GC-MS/MS Method for Determination of Polycyclic Aromatic Hydrocarbons in Herbal Medicines
Abstract
:1. Introduction
2. Results and Discussion
2.1. Optimization of the Analytical Method and Selection of HMs Representatives
2.2. Matrix Effect
2.3. Linearity and Sensitivity
2.4. Recovery and Precision
2.5. Cross Validation
2.6. Applicability
2.7. Monitoring of PAHs in Herbal Medicines
3. Materials and Methods
3.1. Chemicals and Reagents
3.2. Standard Solution Preparation
3.3. Sample Preparation
3.4. Sample Extraction
3.5. Sample Purification
3.6. GC-MS/MS Analysis
3.7. Statistical Evaluations
3.8. Matrix Effect
3.9. Method Validation
3.10. Monitoring of 8 PAHs in Herbal Medicine
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Sample Availability
References
- Keyte, I.J.; Harrison, R.M.; Lammel, G. Chemical reactivity and long-range transport potential of polycyclic aromatic hydrocarbons—A review. Chem. Soc. Rev. 2013, 42, 9333–9391. [Google Scholar] [CrossRef] [PubMed]
- Paris, A.; Ledauphin, J.; Poinot, P.; Gaillard, J.-L. Polycyclic aromatic hydrocarbons in fruits and vegetables: Origin, analysis, and occurrence. Environ. Pollut. 2018, 234, 96–106. [Google Scholar] [CrossRef] [PubMed]
- Veyrand, B.; Brosseaud, A.; Sarcher, L.; Varlet, V.; Monteau, F.; Marchand, P.; Andre, F.; Le Bizec, B. Innovative method for determination of 19 polycyclic aromatic hydrocarbons in food and oil samples using gas chromatography coupled to tandem mass spectrometry based on an isotope dilution approach. J. Chromatogr. A 2007, 1149, 333–344. [Google Scholar] [CrossRef] [PubMed]
- European Food Safety Authority (EFSA). Findings of the EFSA Data Collection on Polycyclic Aromatic Hydrocarbons in Food. EFSA J. 2007, 5, 33r. [Google Scholar] [CrossRef]
- European Food Safety Authority. Polycyclic Aromatic Hydrocarbons in Food—Scientific Opinion of the Panel on Contaminants in the Food Chain. EFSA J. 2008, 6, 724. [Google Scholar] [CrossRef]
- Wretling, S.; Eriksson, A.; Eskhult, G.A.; Larsson, B. Polycyclic aromatic hydrocarbons (PAHs) in Swedish smoked meat and fish. J. Food Compos. Anal. 2010, 23, 264–272. [Google Scholar] [CrossRef]
- Lee, S.Y.; Lee, J.Y.; Shin, H.S. Evaluation of Chemical Analysis Method and Determination of Polycyclic Aromatic Hydrocarbons Content from Seafood and Dairy Products. Toxicol. Res. 2015, 31, 265–271. [Google Scholar] [CrossRef]
- International Agency for Research on Cancer. Some Non-Heterocyclic Polycyclic Aromatic Hydrocarbons and Some Related Exposures; World Health Organization International Agency for Research on Cancer: Lyon, France, 2005. [Google Scholar]
- Cui, Z.; Ge, N.; Zhang, A.; Liu, Y.; Zhang, J.; Cao, Y. Comprehensive determination of polycyclic aromatic hydrocarbons in Chinese herbal medicines by solid phase extraction and gas chromatography coupled to tandem mass spectrometry. Anal. Bioanal. Chem. 2015, 407, 1989–1997. [Google Scholar] [CrossRef]
- Cai, C.; Chang, G.; Zhao, M.; Wu, P.; Hu, Z.; Jiang, D. Determination of Polycyclic Aromatic Hydrocarbons in Traditional Chinese Medicine Raw Material, Extracts, and Health Food Products. Molecules 2022, 27, 1809. [Google Scholar] [CrossRef]
- CRE. Commission Regulation (EU) 2015/1933 of 27 October 2015 Amending Regulation (EC) No 1881/2006 as Regards Maximum Levels for Polycyclic Aromatic Hydrocarbons in Cocoa Fibre, Banana Chips, food Supplements, Dried Herbs and Dried Spices; European Commisions: Brussels, Belgium, 2015; Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:32015R1933&from=CS (accessed on 5 December 2022).
