33, 580–592. [Google Scholar] [CrossRef] [PubMed]
- Humphrey, W.; Dalke, A.; Schulten, K. VMD: Visual molecular dynamics. J. Mol. Graph. Model 1996, 14, 33–38. [Google Scholar] [CrossRef]
- Zhao, L.L.; von Hopffgarten, M.; Andrada, D.M.; Frenking, G. Energy decomposition analysis. Wires Comput. Mol. Sci. 2018, 8, e1345. [Google Scholar] [CrossRef]
- Mitoraj, M.P.; Michalak, A.; Ziegler, T. A Combined Charge and Energy Decomposition Scheme for Bond Analysis. J. Chem. Theory Comput. 2009, 5, 962–975. [Google Scholar] [CrossRef]
- Mitoraj, M.; Michalak, A. Natural orbitals for chemical valence as descriptors of chemical bonding in transition metal complexes. J. Mol. Model 2007, 13, 347–355. [Google Scholar] [CrossRef]
- Mitoraj, M.; Michalak, A. Applications of natural orbitals for chemical valence in a description of bonding in conjugated molecules. J. Mol. Model 2008, 14, 681–687. [Google Scholar] [CrossRef] [PubMed]
- Te Velde, G.; Bickelhaupt, F.M.; Baerends, E.J.; Guerra, C.F.; Van Gisbergen, S.J.A.; Snijders, J.G.; Ziegler, T. Chemistry with ADF. J. Comput. Chem. 2001, 22, 931–967. [Google Scholar] [CrossRef]
- Baerends, E.J.; Ziegler, T.; Autschbach, J.; Bashford, D.; Bérces, A.; Bickelhaupt, F.M.; Bo, C.; Boerrigter, P.M.; Cavallo, L.; Chong, D.P.; et al. ADF2020.101, SCM, Theoretical Chemistry, Vrije Universiteit, Amsterdam, The Netherlands 2020. Available online: http://www.scm.com (accessed on 1 June 2023).
- Van Lenthe, E.; Baerends, E.J. Optimized slater-type basis sets for the elements 1-118. J. Comput. Chem. 2003, 24, 1142–1156. [Google Scholar] [CrossRef] [PubMed]
- Van Lenthe, E.; Baerends, E.J.; Snijders, J.G. Relativistic Regular Two-Component Hamiltonians Relativistic Regular Two Component Hamiltonians. J. Chem. Phys. 1993, 99, 4597–4610. [Google Scholar] [CrossRef]
Be + CH3CN | Be + CD3CN | Be + 13CH313CN | Mode | |||
---|---|---|---|---|---|---|
Obs. | Cal. | Obs. | Cal. | Obs. | Cal. | |
1. BeBeNCCH3 | ||||||
1927.8 | 1986.0 (1132) | covered b | 1984.3 (1151) | 1889.4 | 1942.7 (1098) | C−N str. |
994.1 | 986.0 (581) | 827.0 | 812.3 (754) | 981.2 | 975.1 (504) | CH3 bend |
2. BeNCCH3 | ||||||
1915.4 | 1953.5 (119) | 1911.2 | 1952.1 (124) | 1875.4 | 1915.6 (121) | C−N str. |
1082.3 | 1106.0 (76) | 1020.8 | 1043.4 (77) | 1068.7 | 1091.5 (79) | N−Be str. |
831.4 | 807.0 (71) | covered b | 875.8 (82) | 811.6 | 790.0 (67) | C−C str. |
3. CNBeBeCH3 | ||||||
2111.0 | 2157.7 (458) | 2111.9 | 2157.7 (458) | 2068.1 | 2117.7 (458) | N−C str. |
1226.1 | 1249.1 (48) | 1037.2 (3) | 1237.2 (44) | CH3 wag | ||
