Diversity of Self-Assembled RNA Complexes: From Nanoarchitecture to Nanomachines
Abstract
:1. Introduction
2. Results
2.1. Oligonucleotides Design
2.2. RNA Complexes Thermal Stability Analysis
2.3. Gel Shift Assay Analysis
2.4. MD Simulation and Analysis
2.5. RNA Nanomaachines. Topology Regulation
3. Materials and Methods
3.1. Materials
3.2. Oligonucleotide Synthesis
3.3. Oligonucleotide Concentration Determination
3.4. Reverse Phase HPLC Analysis
3.5. UV Melting Analysis
3.6. Gel Electrophoresis
3.7. MD Simulation and Analysis
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Binzel, D.W.; Li, X.; Burns, N.; Khan, E.; Lee, W.J.; Chen, L.C.; Ellipilli, S.; Miles, W.; Ho, Y.S.; Guo, P. Thermostability, Tunability, and Tenacity of RNA as Rubbery Anionic Polymeric Materials in Nanotechnology and Nanomedicine-Specific Cancer Targeting with Undetectable Toxicity. Chem. Rev. 2021, 121, 7398–7467. [Google Scholar] [CrossRef]
- Jiao, K.; Hao, Y.; Wang, F.; Wang, L.; Fan, C.; Li, J. Structurally Reconfigurable Designer RNA Structures for Nanomachines. Biophys. Rep. 2021, 7, 21–34. [Google Scholar] [CrossRef] [PubMed]
- Boerneke, M.A.; Hermann, T. Design and Crystallography of Self-Assembling RNA Nanostructures. Methods Mol. Biol. 2017, 1632, 135–149. [Google Scholar] [CrossRef]
- Green, A.A. RNA Nanostructures; Humana: New York, NY, USA, 2017; Volume 1632, pp. 285–302. [Google Scholar] [CrossRef]
- Khisamutdinov, E.F.; Hoan Bui, M.N.; Jasinski, D.; Zhao, Z.; Cui, Z.; Guo, P. Simple Method for Constructing RNA Triangle, Square, Pentagon by Tuning Interior RNA 3WJ Angle from 60° to 90° or 108°. Methods Mol. Biol. 2015, 1316, 181–193. [Google Scholar] [CrossRef] [PubMed]
- Martin, F.H.; Tinoco, I. DNA-RNA Hybrid Duplexes Containing Oligo(DA:RU) Sequences Are Exceptionally Unstable and May Facilitate Termination of Transcription. Nucleic Acids Res. 1980, 8, 2295–2300. [Google Scholar] [CrossRef] [PubMed]
- Grabow, W.W.; Zakrevsky, P.; Afonin, K.A.; Chworos, A.; Shapiro, B.A.; Jaeger, L. Self-Assembling RNA Nanorings Based on RNAI/II Inverse Kissing Complexes. Nano Lett. 2011, 11, 878–887. [Google Scholar] [CrossRef] [PubMed]
- Afonin, K.A.; Cieply, D.J.; Leontis, N.B. Specific RNA Self-Assembly with Minimal Paranemic Motifs. J. Am. Chem. Soc. 2008, 130, 93–102. [Google Scholar] [CrossRef] [PubMed]
- Poppleton, E.; Urbanek, N.; Chakraborty, T.; Griffo, A.; Monari, L.; Göpfrich, K. RNA Origami: Design, Simulation and Application. RNA Biol. 2023, 20, 510–524. [Google Scholar] [CrossRef]
- Geary, C.; Grossi, G.; McRae, E.K.S.; Rothemund, P.W.K.; Andersen, E.S. RNA Origami Design Tools Enable Cotranscriptional Folding of Kilobase-Sized Nanoscaffolds. Nat. Chem. 2021, 13, 549–558. [Google Scholar] [CrossRef]
