A Facile Hydrothermal Synthesis and Resistive Switching Behavior of α-Fe2O3 Nanowire Arrays
Abstract
:1. Introduction
2. Results and Discussion
3. Experimental Section
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Sample Availability
References
- Chua, L.O. Memristor—The missing circuit element. IEEE Trans. Circuit Theory 1971, 18, 507–519. [Google Scholar] [CrossRef]
- Yang, J.J.; Pickett, M.D.; Li, X.M.; Ohlberg, D.A.A.; Stewart, D.R.; Williams, R.S. The missing memristor found. Nat. Nanotechnol. 2008, 3, 429–433. [Google Scholar] [CrossRef] [PubMed]
- Ren, Z.J.; Zhou, G.D.; Wei, S.Q. Multilevel resistive switching memory behaviors arising from ions diffusion and photoelectron transfer in α-Fe2O3 nano-island arrays. Phys. Chem. Chem. Phys. 2020, 22, 2743–2747. [Google Scholar] [CrossRef] [PubMed]
- Inoue, I.H.; Yasuda, S.; Akinaga, H.; Takagi, H. Nonpolar resistance switching of metal/binary-transition-metal oxides/metal sandwiches: Homogeneous/inhomogeneous transition of current distribution. Phys. Rev. B 2008, 77, 035105. [Google Scholar] [CrossRef]
- Zhao, W.X.; Li, Q.L.; Sun, B.; Shen, Z.; Liu, Y.H.; Chen, P. White-light-controlled resistive switching effect in [BaTiO3/γ-Fe2O3]/ZnO film. Solid State Commun. 2014, 194, 16–19. [Google Scholar] [CrossRef]
- Hu, Q.L.; Park, M.; Shim, J.H.; Yoon, T.; Choi, Y.J.; Kang, C.J. Bipolar resistive switching behavior in Au/Pt-Fe2O3 core-shell nanoparticles assembly/Ti with 3 × 3 crossbar array structure. Microelectron. Eng. 2014, 127, 40–43. [Google Scholar] [CrossRef]
- Zhou, G.D.; Yang, X.D.; Xiao, L.H.; Sun, B.; Zhou, A.K. Investigation of a submerging redox behavior in Fe2O3 solid electrolyte for resistive switching memory. Appl. Phys. Lett. 2019, 114, 163506. [Google Scholar] [CrossRef]
- Yan, X.B.; Li, Y.C.; Zhao, J.H.; Xia, Y.D.; Zhang, M.L.; Liu, Z.G. Resistive switching model change induced by electroforming in α-Fe2O3 films. Phys. Lett. A 2015, 379, 2392–2395. [Google Scholar] [CrossRef]
- Khan, M.U.; Hassan, G.; Bae, J. Highly bendable asymmetric resistive switching memory based on zinc oxide and magnetic iron oxide heterojunction. J. Mater. Sci. Mater. Electron. 2020, 31, 1105–1115. [Google Scholar] [CrossRef]
- Tang, M.; Sun, B.; Huang, J.; Gao, J.; Li, C.M. High white-light-controlled resistance switching memory performance of Ag/α-Fe2O3/FTO thin film. RSC Adv. 2016, 6, 25028–25033. [Google Scholar] [CrossRef]
- Sun, B.; Li, Q.L.; Zhao, W.X.; Li, H.W.; Wei, L.J.; Chen, P. White-light-controlled resistance switching in TiO2/α-Fe2O3 composite nanorods array. J. Nanopart. Res. 2014, 16, 2389. [Google Scholar] [CrossRef]
- Nguyen, H.H.; Ta, H.K.T.; Park, S.; Phan, T.B.; Pham, N.K. Resistive switching effect and magnetic properties of iron oxide nanoparticles embedded-polyvinyl alcohol film. RSC Adv. 2020, 10, 12900–12907. [Google Scholar] [CrossRef]
- Sun, B.; Liu, Y.H.; Zhao, W.X.; Chen, P. Magnetic-field and white-light controlled resistive switching behaviors in Ag/BiFeO3/γ-Fe2O3/FTO device. RSC Adv. 2015, 5, 13513–13518. [Google Scholar] [CrossRef]