- Ministry of Food and Drug Safety. Criteria and Method of Benzopyrene for Herbal in the Korean Herbal Pharmacopoeia; Ministry of Food and Drug Safety (MFDS): Cheongju, Republic of Korean, 2013. [Google Scholar]
- Chang, K.-F.; Fang, G.-C.; Chen, J.-C.; Wu, Y.-S. Atmospheric polycyclic aromatic hydrocarbons (PAHs) in Asia: A review from 1999 to 2004. Environ. Pollut. 2006, 142, 388–396. [Google Scholar] [CrossRef]
- Haleyur, N.; Shahsavari, E.; Mansur, A.A.; Koshlaf, E.; Morrison, P.D.; Osborn, A.M.; Ball, A.S. Comparison of rapid solvent extraction systems for the GC–MS/MS characterization of polycyclic aromatic hydrocarbons in aged, contaminated soil. MethodsX 2016, 3, 364–370. [Google Scholar] [CrossRef] [PubMed]
- Shang, D.; Kim, M.; Haberl, M. Rapid and sensitive method for the determination of polycyclic aromatic hydrocarbons in soils using pseudo multiple reaction monitoring gas chromatography/tandem mass spectrometry. J. Chromatogr. A 2014, 1334, 118–125. [Google Scholar] [CrossRef] [PubMed]
- Humbert, K.; Debret, M.; Morin, C.; Cosme, J.; Portet-Koltalo, F. Direct thermal desorption-gas chromatography-tandem mass spectrometry versus microwave assisted extraction and GC-MS for the simultaneous analysis of polyaromatic hydrocarbons (PAHs, PCBs) from sediments. Talanta 2022, 250, 123735. [Google Scholar] [CrossRef] [PubMed]
- Paraíba, L.C.; Queiroz, S.C.; de Souza, D.R.; Saito, M. Risk Simulation of Soil Contamination by Polycyclic Aromatic Hydrocarbons from Sewage Sludge used as Fertilizers. Soc. Bras. Química 2011, 22, 1156–1163. [Google Scholar] [CrossRef]
- Lingli, Q.; Wang, S.; Yang, X.; Sun, C. MXene/reduced graphene oxide hydrogel film extraction combined with gas chromatography–tandem mass spectrometry for the determination of 16 polycyclic aromatic hydrocarbons in river and tap water. J. Chromatogr. A 2019, 1584, 24–32. [Google Scholar] [CrossRef]
- Barco-Bonilla, N.; Romero-González, R.; Plaza-Bolaños, P.; Fernández-Moreno, J.L.; Garrido Frenich, A.; Martínez Vidal, J.L. Comprehensive analysis of polycyclic aromatic hydrocarbons in wastewater using stir bar sorptive extraction and gas chromatography coupled to tandem mass spectrometry. Anal. Chim. Acta 2011, 693, 62–71. [Google Scholar] [CrossRef]
- Fernández-González, V.; Concha-Graña, E.; Muniategui-Lorenzo, S.; López-Mahía, P.; Prada-Rodríguez, D. Solid-phase microextraction–gas chromatographic–tandem mass spectrometric analysis of polycyclic aromatic hydrocarbons: Towards the European Union water directive 2006/0129 EC. J. Chromatogr. A 2007, 1176, 48–56. [Google Scholar] [CrossRef]
- Guillén, M.D.; Sopelana, P.; Partearroyo, M.A. Determination of Polycyclic Aromatic Hydrocarbons in Commercial Liquid Smoke Flavorings of Different Compositions by Gas Chromatography−Mass Spectrometry. J. Agric. Food Chem. 2000, 48, 126–131. [Google Scholar] [CrossRef]
- Moldoveanu, S.C.; Marshall, J.W.; Poole, T.H. Extraction from Moist Snuff with Artificial Saliva of Benzo[a]pyrene and Other Polycyclic Aromatic Hydrocarbons. Contrib. Tob. Nicotine Res. 2019, 28, 214–223. [Google Scholar] [CrossRef]
- Wang, S.-W.; Hsu, K.-H.; Huang, S.-C.; Tseng, S.-H.; Wang, D.-Y.; Cheng, H.-F. Determination of polycyclic aromatic hydrocarbons (PAHs) in cosmetic products by gas chromatography-tandem mass spectrometry. J. Food Drug Anal. 2019, 27, 815–824. [Google Scholar] [CrossRef]
- Serpe, F.P.; Esposito, M.; Gallo, P.; Serpe, L. Optimisation and validation of an HPLC method for determination of polycyclic aromatic hydrocarbons (PAHs) in mussels. Food Chem. 2010, 122, 920–925. [Google Scholar] [CrossRef]
