Boosting Electrocatalytic Oxidation of Formic Acid on Ir(IV)-Doped PdAg Alloy Nanodendrites with Sub-5 nm Branches
Abstract
:1. Introduction
2. Results and Discussion
2.1. Synthesis of PdAgIr NDs
2.2. XRD and XPS Analyses
2.3. Formation Mechanism of Dendritic Morphology
2.4. FAOR Measurements
2.5. DFT Simulations
2.6. Mechanism for FAOR Activity Enhancement
3. Materials and Methods
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Sample Availability
References
- Shen, T.; Zhang, J.; Chen, K.; Deng, S.; Wang, D. Recent Progress of Palladium-Based Electrocatalysts for the Formic Acid Oxidation Reaction. Energy Fuels 2020, 34, 9137–9153. [Google Scholar] [CrossRef]
- Yu, X.; Pickup, P.G. Recent advances in direct formic acid fuel cells (DFAFC). J. Power Sources 2008, 182, 124–132. [Google Scholar] [CrossRef]
- Chen, X.; Granda-Marulanda, L.P.; McCrum, I.T.; Koper, M.T.M. How palladium inhibits CO poisoning during electrocatalytic formic acid oxidation and carbon dioxide reduction. Nat. Commun. 2022, 13, 38. [Google Scholar] [CrossRef] [PubMed]
- Pramanick, B.; Kumar, T.; Chowdhury, S.; Halder, A.; Siril, P.F. Graphene-Supported Palladium Nanostructures as Highly Active Catalysts for Formic Acid Oxidation Reaction. ACS Appl. Energy Mater. 2022, 5, 13480–13491. [Google Scholar] [CrossRef]
- Li, X.; Liu, Y.; Zhang, J.-J.; Yan, B.; Jin, C.; Dou, J.; Li, M.; Feng, X.; Liu, G. No Annealing Synthesis of Ordered Intermetallic PdCu Nanocatalysts for Boosting Formic Acid Oxidation. Chem. Mater. 2022, 34, 1385–1391. [Google Scholar] [CrossRef]
- Zhang, L.; Zhao, Z.; Fu, X.; Zhu, S.; Min, Y.; Xu, Q.; Li, Q. Curved Porous PdCu Metallene as a High-Efficiency Bifunctional Electrocatalyst for Oxygen Reduction and Formic Acid Oxidation. ACS Appl. Mater. Interfaces 2023, 15, 5198–5208. [Google Scholar] [CrossRef]
- Chang, Q.; Hong, Y.; Lee, H.J.; Lee, J.H.; Ologunagba, D.; Liang, Z.; Kim, J.; Kim, M.J.; Hong, J.W.; Song, L.; et al. Achieving complete electrooxidation of ethanol by single atomic Rh decoration of Pt nanocubes. Proc. Natl. Acad. Sci. USA 2022, 119, e2112109119. [Google Scholar] [CrossRef]
- Yoo, J.S.; Abild-Pedersen, F.; Nørskov, J.K.; Studt, F. Theoretical Analysis of Transition-Metal Catalysts for Formic Acid Decomposition. ACS Catal. 2014, 4, 1226–1233. [Google Scholar] [CrossRef]
- Mondal, S.; Raj, C.R. Electrochemical Dealloying-Assisted Surface-Engineered Pd-Based Bifunctional Electrocatalyst for Formic Acid Oxidation and Oxygen Reduction. ACS Appl. Mater Interfaces 2019, 11, 14110–14119. [Google Scholar] [CrossRef]
- Shi, Y.; Schimmenti, R.; Zhu, S.; Venkatraman, K.; Chen, R.; Chi, M.; Shao, M.; Mavrikakis, M.; Xia, Y. Solution-Phase Synthesis of PdH(0.706) Nanocubes with Enhanced Stability and Activity toward Formic Acid Oxidation. J. Am. Chem. Soc. 2022, 144, 2556–2568. [Google Scholar] [CrossRef]
