Morphological Electrical and Hardness Characterization of Carbon Nanotube-Reinforced Thermoplastic Polyurethane (TPU) Nanocomposite Plates
Abstract
:1. Introduction
2. Results and Discussion
2.1. Morphological and Crystalline Characterization
2.2. Electrical Characterization
2.3. Shore A Hardness Test
3. Materials and Methods
3.1. Materials
3.2. Fabrication of TPU/MWCNT Composite Plates
3.3. Characterization Techniques
3.3.1. Cryo-SEM Studies
3.3.2. X-ray Diffraction (XRD) Studies
3.3.3. Impedance Spectroscopy Studies
3.3.4. Current–Voltage Experiments
3.3.5. Shore A Hardness Studies
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Sample Availability
References
- Yoon, H.; Jang, J. Conducting-Polymer Nanomaterials for High-Performance Sensor Applications: Issues and Challenges. Adv. Funct. Mater. 2009, 19, 1567–1576. [Google Scholar] [CrossRef]
- Georgousis, G.; Pandis, C.; Kalamiotis, A.; Georgiopoulos, P.; Kyritsis, A.; Kontou, E.; Pissis, P.; Micusik, M.; Czanikova, K.; Kulicek, J.; et al. Strain Sensing in Polymer/Carbon Nanotube Composites by Electrical Resistance Measurement. Compos. Part B Eng. 2015, 68, 162–169. [Google Scholar] [CrossRef]
- Liu, L.; Xiang, D.; Wu, Y.; Zhou, Z.; Li, H.; Zhao, C.; Li, Y. Conductive Polymer Composites Based Flexible Strain Sensors by 3D Printing: A Mini-Review. Front. Mater. 2021, 8, 1–8. [Google Scholar] [CrossRef]
- Han, F.; Li, M.; Ye, H.; Zhang, G. Materials, Electrical Performance, Mechanisms, Applications, and Manufacturing Approaches for Flexible Strain Sensors. Nanomaterials 2021, 11, 1220. [Google Scholar] [CrossRef] [PubMed]
- Song, J.H.; Kim, Y.-T.; Cho, S.; Song, W.-J.; Moon, S.; Park, C.-G.; Park, S.; Myoung, J.M.; Jeong, U. Surface-Embedded Stretchable Electrodes by Direct Printing and Their Uses to Fabricate Ultrathin Vibration Sensors and Circuits for 3D Structures. Adv. Mater. 2017, 29, 1702625. [Google Scholar] [CrossRef] [PubMed]
- Kumar, S.; Gupta, T.K.; Varadarajan, K.M. Strong, Stretchable and Ultrasensitive MWCNT/TPU Nanocomposites for Piezoresistive Strain Sensing. Compos. Part B Eng. 2019, 177, 107285. [Google Scholar] [CrossRef]
- Zhang, S.; Liu, H.; Yang, S.; Shi, X.; Zhang, D.; Shan, C.; Mi, L.; Liu, C.; Shen, C.; Guo, Z. Ultrasensitive and Highly Compressible Piezoresistive Sensor Based on Polyurethane Sponge Coated with a Cracked Cellulose Nanofibril/Silver Nanowire Layer. ACS Appl. Mater. Interfaces 2019, 11, 10922–10932. [Google Scholar] [CrossRef]
- Feng, D.; Xu, D.; Wang, Q.; Liu, P. Highly Stretchable Electromagnetic Interference (EMI) Shielding Segregated Polyurethane/Carbon Nanotube Composites Fabricated by Microwave Selective Sintering. J. Mater. Chem. C 2019, 7, 7938–7946. [Google Scholar] [CrossRef]
- Khalifa, M.; Anandhan, S.; Wuzella, G.; Lammer, H.; Mahendran, A.R. Thermoplastic Polyurethane Composites Reinforced with Renewable and Sustainable Fillers—A Review. Polym. Technol. Mater. 2020, 59, 1751–1769. [Google Scholar] [CrossRef]