- Guo, S.; Xu, C.; Yin, H.; Hill, J.; Pi, F.; Guo, P. Tuning the Size, Shape and Structure of RNA Nanoparticles for Favorable Cancer Targeting and Immunostimulation. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnology 2020, 12, e1582. [Google Scholar] [CrossRef]
- Li, X.; Bhullar, A.S.; Binzel, D.W.; Guo, P. The Dynamic, Motile and Deformative Properties of RNA Nanoparticles Facilitate the Third Milestone of Drug Development. Adv. Drug Deliv. Rev. 2022, 186, 114316. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.; Franco, E. RNA Nanotechnology in Synthetic Biology. Curr. Opin. Biotechnol. 2020, 63, 135–141. [Google Scholar] [CrossRef] [PubMed]
- Ishikawa, J.; Furuta, H.; Ikawa, Y. RNA Tectonics (TectoRNA) for RNA Nanostructure Design and Its Application in Synthetic Biology. Wiley Interdiscip. Rev. RNA 2013, 4, 651–664. [Google Scholar] [CrossRef] [PubMed]
- Zamoskovtseva, A.A.; Golyshev, V.M.; Kizilova, V.A.; Shevelev, G.Y.; Pyshnyi, D.V.; Lomzov, A.A. Pairing Nanoarchitectonics of Oligodeoxyribonucleotides with Complex Diversity: Concatemers and Self-Limited Complexes. RSC Adv. 2022, 12, 6416–6431. [Google Scholar] [CrossRef]
- Kawamata, I. Advancement of Computer-Aided Design Software and Simulation Tools for Nucleic Acid Nanostructures and DNA Origami. In DNA Origami: Structures, Technology, and Applications; John Wiley & Sons: Hoboken, NJ, USA, 2022; pp. 75–99. [Google Scholar] [CrossRef]
- Minuesa, G.; Alsina, C.; Garcia-Martin, J.A.; Oliveros, J.C.; Dotu, I. MoiRNAiFold: A Novel Tool for Complex in Silico RNA Design. Nucleic Acids Res. 2022, 50, 1198, Erratum in Nucleic Acids Res.2022, 49, 4934–4943. [Google Scholar] [CrossRef]
- SantaLucia, J.; Hicks, D. The Thermodynamics of DNA Structural Motifs. Annu. Rev. Biophys. Biomol. Struct. 2004, 33, 415–440. [Google Scholar] [CrossRef]
- Piao, X.; Wang, H.; Binzel, D.W.; Guo, P. Assessment and Comparison of Thermal Stability of Phosphorothioate-DNA, DNA, RNA, 2?-F RNA, and LNA in the Context of Phi29 PRNA 3WJ. RNA 2018, 24, 67–76. [Google Scholar] [CrossRef]
- Mückstein, U.; Tafer, H.; Hackermüller, J.; Bernhart, S.H.; Stadler, P.F.; Hofacker, I.L. Thermodynamics of RNA-RNA Binding. Bioinformatics 2006, 22, 1177–1182. [Google Scholar] [CrossRef]
- Zuber, J.; Schroeder, S.J.; Sun, H.; Turner, D.H.; Mathews, D.H. Nearest Neighbor Rules for RNA Helix Folding Thermodynamics: Improved End Effects. Nucleic Acids Res. 2022, 50, 5251–5262. [Google Scholar] [CrossRef]
- Neidle, S. Principles of Nucleic Acid Structure; Springer Advanced Texts in Chemistry; Springer: New York, NY, USA, 2007; ISBN 9780123695079. [Google Scholar]
- Filippov, N.; Lomzov, A.; Pyshnyi, D. Influence of Oligonucleotide-Stopper on Size and Thermal Stability of Concatemer DNA Compexes. Sib. J. Phys. 2011, 6, 115–124. [Google Scholar] [CrossRef]
- Filippov, N.S.; Lomzov, A.A.; Pyshnyi, D.V. Thermodynamic Description of Oligonucleotide Self-Association in DNA Concatamer Structures. Biophysics 2009, 54, 280–290. [Google Scholar] [CrossRef]