- Shi, L.-K.; Zhang, D.-D.; Liu, Y.-L. Survey of polycyclic aromatic hydrocarbons of vegetable oils and oilseeds by GC-MS in China. Food Addit. Contam. Part A 2016, 33, 603–611. [Google Scholar] [CrossRef] [PubMed]
- White, S.F.; Fernandes, A.; Rose, M.; Holland, J.; Walton, P.; Olivier, L. Survey for Polycyclic Aromatic Hydrocarbons (PAHs) in Infant Formulae and Baby Foods; Central Science Laboratory: London, UK, 2004. [Google Scholar]
- Tsutsumi, T.; Adachi, R.; Matsuda, R.; Watanabe, T.; Teshima, R.; Akiyama, H. Concentrations of Polycyclic Aromatic Hydrocarbons in Smoked Foods in Japan. J. Food Prot. 2019, 83, 692–701. [Google Scholar] [CrossRef] [PubMed]
- Varlet, V.; Serot, T.; Fabrice, M.; Le Bizec, B.; Prost. C. Determination of PAH profiles by GC-MS/MS in salmon muscle meat processed with four cold smoking techniques. Food Addit. Contam. 2007, 27, 744–757. [Google Scholar] [CrossRef]
- Johnson, Y.S. Determination of Polycyclic Aromatic Hydrocarbons in Edible Seafood by QuEChERS-Based Extraction and Gas Chromatography-Tandem Mass Spectrometry. J. Food Sci. 2012, 77, T131–T137. [Google Scholar] [CrossRef]
- Yu, L.; Cao, Y.; Zhang, J.; Cui, Z.; Sun, H. Isotope dilution-GC-MS/MS analysis of 16 polycyclic aromatic hydrocarbons in selected medicinal herbs used as health food additives. Food Addit. Contam. Part A Chem. Anal. Control Expo. Risk Assess. 2012, 29, 1800–1809. [Google Scholar] [CrossRef]
- Szternfeld, P.; Marchi, J.; Malysheva, S.V.; Joly, L. Modular Method for the Determination of Polycyclic Aromatic Hydrocarbons in Spices and Dried Herbs by Gas Chromatography–Tandem Mass Spectrometry. Food Anal. Methods 2019, 12, 2383–2391. [Google Scholar] [CrossRef]
- Hwang, H.J.; Lee, S.H.; Kim, Y.Y.; Shin, H.S. Polycyclic Aromatic Hydrocarbon Risk Assessment and Analytical Methods Using QuEchERS Pretreatment for the Evaluation of Herbal Medicine Ingredients in Korea. Foods 2021, 10, 2200. [Google Scholar] [CrossRef]
- Zhou, D.-B.; Han, F.; Ding, L.; Song, W.; Lv, Y.-N.; Hu, Y.-Y.; Liu, Y.-X.; Sheng, X.; Zheng, P. Magnetic C60 nanospheres based solid-phase extraction coupled with isotope dilution gas chromatography–mass spectrometry method for the determination of sixteen polycyclic aromatic hydrocarbons in Chinese herbal medicines. J. Chromatogr. B 2020, 1144, 122076. [Google Scholar] [CrossRef]
- Anderson, K.A.; Szelewski, M.J.; Wilson, G.; Quimby, B.D.; Hoffman, P.D. Modified ion source triple quadrupole mass spectrometer gas chromatograph for polycyclic aromatic hydrocarbon analyses. J. Chromatogr. A 2015, 1419, 89–98. [Google Scholar] [CrossRef]
- Matuszewski, B.K.; Constanzer, M.L.; Chavez-Eng, C.M. Strategies for the Assessment of Matrix Effect in Quantitative Bioanalytical Methods Based on HPLC−MS/MS. Anal. Chem. 2003, 75, 3019–3030. [Google Scholar] [CrossRef] [PubMed]
- López-Fernández, O.; Rial-Otero, R.; González-Barreiro, C.; Simal-Gándara, J. Surveillance of fungicidal dithiocarbamate residues in fruits and vegetables. Food Chem. 2012, 134, 366–374. [Google Scholar] [CrossRef]
- Jeong, S.H.; Choi, E.Y.; Kim, J.; Lee, C.; Kang, J.; Cho, S.; Ko, K.Y. LC-ESI-MS/MS Simultaneous Analysis Method Coupled with Cation-Exchange Solid-Phase Extraction for Determination of Pyrrolizidine Alkaloids on Five Kinds of Herbal Medicines. J. AOAC Int. 2021, 104, 1514–1525. [Google Scholar] [CrossRef] [PubMed]
- Appendix F: Guidelines for Standard Method Performance Requirements. 2016. Available online: http://www.eoma.aoac.org/app_f.pdf (accessed on 5 December 2022).