- Yao, Y.; Xiao, M.; Liu, W. A Short Review on Self-Healing Thermoplastic Polyurethanes. Macromol. Chem. Phys. 2021, 222, 2100002. [Google Scholar] [CrossRef]
- Ahirwar, D.; Telang, A.; Purohit, R.; Namdev, A. A Short Review on Polyurethane Polymer Composite. Mater. Today Proc. 2022, 62, 3804–3810. [Google Scholar] [CrossRef]
- Wölfel, B.; Seefried, A.; Allen, V.; Kaschta, J.; Holmes, C.; Schubert, D. Recycling and Reprocessing of Thermoplastic Polyurethane Materials towards Nonwoven Processing. Polymers 2020, 12, 1917. [Google Scholar] [CrossRef] [PubMed]
- Calvo-Correas, T.; Benitez, M.; Larraza, I.; Ugarte, L.; Peña-Rodríguez, C.; Eceiza, A. Advanced and Traditional Processing of Thermoplastic Polyurethane Waste. Polym. Degrad. Stab. 2022, 198, 109880. [Google Scholar] [CrossRef]
- Yan, Q.; Li, C.; Yan, T.; Shen, Y.; Li, Z. Chemically Recyclable Thermoplastic Polyurethane Elastomers via a Cascade Ring-Opening and Step-Growth Polymerization Strategy from Bio-Renewable δ-Caprolactone. Macromolecules 2022, 55, 3860–3868. [Google Scholar] [CrossRef]
- Benedito, A.; Buezas, I.; Giménez, E.; Galindo, B.; D’Amore, A.; Acierno, D.; Grassia, L. Dispersion and characterization of thermoplastic polyurethane/multiwalled carbon nanotubes in co-rotative twin screw extruder. AIP Conf. Proc. 2010, 1255, 227. [Google Scholar]
- Gupta, T.K.; Singh, B.P.; Teotia, S.; Katyal, V.; Dhakate, S.R.; Mathur, R.B. Designing of Multiwalled Carbon Nanotubes Reinforced Polyurethane Composites as Electromagnetic Interference Shielding Materials. J. Polym. Res. 2013, 20, 169. [Google Scholar] [CrossRef]
- Liu, H.; Gao, J.; Huang, W.; Dai, K.; Zheng, G.; Liu, C.; Shen, C.; Yan, X.; Guo, J.; Guo, Z. Electrically Conductive Strain Sensing Polyurethane Nanocomposites with Synergistic Carbon Nanotubes and Graphene Bifillers. Nanoscale 2016, 8, 12977–12989. [Google Scholar] [CrossRef]
- Christ, J.F.; Aliheidari, N.; Ameli, A.; Pötschke, P. 3D Printed Highly Elastic Strain Sensors of Multiwalled Carbon Nanotube/Thermoplastic Polyurethane Nanocomposites. Mater. Des. 2017, 131, 394–401. [Google Scholar] [CrossRef]
- Zheng, Y.; Li, Y.; Dai, K.; Liu, M.; Zhou, K.; Zheng, G.; Liu, C.; Shen, C. Conductive Thermoplastic Polyurethane Composites with Tunable Piezoresistivity by Modulating the Filler Dimensionality for Flexible Strain Sensors. Compos. Part A Appl. Sci. Manuf. 2017, 101, 41–49. [Google Scholar] [CrossRef]
- Jun, Y.-S.; Hyun, B.G.; Hamidinejad, M.; Habibpour, S.; Yu, A.; Park, C.B. Maintaining Electrical Conductivity of Microcellular MWCNT/TPU Composites after Deformation. Compos. Part B Eng. 2021, 223, 109113. [Google Scholar] [CrossRef]
- Moheimani, R.; Aliahmad, N.; Aliheidari, N.; Agarwal, M.; Dalir, H. Thermoplastic Polyurethane Flexible Capacitive Proximity Sensor Reinforced by CNTs for Applications in the Creative Industries. Sci. Rep. 2021, 11, 1104. [Google Scholar] [CrossRef] [PubMed]