- AbouHaidar, M.G.; Ivanov, I.G. Non-Enzymatic RNA Hydrolysis Promoted by the Combined Catalytic Activity of Buffers and Magnesium Ions. Z. Naturforsch. Sect. C J. Biosci. 1999, 54, 542–548. [Google Scholar] [CrossRef] [PubMed]
- Lomzov, A.A.; Pyshnaya, I.A.; Ivanova, E.M.; Pyshnyi, D.V. Thermodynamic Parameters for Calculating the Stability of Complexes of Bridged Oligonucleotides. Dokl. Biochem. Biophys. 2006, 409, 211–215. [Google Scholar] [CrossRef] [PubMed]
- Golyshev, V.M.; Abramova, T.V.; Pyshnyi, D.V.; Lomzov, A.A. Structure an Hybriization Properties of Glycine Morpholine Oligomers in Complexes with DNA an RNA: Experimental an Molecular Dynamics Stuies. J. Phys. Chem. B 2019, 123, 10571–10581. [Google Scholar] [CrossRef] [PubMed]
- Banerjee, A.; Anand, M.; Kalita, S.; Ganji, M. Single-Molecule Analysis of DNA Base-Stacking Energetics Using Patterned DNA Nanostructures. Nat. Nanotechnol. 2023, 18, 1474–1482. [Google Scholar] [CrossRef] [PubMed]
- Šponer, J.; Šponer, J.E.; Mládek, A.; Jurečka, P.; Banáš, P.; Otyepka, M. Nature and Magnitude of Aromatic Base Stacking in DNA and RNA: Quantum Chemistry, Molecular Mechanics, and Experiment. Biopolymers 2013, 99, 978–988. [Google Scholar] [CrossRef] [PubMed]
- Jasinski, D.L.; Khisamutdinov, E.F.; Lyubchenko, Y.L.; Guo, P. Physicochemically Tunable Polyfunctionalized RNA Square Architecture with Fluorogenic and Ribozymatic Properties. ACS Nano 2014, 8, 7620–7629. [Google Scholar] [CrossRef] [PubMed]
- Zgarbová, M.; Otyepka, M.; Šponer, J.; Lankaš, F.; Jurečka, P. Base Pair Fraying in Molecular Dynamics Simulations of DNA and RNA. J. Chem. Theory Comput. 2014, 10, 3177–3189. [Google Scholar] [CrossRef]
- Wang, F.; Sun, L.Z.; Cai, P.; Chen, S.J.; Xu, X. Kinetic Mechanism of RNA Helix-Terminal Basepairing—A Kinetic Minima Network Analysis. Biophys. J. 2019, 117, 1674–1683. [Google Scholar] [CrossRef]
- Bellaousov, S.; Reuter, J.S.; Seetin, M.G.; Mathews, D.H. RNAstructure: Web Servers for RNA Secondary Structure Prediction and Analysis. Nucleic Acids Res. 2013, 41, W471–W474. [Google Scholar] [CrossRef]
- Spasic, A.; Berger, K.D.; Chen, J.L.; Seetin, M.G.; Turner, D.H.; Mathews, D.H. Improving RNA Nearest Neighbor Parameters for Helices by Going beyond the Two-State Model. Nucleic Acids Res. 2018, 46, 4883. [Google Scholar] [CrossRef] [PubMed]
- Richards, E.G. Use of Tables in Calculation of Absorption, Optical Rotary Dispersion, and Circular Dichroism of Polyribonucleotides. In Handbook of Biochemistry and Molecular Biology; CRC Press: Boca Raton, FL, USA, 1975; pp. 596–599. [Google Scholar]
- Lokhov, S.G.; Pyshnyi, D.V. Thermodynamic and Spectral Properties of DNA Miniduplexes with the Terminal G·A Mispairs and 3’ or 5’ Dangling Bases. FEBS Lett. 1997, 420, 134–138. [Google Scholar] [CrossRef] [PubMed]