- Ministry of Food and Drug Safety. A Study on Method Improvement for the Safety Control of Herbal Medicine; Ministry of Food and Drug Safety: Cheongju, Republic of Korean, 2021; Available online: https://rnd.mfds.go.kr/RDCAC08F01View (accessed on 5 December 2022).
- Food Standards Agency, UK. Interpretation of Margins of Exposure for Genotoxic Carcinogens; Experimental Medicine and Toxicology, Division of Investigative Science and The Food and Environment Research Agency (FERA), Food Standards Agency: London, UK, 2015. Available online: https://www.food.gov.uk/research/chemical-hazards-in-food-and-feed/interpretation-of-margins-of-exposure-for-genotoxic-carcinogens (accessed on 5 December 2022).
Compounds | Abbreviations | Retention Time (min) | Formula | CAS No. | Linearity (R2) | Precursor Ion [M+H]+ | Product Ion | Collision Energy | ||
---|---|---|---|---|---|---|---|---|---|---|
Target Ion | Reference Ion | Target Ion | Reference Ion | |||||||
Benz(a)anthracene | BaA | 14.263 | C18H12 | 56-55-3 | 0.9988 | 228 | 226 | 202 | 18 | 27 |
Chrysene | Chry | 14.293 | C18H12 | 218-01-9 | 0.9977 | 228 | 226 | 224 | 33 | 45 |
Benzo(b)fluoranthene | BbF | 14.385 | C20H12 | 205-99-2 | 0.9981 | 252 | 250 | 226 | 39 | 27 |
Benzo(k)fluoranthene | BkF | 18.234 | C20H12 | 207-08-9 | 0.9984 | 252 | 250 | 248 | 24 | 57 |
Benzo(a)pyrene | BaP | 18.34 | C20H12 | 50-32-8 | 0.9983 | 252 | 250 | 226 | 39 | 24 |
Indeno(1,2,3-cd)pyrene | IcdP | 19.322 | C22H12 | 193-39-5 | 0.9985 | 276 | 274 | 273 | 30 | 60 |
Dibenz(a,h)anthracene | DahA | 19.413 | C22H14 | 53-70-3 | 0.9988 | 278 | 276 | 274 | 24 | 60 |
Benzo(g,h,i)perylene | BghiP | 23.392 | C22H12 | 191-24-2 | 0.9986 | 276 | 274 | 272 | 27 | 60 |
Chrysene-d12 | Chry-d12 | 23.543 | C18D12 | 1719-03-5 | 1- | 240 | 236 | 212 | 36 | 24 |
Benzo(a)pyrene-d12 | BaP-d12 | 24.141 | C20D12 | 63466-71-7 | - | 264 | 260 | 234 | 27 | 36 |
Benzo(g,h,i)perylene-d12 | BghiP-d12 | 24.231 | C22D12 | 93951-66-7 | - | 288 | 284 | 286 | 45 | 36 |
Sample Items | LOD (µg/kg) | LOQ (µg /kg) | Spiked Concentration (Times of LOQ) | Intra-Day, 1 n = 9 | Inter-Day, n = 9 | Matrix Effect (%) | ||
---|---|---|---|---|---|---|---|---|
Recovery (%) | 2 RSD (%) | Recovery (%) | 3 RSDr (%) | |||||
Sanguisorbae Radix Carbonisatum | 0.27–0.36 | 0.82–1.10 | 2 | 75.0–104.7 | 0.8–22.3 | 81.9–95.8 | 3.7–16.4 | 101–189 |
5 | 66.4–80.9 | 6.0–13.5 | 76.4–86.3 | 2.3–17.1 | ||||
10 | 69.7–103.9 | 9.6 –13.6 | 73.3–100.7 | 1.0–13.7 | ||||
Achyranthis Radix | 0.12–0.34 | 0.35–1.04 | 2 | 71.2–106.5 | 3.1–9.8 | 77.8–121.0 | 3.9–15.1 | 109–132 |
5 | 72.2–88.9 | 0.5–4.7 | 72.2–88.6 | 0.5–9.9 | ||||
10 | 72.5–80.6 | 0.6–4.7 | 70.8–79.7 | 0.7–4.8 | ||||