- Digar, M.; Wen, T.-C. Ionic Conductivity and Morphological Study of a Thermoplastic Polyurethane Based Electrolyte Comprising of Mixed Soft Segments. Polym. J. 2000, 32, 921–931. [Google Scholar] [CrossRef]
- Wen, T.-C.; Du, Y.-L.; Digar, M. Compositional Effect on the Morphology and Ionic Conductivity of Thermoplastic Polyurethane Based Electrolytes. Eur. Polym. J. 2002, 38, 1039–1048. [Google Scholar] [CrossRef]
- Chen, W.-C.; Chen, H.-H.; Wen, T.-C.; Digar, M.; Gopalan, A. Morphology and Ionic Conductivity of Thermoplastic Polyurethane Electrolytes. J. Appl. Polym. Sci. 2004, 91, 1154–1167. [Google Scholar] [CrossRef]
- Deng, Y.; Cao, Q.; He, Z.; Jing, B.; Wang, X.; Peng, X. A Novel High-Performance Electrospun Thermoplastic Polyurethane/Poly(Vinylidene Fluoride)/Polystyrene Gel Polymer Electrolyte for Lithium Batteries. Acta Chim. Slov. 2017, 64, 95–101. [Google Scholar] [CrossRef] [PubMed]
- Park, M.; Woo, H.; Heo, J.; Kim, J.; Thangavel, R.; Lee, Y.; Kim, D. Thermoplastic Polyurethane Elastomer-Based Gel Polymer Electrolytes for Sodium-Metal Cells with Enhanced Cycling Performance. ChemSusChem 2019, 12, 4645–4654. [Google Scholar] [CrossRef]
- Yan, T.; Wang, Z.; Pan, Z.-J. Flexible Strain Sensors Fabricated Using Carbon-Based Nanomaterials: A Review. Curr. Opin. Solid State Mater. Sci. 2018, 22, 213–228. [Google Scholar] [CrossRef]
- Kanbur, Y.; Tayfun, U. Investigating Mechanical, Thermal, and Flammability Properties of Thermoplastic Polyurethane/Carbon Nanotube Composites. J. Thermoplast. Compos. Mater. 2018, 31, 1661–1675. [Google Scholar] [CrossRef]
- Kim, N.P. 3D-Printed Conductive Carbon-Infused Thermoplastic Polyurethane. Polymers 2020, 12, 1224. [Google Scholar] [CrossRef]
- Kanoun, O.; Bouhamed, A.; Ramalingame, R.; Bautista-Quijano, J.R.; Rajendran, D.; Al-Hamry, A. Review on Conductive Polymer/CNTs Nanocomposites Based Flexible and Stretchable Strain and Pressure Sensors. Sensors 2021, 21, 341. [Google Scholar] [CrossRef]
- Hoang, A.S. Electrical Conductivity and Electromagnetic Interference Shielding Characteristics of Multiwalled Carbon Nanotube Filled Polyurethane Composite Films. Adv. Nat. Sci. Nanosci. Nanotechnol. 2011, 2, 025007. [Google Scholar] [CrossRef]
- Lima, A.M.F.; de Castro, V.G.; Borges, R.S.; Silva, G.G. Electrical Conductivity and Thermal Properties of Functionalized Carbon Nanotubes/Polyurethane Composites. Polímeros 2012, 22, 117–124. [Google Scholar] [CrossRef]
- Fu, X.; Al-Jumaily, A.M.; Ramos, M.; Chen, Y.-F. Comprehensive Analysis on the Electrical Behavior of Highly Stretchable Carbon Nanotubes/Polymer Composite through Numerical Simulation. J. Mater. Res. 2018, 33, 3398–3407. [Google Scholar] [CrossRef]
- Magar, H.S.; Hassan, R.Y.A.; Mulchandani, A. Electrochemical Impedance Spectroscopy (EIS): Principles, Construction, and Biosensing Applications. Sensors 2021, 21, 6578. [Google Scholar] [CrossRef] [PubMed]