- Lim, B.; Jiang, M.; Yu, T.; Camargo, P.H.C.; Xia, Y. Nucleation and growth mechanisms for Pd-Pt bimetallic nanodendrites and their electrocatalytic properties. Nano Res. 2010, 3, 69–80. [Google Scholar] [CrossRef]
- Bhalothia, D.; Huang, T.-H.; Chou, P.-H.; Wang, K.-W.; Chen, T.-Y. Promoting formic acid oxidation performance of Pd nanoparticles via Pt and Ru atom mediated surface engineering. RSC Adv. 2020, 10, 17302–17310. [Google Scholar] [CrossRef] [PubMed]
- Gong, Y.; Liu, X.; Gong, Y.; Wu, D.; Xu, B.; Bi, L.; Zhang, L.Y.; Zhao, X.S. Synthesis of defect-rich palladium-tin alloy nanochain networks for formic acid oxidation. J. Colloid Interface Sci. 2018, 530, 189–195. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Wan, L.; Ma, Y.; Chen, Y.; Zhou, Y.; Tang, Y.; Lu, T. Crystalline palladium–cobalt alloy nanoassemblies with enhanced activity and stability for the formic acid oxidation reaction. Appl. Catal. B 2013, 138–139, 229–235. [Google Scholar] [CrossRef]
- Mazumder, V.; Chi, M.; Mankin, M.N.; Liu, Y.; Metin, Ö.; Sun, D.; More, K.L.; Sun, S. A Facile Synthesis of MPd (M = Co, Cu) Nanoparticles and Their Catalysis for Formic Acid Oxidation. Nano Lett. 2012, 12, 1102–1106. [Google Scholar] [CrossRef] [PubMed]
- Zheng, J.; Zeng, H.; Tan, C.; Zhang, T.; Zhao, B.; Guo, W.; Wang, H.; Sun, Y.; Jiang, L. Coral-like PdCu Alloy Nanoparticles Act as Stable Electrocatalysts for Highly Efficient Formic Acid Oxidation. ACS Sustan. Chem. Eng. 2019, 7, 15354–15360. [Google Scholar] [CrossRef]
- Xie, J.; Huang, D.; Yin, H.; Liu, F.; Ding, Y. Au-Stabilized Nanoporous PdCuAu Alloys Exhibiting Outstanding Catalytic Activity and Durability for the Formic Acid Oxidation Reaction. ACS Appl. Mater Interfaces 2022, 14, 35466–35476. [Google Scholar] [CrossRef]
- Zhang, L.; Chang, Q.; Chen, H.; Shao, M. Recent advances in palladium-based electrocatalysts for fuel cell reactions and hydrogen evolution reaction. Nano Energy 2016, 29, 198–219. [Google Scholar] [CrossRef]
- Yang, T.; Hou, S.; Xing, J.; Liu, C.; Ge, J.; Xing, W. Formic acid electro-oxidation: Mechanism and electrocatalysts design. Nano Res. 2023, 16, 3607–3621. [Google Scholar] [CrossRef]
- Lu, Y.; Chen, W. PdAg Alloy Nanowires: Facile One-Step Synthesis and High Electrocatalytic Activity for Formic Acid Oxidation. ACS Catal. 2012, 2, 84–90. [Google Scholar] [CrossRef]
- Lu, Y.; Chen, W. Nanoneedle-Covered Pd−Ag Nanotubes: High Electrocatalytic Activity for Formic Acid Oxidation. J. Phys. Chem. C 2010, 114, 21190–21200. [Google Scholar] [CrossRef]
- Fu, G.-T.; Liu, C.; Zhang, Q.; Chen, Y.; Tang, Y.-W. Polyhedral Palladium–Silver Alloy Nanocrystals as Highly Active and Stable Electrocatalysts for the Formic Acid Oxidation Reaction. Sci. Rep. 2015, 5, 13703. [Google Scholar] [CrossRef]