Scutellariae Radix | 0.14–0.37 | 0.43–1.11 | 2 | 76.9–125.0 | 5.6–9.4 | 76.2–122.3 | 5.3–32.1 | 105–124 |
5 | 66.2–107.9 | 2.7–12.3 | 61.7–96.8 | 8.3–19.0 | ||||
10 | 54.7–86.6 | 0.4–2.2 | 51.7–75.2 | 3.1–16.6 | ||||
Angelicae Gigantis Radix | 0.09–0.36 | 0.26–1.09 | 2 | 70.7–94.3 | 2.3–13.9 | 74.5–88.4 | 4.5–22.9 | 94–106 |
5 | 71.4–93.0 | 0.6–14.3 | 77.1–92.1 | 1.1–14.6 | ||||
10 | 74.4–85.3 | 0.8–5.1 | 76.2–84.8 | 4.0–6.9 | ||||
Anemarrhenae Rhizoma | 0.27–0.37 | 0.82–1.10 | 2 | 83.7–105.2 | 2.7–10.0 | 87.9–109.8 | 2.6–17.2 | 107–117 |
5 | 92.6–105.7 | 1.6–13.7 | 96.2–108.2 | 2.4–11.1 | ||||
10 | 87.6–110.5 | 1.2–12.0 | 94.4–110.2 | 0.3–7.1 | ||||
Asiasari Radix et Rhizoma | 0.27–0.37 | 0.82–1.10 | 2 | 70.2–100.1 | 1.5–19.0 | 81.4–101.6 | 1.4–25.1 | 96–120 |
5 | 75.3–114.4 | 6.2–13.5 | 78.6–101.0 | 1.3–12.1 | ||||
10 | 73.6–122.2 | 8.0–10.6 | 80.3–107.0 | 1.0–12.6 |
Sample Items | LOD (µg/kg) | LOQ (µg/kg) | Linearity (R2) | Intra-Day, 1 n = 9 | Inter-Day, n = 9 | ||
---|---|---|---|---|---|---|---|
Recovery (%) | 2 RSD (%) | Recovery (%) | 3 RSDr (%) | ||||
Sanguisorbae Radix Carbonisatum | 0.20–0.37 | 0.61–1.12 | 0.994–0.999 | 75.3–107.1 | 0.2–6.3 | 77.6–98.8 | 1.3–18.9 |
Achyranthis Radix | 0.22–0.39 | 0.67–1.18 | 0.999–1.000 | 70.4–123.6 | 0.2–5.5 | 73.6–117.3 | 0.8–3.9 |
Scutellariae Radix | 0.22–0.39 | 0.67–1.18 | 0.999–1.000 | 74.0–123.7 | 0.3–6.3 | 73.5–123.4 | 0.8–3.9 |
Angelicae Gigantis Radix | 0.22–0.39 | 0.67–1.18 | 0.999–1.000 | 71.3–121.7 | 0.2–7.2 | 73.1–122.6 | 0.6–4.6 |
Anemarrhenae Rhizoma | 0.15–0.32 | 0.44–0.96 | 0.998–0.999 | 73.0–105.5 | 0.5–6.8 | 75.2–120.3 | 0.5–3.9 |
Asiasari Radix et Rhizoma | 0.15–0.32 | 0.44–0.96 | 0.998–0.999 | 78.5–118.0. | 0.2–8.6 | 80.7–110.4 | 0.6–5.5 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Park, J.; Kim, K.; Ryu, D.; Whang, J.-H.; Mah, J.-H. GC-MS/MS Method for Determination of Polycyclic Aromatic Hydrocarbons in Herbal Medicines. Molecules 2023, 28, 3853. https://doi.org/10.3390/molecules28093853
Park J, Kim K, Ryu D, Whang J-H, Mah J-H. GC-MS/MS Method for Determination of Polycyclic Aromatic Hydrocarbons in Herbal Medicines. Molecules. 2023; 28(9):3853. https://doi.org/10.3390/molecules28093853
Chicago/Turabian StylePark, Jwahaeng, Kyuyeob Kim, Dayoun Ryu, Jin-Hee Whang, and Jae-Hyung Mah. 2023. "GC-MS/MS Method for Determination of Polycyclic Aromatic Hydrocarbons in Herbal Medicines" Molecules 28, no. 9: 3853. https://doi.org/10.3390/molecules28093853
APA StylePark, J., Kim, K., Ryu, D., Whang, J. -H., & Mah, J. -H. (2023). GC-MS/MS Method for Determination of Polycyclic Aromatic Hydrocarbons in Herbal Medicines. Molecules, 28(9), 3853. https://doi.org/10.3390/molecules28093853