1105.6 | 1109.8 (44) | 831.2 (56) | 1105.9 (39) | Be−Be str. | ||
Covered b | 909.5 (185) | 1013.4 | 1004.5 (212) | 913.4 | 902.2 (185) | C−Be str. |
4. CNBeCH3 | ||||||
2100.2 | 2164.8 (436) | 2101.4 | 2165.0 (428) | 2064.3 | 2125.0 (438) | N−C str. |
1237.8 | 1269.2 (160) | 1205.0 | 1217.9 (301) | 1223.8 | 1255.5 (146) | CH3 wag |
1162.9 | 1186.4 (147) | 951.4 (0) | 1160.5 | 1183.2 (152) | CBeN as. str. | |
668.3 | 695.6 (88) | 576.0 (83) | 590.5 (87) | CBeN bend | ||
5. HBeCH2CN | ||||||
2141.4 | 2196.1 (159) | 1608.3 | 1654.6 (121) | 2141.8 | 2195.9 (160) | Be−H str. |
685.9 | 710.2 (139) | 579.9 | 596.8 (96) | 680.6 | 703.2 (141) | Be−H bend |
6. HBeNCCH2 | ||||||
2147.7 | 2204.0 (1309) | 2114.6 | 2171.9 (1129) | 2075.7 | 2197.2 (590) | C−N str. |
2179.9 (287) | 1661.8 | 1688.5 (232) | 2169.0 | 2129.1 (966) | Be−H str. |
Energy Term a | Orbital Interaction | Be22+ + (H3C···NC)2− | Be2 + H3C···NC |
---|---|---|---|
ΔEint | - | −687.9 | −252.5 |
ΔEPauli | - | 155.7 | 414.4 |
ΔEelstat b | - | −640.7 (75.9%) | −280.2 (42.0%) |
ΔEorb b | - | −202.9 (24.0%) | −386.6 (58.0%) |
ΔEorb(σ1) c | Be22+ ← (CH3)− σ-donation | −81.1 (40.0%) | - |
ΔEorb(σ2) c | Be22+ ← (NC)− σ-donation | −38.9 (19.2%) | - |
ΔEorb(pol1) c | H → C polarization | −24.0 (11.8%) | - |
ΔEorb(pol2) c | C → N polarization | −47.8 (23.6%) | −26.2 (6.8%) |
ΔEorb(σ3) c | Be2 → NC σ-backdonation | - | −201.0 (52.0%) |
ΔEorb(σ4) c | Be2 → CH3 σ-backdonation | - | −105.5 (27.3%) |
ΔEorb(σ5) c | Be2 ← CH3 σ-donation | - | −17.7 (4.6%) |
ΔEorb(σ6) c | Be2 ←CH3 σ-donation | - | −24.9 (6.4%) |
ΔEorb(rest) c | - | −11.1 (5.5%) | −11.3 (2.9%) |
ΔEprep | - | 60.3 | 24.2 |
ΔE (-De) | - | −627.6 | −228.3 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cong, F.; Cai, L.; Cheng, J.; Pu, Z.; Wang, X. Beryllium Dimer Reactions with Acetonitrile: Formation of Strong Be−Be Bonds. Molecules 2024, 29, 177. https://doi.org/10.3390/molecules29010177
Cong F, Cai L, Cheng J, Pu Z, Wang X. Beryllium Dimer Reactions with Acetonitrile: Formation of Strong Be−Be Bonds. Molecules. 2024; 29(1):177. https://doi.org/10.3390/molecules29010177
Chicago/Turabian StyleCong, Fei, Liyan Cai, Juanjuan Cheng, Zhen Pu, and Xuefeng Wang. 2024. "Beryllium Dimer Reactions with Acetonitrile: Formation of Strong Be−Be Bonds" Molecules 29, no. 1: 177. https://doi.org/10.3390/molecules29010177
APA StyleCong, F., Cai, L., Cheng, J., Pu, Z., & Wang, X. (2024). Beryllium Dimer Reactions with Acetonitrile: Formation of Strong Be−Be Bonds. Molecules, 29(1), 177. https://doi.org/10.3390/molecules29010177