- Vadhva, P.; Hu, J.; Johnson, M.J.; Stocker, R.; Braglia, M.; Brett, D.J.L.; Rettie, A.J.E. Electrochemical Impedance Spectroscopy for All-Solid-State Batteries: Theory, Methods and Future Outlook. ChemElectroChem 2021, 8, 1930–1947. [Google Scholar] [CrossRef]
- Fang, C.; Yang, R.; Zhang, Z.; Zhou, X.; Lei, W.; Cheng, Y.; Zhang, W.; Wang, D. Effect of Multi-Walled Carbon Nanotubes on the Physical Properties and Crystallisation of Recycled PET/TPU Composites. RSC Adv. 2018, 8, 8920–8928. [Google Scholar] [CrossRef]
- Alamusi; Hu, N.; Fukunaga, H.; Atobe, S.; Liu, Y.; Li, J. Piezoresistive Strain Sensors Made from Carbon Nanotubes Based Polymer Nanocomposites. Sensors 2011, 11, 10691–10723. [Google Scholar] [CrossRef]
- Saha, S.; Singh, J.P.; Saha, U.; Goswami, T.H.; Rao, K.U.B. Structure–Property Relationship of SELF-Sustained Homogeneous Ternary Nanocomposites: Key Issues to Evaluate Properties of RrP3HT Wrapped MWNT Dispersed in TPU. Compos. Sci. Technol. 2011, 71, 397–405. [Google Scholar] [CrossRef]
- Kwon, S.J.; Ryu, S.H.; Han, Y.K.; Lee, J.; Kim, T.; Lee, S.-B.; Park, B. Electromagnetic Interference Shielding Films with Enhanced Absorption Using Double Percolation of Poly (Methyl Methacrylate) Beads and CIP/MWCNT/TPU Composite Channel. Mater. Today Commun. 2022, 31, 103401. [Google Scholar] [CrossRef]
- Liu, L.-C.; Liang, W.-C.; Chen, C.-M. Manufacture of Recyclable Thermoplastic Polyurethane (TPU)/Silicone Blends and Their Mechanical Properties. Manuf. Lett. 2022, 31, 1–5. [Google Scholar] [CrossRef]
- Wang, Y.; Chen, X.; Zhu, W.; Huang, X.; Tang, X.; Yang, J. A Comparison of Thermoplastic Polyurethane Incorporated with Graphene Oxide and Thermally Reduced Graphene Oxide: Reduction Is Not Always Necessary. J. Appl. Polym. Sci. 2019, 136, 47745. [Google Scholar] [CrossRef]
- Atchudan, R.; Pandurangan, A.; Joo, J. Effects of Nanofillers on the Thermo-Mechanical Properties and Chemical Resistivity of Epoxy Nanocomposites. J. Nanosci. Nanotechnol. 2015, 15, 4255–4267. [Google Scholar] [CrossRef] [PubMed]
- Gao, Y.; Zhang, Y.; Williams, G.R.; O’Hare, D.; Wang, Q. Layered Double Hydroxide-Oxidized Carbon Nanotube Hybrids as Highly Efficient Flame Retardant Nanofillers for Polypropylene. Sci. Rep. 2016, 6, 35502. [Google Scholar] [CrossRef]
- Vadim, F.L. Impedance Spectroscopy: Applications to Electrochemical and Dielectric Phenomena; Wiley: Hoboken, NJ, USA, 2012; ISBN 9780470627785. [Google Scholar]
- Huggins, R.A. Simple Method to Determine Electronic and Ionic Components of the Conductivity in Mixed Conductors a Review. Ionics 2002, 8, 300–313. [Google Scholar] [CrossRef]
- Wang, S.; Yan, M.; Li, Y.; Vinado, C.; Yang, J. Separating Electronic and Ionic Conductivity in Mix-Conducting Layered Lithium Transition-Metal Oxides. J. Power Sources 2018, 393, 75–82. [Google Scholar] [CrossRef]