- Sarkar, D.; Singh, A.K. Mechanism of Nonvolatile Resistive Switching in ZnO/α-Fe2O3 Core-Shell Heterojunction Nanorod Arrays. J. Phys. Chem. C 2017, 121, 12953–12958. [Google Scholar] [CrossRef]
- Ko, Y.; Ryu, S.W.; Cho, J. Biomolecule nanoparticle-induced nanocomposites with resistive switching nonvolatile memory properties. Appl. Surf. Sci. 2016, 368, 36–43. [Google Scholar] [CrossRef]
- Lee, J.Y.; Kim, J.; Baek, Y.; Choi, Y.J.; Kang, C.J.; Lee, H.H.; Yoon, T. Voltage-dependent resistive switching characteristics in mixed layer consisting of γ-Fe2O3 and Pt-Fe2O3 core-shell nanoparticles. Appl. Phys. Lett. 2014, 104, 093514. [Google Scholar] [CrossRef]
- Baek, Y.; Hu, Q.L.; Yoo, J.W.; Choi, Y.J.; Kang, C.J.; Lee, H.H.; Min, S.; Kim, H.; Kim, K.; Yoon, T. Tunable threshold resistive switching characteristics of Pt-Fe2O3 core–shell nanoparticle assembly by space charge effect. Nanoscale 2013, 5, 772. [Google Scholar] [CrossRef]
- Lee, J.; Baek, Y.; Hu, Q.L.; Choi, Y.J.; Kang, C.J.; Lee, H.H.; Kim, H.; Kim, K.; Yoon, T. Multimode threshold and bipolar resistive switching in bi-layered Pt-Fe2O3 core-shell and Fe2O3 nanoparticle assembly. Appl. Phys. Lett. 2013, 102, 122111. [Google Scholar] [CrossRef]
- Kukli, K.; Kemell, M.; Castán, H.; Dueñas, S.; Link, J.; Stern, R.; Heikkilä, M.J.; Jõgiaas, T.; Kozlova, J.; Rähn, M.; et al. Magnetic properties and resistive switching in mixture films and nanolaminates consisting of iron and silicon oxides grown by atomic layer deposition. J. Vac. Sci. Technol. A 2020, 38, 042405. [Google Scholar] [CrossRef]
- Yoo, E.J.; Kang, S.Y.; Shim, E.L.; Yoon, T.S.; Kang, C.J.; Choi, Y.J. Influence of Incorporated Pt-Fe2O3 Core-Shell Nanoparticles on the Resistive Switching Characteristics of ZnO Thin Film. J. Nanosci. Nanotechnol. 2015, 15, 8622–8626. [Google Scholar] [CrossRef]
- Zhou, G.D.; Wu, B.; Liu, X.Q.; Li, Z.L.; Zhang, S.J.; Zhou, A.K.; Yang, X.D. Resistance switching characteristics of coreeshell γ-Fe2O3/Ni2O3 nanoparticles in HfSiO matrix. J. Alloys Compd. 2016, 678, 31–35. [Google Scholar] [CrossRef]
- Sun, T.Y.; Shi, H.; Gao, S.A.; Zhou, Z.P.; Yu, Z.Q.; Guo, W.J.; Li, H.O.; Zhang, F.B.; Xu, Z.M.; Zhang, X.W. Stable Resistive Switching in ZnO/PVA:MoS2 Bilayer Memristor. Nanomaterials 2022, 12, 1977. [Google Scholar] [CrossRef] [PubMed]
- Yu, Z.Q.; Sun, T.Y.; Liu, B.S.; Zhang, L.; Chen, H.J.; Fan, X.S.; Sun, Z.J. Self-rectifying and forming-free nonvolatile memory behavior in single-crystal TiO2 nanowire memory device. J. Alloys Compd. 2021, 858, 157749. [Google Scholar] [CrossRef]
- Persson, K.M.; Ram, M.S.; Kilpi, O.P.; Borg, M.; Wernersson, L.E. Cross-Point Arrays with Low-Power ITO-HfO2 Resistive Memory Cells Integrated on Vertical III-V Nanowires. Adv. Electron. Mater. 2020, 6, 2000154. [Google Scholar] [CrossRef]
- Hsu, C.W.; Chou, L.J. Bipolar Resistive Switching of Single Gold-in-Ga2O3 Nanowire. Nano Lett. 2012, 12, 4247–4253. [Google Scholar] [CrossRef]