- Lomzov, A.A.; Vorobjev, Y.N.; Pyshnyi, D.V. Evaluation of the Gibbs Free Energy Changes and Melting Temperatures of DNA/DNA Duplexes Using Hybridization Enthalpy Calculated by Molecular Dynamics Simulation. J. Phys. Chem. B 2015, 119, 15221–15234. [Google Scholar] [CrossRef] [PubMed]
- Pettersen, E.F.; Goddard, T.D.; Huang, C.C.; Couch, G.S.; Greenblatt, D.M.; Meng, E.C.; Ferrin, T.E. UCSF Chimera—A Visualization System for Exploratory Research and Analysis. J. Comput. Chem. 2004, 25, 1605–1612. [Google Scholar] [CrossRef] [PubMed]
- Bergonzo, C.; Cheatham, T.E. Improved Force Field Parameters Lead to a Better Description of RNA Structure. J. Chem. Theory Comput. 2015, 11, 3969–3972. [Google Scholar] [CrossRef]
- Izadi, S.; Anandakrishnan, R.; Onufriev, A.V. Building Water Models: A Different Approach. J. Phys. Chem. Lett. 2014, 5, 3863–3871. [Google Scholar] [CrossRef]
- Sengupta, A.; Li, Z.; Song, L.F.; Li, P.; Merz, K.M. Parameterization of Monovalent Ions for the OPC3, OPC, TIP3P-FB, and TIP4P-FB Water Models. J. Chem. Inf. Model. 2021, 61, 869–880. [Google Scholar] [CrossRef]
- Case, D.A.; Cheatham, T.E.; Darden, T.; Gohlke, H.; Luo, R.; Merz, K.M.; Onufriev, A.; Simmerling, C.; Wang, B.; Woods, R.J. The Amber Biomolecular Simulation Programs. J. Comput. Chem. 2005, 26, 1668–1688. [Google Scholar] [CrossRef]
- Roe, D.R.; Cheatham, T.E. PTRAJ and CPPTRAJ: Software for Processing and Analysis of Molecular Dynamics Trajectory Data. J. Chem. Theory Comput. 2013, 9, 3084–3095. [Google Scholar] [CrossRef]
- Devi, G.; Zhou, Y.; Zhong, Z.; Toh, D.F.K.; Chen, G. RNA Triplexes: From Structural Principles to Biological and Biotech Applications. Wiley Interdiscip. Rev. RNA 2015, 6, 111–128. [Google Scholar] [CrossRef]
- Kharel, P.; Becker, G.; Tsvetkov, V.; Ivanov, P. Properties and Biological Impact of RNA G-Quadruplexes: From Order to Turmoil and Back. Nucleic Acids Res. 2020, 48, 12534–12555. [Google Scholar] [CrossRef] [PubMed]
- Zhang, M.; Perelson, A.S.; Tung, C.-S. RNA Structural Motifs. In Encyclopedia of Life Sciences; John Wiley and Sons: Hoboken, NJ, USA, 2011. [Google Scholar] [CrossRef]
- Li, P.T.X.; Bustamante, C.; Tinoco, I. Unusual Mechanical Stability of a Minimal RNA Kissing Complex. Proc. Natl. Acad. Sci. USA 2006, 103, 15847–15852. [Google Scholar] [CrossRef] [PubMed]
- Staple, D.W.; Butcher, S.E. Pseudoknots: RNA Structures with Diverse Functions. PLoS Biol. 2005, 3, 0956–0959. [Google Scholar] [CrossRef]
- Huang, L.; Lilley, D.M.J. The Kink Turn, a Key Archite`ctural Element in RNA Structure. J. Mol. Biol. 2016, 428, 790–801. [Google Scholar] [CrossRef] [PubMed]
- Thiyagarajan, P.; Ponnuswamy, P.K. Conformational Characteristics of Dimeric Subunits of RNA from Energy Minimization Studies. Mixed Sugar-Puckered ApG, ApU, CpG, and CpU. Biophys. J. 1981, 35, 753–769. [Google Scholar] [CrossRef]