- Teng, Z.; Li, M.; Li, Z.; Liu, Z.; Fu, G.; Tang, Y. Facile synthesis of channel-rich ultrathin palladium-silver nanosheets for highly efficient formic acid electrooxidation. Mater. Today Energy 2021, 19, 100596. [Google Scholar] [CrossRef]
- Rettenmaier, C.; Arán-Ais, R.M.; Timoshenko, J.; Rizo, R.; Jeon, H.S.; Kühl, S.; Chee, S.W.; Bergmann, A.; Roldan Cuenya, B. Enhanced Formic Acid Oxidation over SnO2-decorated Pd Nanocubes. ACS Catal. 2020, 10, 14540–14551. [Google Scholar] [CrossRef] [PubMed]
- Lee, S.-Y.; Jung, N.; Cho, J.; Park, H.-Y.; Ryu, J.; Jang, I.; Kim, H.-J.; Cho, E.; Park, Y.-H.; Ham, H.C.; et al. Surface-Rearranged Pd3Au/C Nanocatalysts by Using CO-Induced Segregation for Formic Acid Oxidation Reactions. ACS Catal. 2014, 4, 2402–2408. [Google Scholar] [CrossRef]
- Plaza-Mayoral, E.; Pereira, I.J.; Nicole Dalby, K.; Jensen, K.D.; Chorkendorff, I.; Falsig, H.; Sebastián-Pascual, P.; Escudero-Escribano, M. Pd–Au Nanostructured Electrocatalysts with Tunable Compositions for Formic Acid Oxidation. ACS Appl. Energy Mater. 2022, 5, 10632–10644. [Google Scholar] [CrossRef]
- Li, X.; Peng, X.; Wang, Y.; Xi, B.; Dou, J.; Zhang, J.-J.; Liu, Y.; Jin, C. Iron- and Cobalt-Doped Palladium/Carbon Nanoparticles as Catalysts for Formic Acid Oxidation. ACS Appl. Nano Mater. 2022, 5, 12407–12412. [Google Scholar] [CrossRef]
- Adams, B.D.; Asmussen, R.M.; Ostrom, C.K.; Chen, A. Synthesis and Comparative Study of Nanoporous Palladium-Based Bimetallic Catalysts for Formic Acid Oxidation. J. Phys. Chem. C 2014, 118, 29903–29910. [Google Scholar] [CrossRef]
- Elnabawy, A.O.; Murray, E.A.; Mavrikakis, M. Trends in Formic Acid Electro-Oxidation on Transition Metals Alloyed with Platinum and Palladium. J. Phys. Chem. C 2022, 126, 4374–4390. [Google Scholar] [CrossRef]
- Kabiraz, M.K.; Kim, H.J.; Hong, Y.; Chang, Q.; Choi, S.I. Excess dopant effect in platinum-based alloys toward the oxygen electroreduction reaction. Bull. Korean Chem. Soc. 2022, 43, 1093–1097. [Google Scholar] [CrossRef]
- Lv, F.; Feng, J.; Wang, K.; Dou, Z.; Zhang, W.; Zhou, J.; Yang, C.; Luo, M.; Yang, Y.; Li, Y.; et al. Iridium-Tungsten Alloy Nanodendrites as pH-Universal Water-Splitting Electrocatalysts. ACS Cent Sci. 2018, 4, 1244–1252. [Google Scholar] [CrossRef] [PubMed]
- Liu, C.; Roh, I.; Park, H.S.; Park, B.J.; Yu, T. IrPt Alloy Nanoparticles with Controllable Compositions as Catalysts for Electrochemical Oxygen and Hydrogen Evolution. ACS Appl. Nano Mater. 2022, 5, 17152–17158. [Google Scholar] [CrossRef]
- Guo, H.; Fang, Z.; Li, H.; Fernandez, D.; Henkelman, G.; Humphrey, S.M.; Yu, G. Rational Design of Rhodium-Iridium Alloy Nanoparticles as Highly Active Catalysts for Acidic Oxygen Evolution. ACS Nano 2019, 13, 13225–13234. [Google Scholar] [CrossRef] [PubMed]