- Yao, C.Y.; Li, J.C.; Thatikonda, S.K.; Ke, Y.F.; Qin, N.; Bao, D.H. Introducing a thin MnO2 layer in Co3O4-based memory to enhance resistive switching and magnetization modulation behaviors. J. Alloys Compd. 2020, 823, 153731. [Google Scholar] [CrossRef]
- Huang, C.H.; Matsuzaki, K.; Nomura, K. Threshold switching of non-stoichiometric CuO nanowire for selector application. Appl. Phys. Lett. 2020, 116, 023503. [Google Scholar] [CrossRef]
- Qu, Z.Z.; Zhang, B.L.; Li, C.F.; Peng, Y.T.; Wang, L.P.; Li, Q.X.; Zeng, Z.H.; Dong, J.H. A novel WOx -based memristor with a Ti nano-island array. Electrochim. Acta 2021, 377, 138123. [Google Scholar] [CrossRef]
- You, B.K.; Park, W.I.; Kim, J.M.; Park, K.I.; Seo, H.K.; Lee, J.Y.; Jung, Y.S.; Lee, K.J. Formation in Resistive Memories by Self-Assembled Nanoinsulators Derived from a Block Copolymer. ACS Nano 2014, 9, 9492–9502. [Google Scholar] [CrossRef]
- Huang, C.H.; Chang, W.C.; Huang, J.S.; Lin, S.M.; Chueh, Y.L. Resistive Switching of Sn-doped In2O3/HfO2 core-shell nanowire: Geometry Architecture Engineering for Nonvolatile Memory. Nanoscale 2017, 9, 6920–6928. [Google Scholar] [CrossRef]
- Sun, Y.M.; Song, C.; Yin, J.; Qiao, L.L.; Wang, R.; Wang, Z.Y.; Chen, X.Z.; Yin, S.Q.; Saleem, M.S.; Wu, H.Q.; et al. Modulating metallic conductive filaments via bilayer oxides in resistive switching memory. Appl. Phys. Lett. 2019, 114, 193502. [Google Scholar] [CrossRef]
- Younis, A.; Chu, D.W.; Li, S.A. Stochastic memristive nature in Co-doped CeO2 nanorod arrays. Appl. Phys. Lett. 2013, 103, 253504. [Google Scholar] [CrossRef]
- Chong, R.F.; Du, Y.Q.; Chang, Z.X.; Jia, Y.S.; Qiao, Y.; Liu, S.H.; Liu, Y.; Zhou, Y.M.; Li, D.L. 2D Co-incorporated hydroxyapatite nanoarchitecture as a potential efficient oxygen evolution cocatalyst for boosting photoelectrochemical water splitting on Fe2O3 photoanode. Appl. Catal. B Environ. 2019, 250, 224–233. [Google Scholar] [CrossRef]
- Mohamed, M.A.; Rahman, N.A.; Zain, M.F.M.; Minggu, L.J.; Kassim, M.B.; Jaafar, J.; Samad, S.; Mastuli, M.S.; Wong, R.J. Hematite microcube decorated TiO2 nanorods as heterojunction photocatalyst with in-situ carbon doping derived from polysaccharides bio-templates hydrothermal carbonization. J. Alloys Compd. 2020, 820, 153143. [Google Scholar] [CrossRef]
- Liu, J.; Cai, Y.Y.; Tian, Z.F.; Ruan, G.S.; Ye, Y.X.; Liang, C.H.; Shao, G.S. Highly oriented Ge-doped hematite nanosheet arrays for photoelectrochemical water oxidation. Nano Energy 2014, 9, 282–290. [Google Scholar] [CrossRef]
- Patil, S.R.; Chougale, M.Y.; Rane, T.D.; Khot, S.S.; Patil, A.A.; Bagal, O.S.; Jadhav, S.D.; Sheikh, A.D.; Kim, S.; Dongale, T.D. Solution-Processable ZnO Thin Film Memristive Device for Resistive Random Access Memory Application. Electronics 2018, 7, 445. [Google Scholar] [CrossRef]
- Zhang, B.B.; Wang, L.; Zhang, Y.J.; Ding, Y.; Bi, Y.P. Ultrathin FeOOH Nanolayers with Abundant Oxygen Vacancies on BiVO4 Photoanodes for Efficient Water Oxidation. Angew. Chem. Int. Ed. 2018, 57, 2248–2252. [Google Scholar] [CrossRef]