- Auffinger, P.; Westhof, E. Rules Governing the Orientation of the 2′-Hydroxyl Group in RNA. J. Mol. Biol. 1997, 274, 54–63. [Google Scholar] [CrossRef]
- Lemieux, S.; Major, F. RNA Canonical and Non-Canonical Base Pairing Types: A Recognition Method and Complete Repertoire. Nucleic Acids Res. 2002, 30, 4250. [Google Scholar] [CrossRef]
- Leontis, N.B.; Westhof, E. Geometric Nomenclature and Classification of RNA Base Pairs. RNA 2001, 7, 499–512. [Google Scholar] [CrossRef]
- Chubarov, A.S.; Endeward, B.; Kanarskay, M.A.; Kirilyuk, I.A.; Prisner, T.F.; Lomzov, A.A. Pulsed Dipolar EPR for Self-Limited Oligonucleotide Complexes Studies. Phys. Chem. Chem. Phys. In press. 2023. [Google Scholar]
- Rolband, L.; Beasock, D.; Wang, Y.; Shu, Y.G.; Dinman, J.D.; Schlick, T.; Zhou, Y.; Kieft, J.S.; Chen, S.J.; Bussi, G.; et al. Biomotors, Viral Assembly, and RNA Nanobiotechnology: Current Achievements and Future Directions. Comput. Struct. Biotechnol. J. 2022, 20, 6120–6137. [Google Scholar] [CrossRef]
Code | Sequence, 5′→3′ |
---|---|
M | CUAACUAACGCCAUCAUAUG |
M-U1 | CUAACUAACGUCCAUCAUAUG |
M-U2 | CUAACUAACGUUCCAUCAUAUG |
M-U3 | CUAACUAACGUUUCCAUCAUAUG |
M-U5 | CUAACUAACGUUUUUCCAUCAUAUG |
M-U7 | CUAACUAACGUUUUUUUCCAUCAUAUG |
M-U10 | CUAACUAACGUUUUUUUUUUCCAUCAUAUG |
M-U15 | CUAACUAACGUUUUUUUUUUUUUUUCCAUCAUAUG |
N | CGUUAGUUAGCAUAUGAUGG |
N-U1 | CGUUAGUUAGUCAUAUGAUGG |
N-U2 | CGUUAGUUAGUUCAUAUGAUGG |
N-U3 | CGUUAGUUAGUUUCAUAUGAUGG |
M10 | CUAACUAACG |
N10 | CGUUAGUUAG |
O | AAAAACGUUAGUUAG |
C | CUAACUAACGUUUUU |
OL | CCGGAAAAACGUUAGUUAG |
CL | CUAACUAACGUUUUUCCGG |
DO | d(CCATCATATGAAAAA) |
N | N-U1 | N-U2 | N-U3 | |
---|---|---|---|---|
M | 60.7 | 58.6 | 58.3 | 59.6 |
M-U1 | 58.1 | 53.7 | 55.2 | 55.6 |
M-U2 | 57.6 | 53.0 | 54.7 | 53.2 |
M-U3 | 56.6 | 50.0 | 53.0 | 55.6 |
M-U5 | 58.7 | 51.1 | 55.4 | 50.0 |
M-U7 | 59.2 | 54.4 | 55.6 | 57.2 |
M-U10 | 58.4 | 51.0 | 56.5 | 51.0 |
M-U15 | 60.0 | 50.2 | 57.2 | 56.8 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kanarskaya, M.A.; Pyshnyi, D.V.; Lomzov, A.A. Diversity of Self-Assembled RNA Complexes: From Nanoarchitecture to Nanomachines. Molecules 2024, 29, 10. https://doi.org/10.3390/molecules29010010
Kanarskaya MA, Pyshnyi DV, Lomzov AA. Diversity of Self-Assembled RNA Complexes: From Nanoarchitecture to Nanomachines. Molecules. 2024; 29(1):10. https://doi.org/10.3390/molecules29010010
Chicago/Turabian StyleKanarskaya, Maria A., Dmitrii V. Pyshnyi, and Alexander A. Lomzov. 2024. "Diversity of Self-Assembled RNA Complexes: From Nanoarchitecture to Nanomachines" Molecules 29, no. 1: 10. https://doi.org/10.3390/molecules29010010
APA StyleKanarskaya, M. A., Pyshnyi, D. V., & Lomzov, A. A. (2024). Diversity of Self-Assembled RNA Complexes: From Nanoarchitecture to Nanomachines. Molecules, 29(1), 10. https://doi.org/10.3390/molecules29010010