- Liang, Z.; Song, L.; Elnabawy, A.O.; Marinkovic, N.; Mavrikakis, M.; Adzic, R.R. Platinum and Palladium Monolayer Electrocatalysts for Formic Acid Oxidation. Top. Catal. 2020, 63, 742–749. [Google Scholar] [CrossRef]
- Choi, S.-I.; Herron, J.A.; Scaranto, J.; Huang, H.; Wang, Y.; Xia, X.; Lv, T.; Park, J.; Peng, H.-C.; Mavrikakis, M.; et al. A Comprehensive Study of Formic Acid Oxidation on Palladium Nanocrystals with Different Types of Facets and Twin Defects. ChemCatChem 2015, 7, 2077–2084. [Google Scholar] [CrossRef]
- Shao, M.; Odell, J.; Humbert, M.; Yu, T.; Xia, Y. Electrocatalysis on Shape-Controlled Palladium Nanocrystals: Oxygen Reduction Reaction and Formic Acid Oxidation. J. Phys. Chem. C 2013, 117, 4172–4180. [Google Scholar] [CrossRef]
- Kabiraz, M.K.; Ruqia, B.; Kim, J.; Kim, H.; Kim, H.J.; Hong, Y.; Kim, M.J.; Kim, Y.K.; Kim, C.; Lee, W.-J.; et al. Understanding the Grain Boundary Behavior of Bimetallic Platinum–Cobalt Alloy Nanowires toward Oxygen Electro-Reduction. ACS Catal. 2022, 12, 3516–3523. [Google Scholar] [CrossRef]
- Payne, M.C.; Teter, M.P.; Allan, D.C.; Arias, T.A.; Joannopoulos, J.D. Iterative minimization techniques forab initiototal-energy calculations: Molecular dynamics and conjugate gradients. Rev. Mod. Phys. 1992, 64, 1045–1097. [Google Scholar] [CrossRef]
- Perdew, J.P.; Burke, K.; Ernzerhof, M. Generalized Gradient Approximation Made Simple. Phys. Rev. Lett. 1996, 77, 3865–3868. [Google Scholar] [CrossRef]
- Wang, Y.; Qi, Y.; Zhang, D.; Liu, C. New Insight into the Decomposition Mechanism of Formic Acid on Pd(111): Competing Formation of CO2 and CO. J. Phys. Chem. C 2014, 118, 2067–2076. [Google Scholar] [CrossRef]
- Wang, H.; Li, Y.; Li, C.; Wang, Z.; Xu, Y.; Li, X.; Xue, H.; Wang, L. Hyperbranched PdRu nanospine assemblies: An efficient electrocatalyst for formic acid oxidation. J. Mater. Chem. A 2018, 6, 17514–17518. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, G.; Wang, Y.; Ma, Y.; Zhang, H.; Zheng, Y. Boosting Electrocatalytic Oxidation of Formic Acid on Ir(IV)-Doped PdAg Alloy Nanodendrites with Sub-5 nm Branches. Molecules 2023, 28, 3670. https://doi.org/10.3390/molecules28093670
Zhang G, Wang Y, Ma Y, Zhang H, Zheng Y. Boosting Electrocatalytic Oxidation of Formic Acid on Ir(IV)-Doped PdAg Alloy Nanodendrites with Sub-5 nm Branches. Molecules. 2023; 28(9):3670. https://doi.org/10.3390/molecules28093670
Chicago/Turabian StyleZhang, Gongguo, Yingying Wang, Yanyun Ma, Haifeng Zhang, and Yiqun Zheng. 2023. "Boosting Electrocatalytic Oxidation of Formic Acid on Ir(IV)-Doped PdAg Alloy Nanodendrites with Sub-5 nm Branches" Molecules 28, no. 9: 3670. https://doi.org/10.3390/molecules28093670
APA StyleZhang, G., Wang, Y., Ma, Y., Zhang, H., & Zheng, Y. (2023). Boosting Electrocatalytic Oxidation of Formic Acid on Ir(IV)-Doped PdAg Alloy Nanodendrites with Sub-5 nm Branches. Molecules, 28(9), 3670. https://doi.org/10.3390/molecules28093670