- Zhang, J.; Zhu, G.Q.; Liu, W.G.; Xi, Y.X.; Golosov, D.A.; Zavadski, S.M.; Melnikov, S.N. 3D core-shell WO3@α-Fe2O3 photoanode modified by ultrathin FeOOH layer for enhanced photoelectrochemical performances. J. Alloys Compd. 2020, 834, 154992. [Google Scholar] [CrossRef]
Device Structure | Vset/Vreset (V) | Preparation Method | RHRS/RLRS Ratio | Retention | Reference |
---|---|---|---|---|---|
Ag/Fe2O3/Ti | ~+0.02/−0.1 | Spin coating technique | ~10 | 3.6 × 103 s | [3] |
Pt/Fe2O3/Pt/Ti | +1.4/+0.5 | Magnetron sputtering technique | ~7 | - | [4] |
Ag/[BiFeO3/γ-Fe2O3]/FTO | +0.98/−1.38 | Magnetron sputtering technique | ~10 | - | [5] |
Au/Pt-Fe2O3/Ti | ~−1/~+3.4 | Dip coating method | ~10 | 5 × 104 s | [6] |
Ag/γ-Fe2O3 films/FTO | +1.85/−1.25 | Spin coating technique | - | - | [7] |
Au/Fe2O3/FTO | ~+1.5/~−1.2 | Ultrasonic spray pyrolysis | ~10 | 10 h | [8] |
Ag/Fe2O3/ZnO/ITO | +0.9/−1 | Spin coating technique | ~90.1 | 30 days | [9] |
Ag/Fe2O3/FTO | ~+2/~−2 | Hydrothermal method | ~104 | - | [10] |
Ag/[TiO2/α-Fe2O3]/FTO | ~+4/~−4 | Hydrothermal method | ~10 | 103 s | [11] |
Ag/Fe2O3-PVA/FTO | +2/−0.7 | Co-precipitation method | ~10 | - | [12] |
Ag/BaTiO3/γ-Fe2O3/ZnO/Ag | +3.1/−4.7 | Co-precipitation method | ~10 | - | [13] |
top-probe/α-Fe2O3/ZnO/bottom-probe | −0.55/- | Spin coating technique | ~20 | 103 s | [14] |
W/Fe2O3 NC film/Pt | ~−1.2/~+1.6 | Dip coating method | >102 | 105 s | [15] |
Ti/γ-Fe2O3-NPs/Pt | +1~+2/−1 | Dip coating method | ~102 | - | [16] |
Ti/Pt-Fe2O3 core-shell NPs/Pt/PES | +2.5/- | Hydrothermal method | <10 | - | [17] |
Ti/Pt-Fe2O3-core-shell/γ-Fe2O3/Pt | ~+1/~−1 | Hydrothermal method | ~102 | - | [18] |
Ti/Fe2O3-SiO2/Si | +2/−2.5 | Atomic layer deposition process | 2.8 | - | [19] |
Cr/ZnO/Pt-Fe2O3 NPs/ZnO/Cr | −7/+7 | Dip coating method | ~5 | 104 s | [20] |
Au/HfSiO/γ-Fe2O3/Ni2O3/HfSiO/Pt | +1.96/−1.90 | Spin coating technique | ~102 | - | [21] |
W/α-Fe2O3/FTO | +0.98/−3.11 | Hydrothermal method | >102 | >103 s | This work |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yu, Z.; Xu, J.; Liu, B.; Sun, Z.; Huang, Q.; Ou, M.; Wang, Q.; Jia, J.; Kang, W.; Xiao, Q.; et al. A Facile Hydrothermal Synthesis and Resistive Switching Behavior of α-Fe2O3 Nanowire Arrays. Molecules 2023, 28, 3835. https://doi.org/10.3390/molecules28093835
Yu Z, Xu J, Liu B, Sun Z, Huang Q, Ou M, Wang Q, Jia J, Kang W, Xiao Q, et al. A Facile Hydrothermal Synthesis and Resistive Switching Behavior of α-Fe2O3 Nanowire Arrays. Molecules. 2023; 28(9):3835. https://doi.org/10.3390/molecules28093835
Chicago/Turabian StyleYu, Zhiqiang, Jiamin Xu, Baosheng Liu, Zijun Sun, Qingnan Huang, Meilian Ou, Qingcheng Wang, Jinhao Jia, Wenbo Kang, Qingquan Xiao, and et al. 2023. "A Facile Hydrothermal Synthesis and Resistive Switching Behavior of α-Fe2O3 Nanowire Arrays" Molecules 28, no. 9: 3835. https://doi.org/10.3390/molecules28093835
APA StyleYu, Z., Xu, J., Liu, B., Sun, Z., Huang, Q., Ou, M., Wang, Q., Jia, J., Kang, W., Xiao, Q., Gao, T., & Xie, Q. (2023). A Facile Hydrothermal Synthesis and Resistive Switching Behavior of α-Fe2O3 Nanowire Arrays. Molecules, 28(9), 3835. https://doi.org/10.3390/molecules28093835