- Romero, M.; Mombrú, D.; Pignanelli, F.; Faccio, R.; Mombrú, A.W. Mini-Review: Mixed Ionic–Electronic Charge Carrier Localization and Transport in Hybrid Organic–Inorganic Nanomaterials. Front. Chem. 2020, 8, 1–11. [Google Scholar] [CrossRef]
- Liu, H.; Li, Y.; Dai, K.; Zheng, G.; Liu, C.; Shen, C.; Yan, X.; Guo, J.; Guo, Z. Electrically Conductive Thermoplastic Elastomer Nanocomposites at Ultralow Graphene Loading Levels for Strain Sensor Applications. J. Mater. Chem. C 2016, 4, 157–166. [Google Scholar] [CrossRef]
- Jonscher, A.K. Universal Relaxation Law: A Sequel to Dielectric Relaxation in Solids; Chelsea Dielectrics Press: London, UK, 1996; ISBN 9780950871127. [Google Scholar]
- Zare, Y.; Rhee, K.Y. A Simple Methodology to Predict the Tunneling Conductivity of Polymer/CNT Nanocomposites by the Roles of Tunneling Distance, Interphase and CNT Waviness. RSC Adv. 2017, 7, 34912–34921. [Google Scholar] [CrossRef]
- Khromov, K.Y.; Knizhnik, A.A.; Potapkin, B.V.; Kenny, J.M. Multiscale Modeling of Electrical Conductivity of Carbon Nanotubes Based Polymer Nanocomposites. J. Appl. Phys. 2017, 121, 225102. [Google Scholar] [CrossRef]
- Bocharov, G.S.; Eletskii, A.V. Percolation Conduction of Carbon Nanocomposites. Int. J. Mol. Sci. 2020, 21, 7634. [Google Scholar] [CrossRef]
- Sanli, A.; Müller, C.; Kanoun, O.; Elibol, C.; Wagner, M.F.X. Piezoresistive Characterization of Multi-Walled Carbon Nanotube-Epoxy Based Flexible Strain Sensitive Films by Impedance Spectroscopy. Compos. Sci. Technol. 2016, 122, 18–26. [Google Scholar] [CrossRef]
- Chua, C.; Ang, Y.S.; Ang, L.K. Tunneling Injection to Trap-Limited Space-Charge Conduction for Metal-Insulator Junction. Appl. Phys. Lett. 2022, 121, 192109. [Google Scholar] [CrossRef]
- Buhl, J.; Lüder, H.; Gerken, M. Injection-Limited and Space Charge-Limited Currents in Organic Semiconductor Devices with Nanopatterned Metal Electrodes. Nanotechnology 2023, 34, 035202. [Google Scholar] [CrossRef] [PubMed]
- Naveen, B.S.; Jose, N.T.; Krishnan, P.; Mohapatra, S.; Pendharkar, V.; Koh, N.Y.H.; Lim, W.Y.; Huang, W.M. Evolution of Shore Hardness under Uniaxial Tension/Compression in Body-Temperature Programmable Elastic Shape Memory Hybrids. Polymers 2022, 14, 4872. [Google Scholar] [CrossRef]
- Lee, J.; Koo, J.; Ezekoye, O. Thermoplastic polyurethane elastomer nanocomposites: Density and hardness correlations with flammability performance. In Proceedings of the 45th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit, Denver, CO, USA, 2–5 August 2009; American Institute of Aeronautics and Astronautics: Reston, VA, USA, 2009; pp. 1–9. [Google Scholar]
- Mansour, G.; Tsongas, K.; Tzetzis, D.; Tzikas, K. Dynamic Mechanical Characterization of Polyurethane/Multiwalled Carbon Nanotube Composite Thermoplastic Elastomers. Polym. Plast. Technol. Eng. 2017, 56, 1505–1515. [Google Scholar] [CrossRef]
- Tayfun, U.; Kanbur, Y.; Abacı, U.; Güney, H.Y.; Bayramlı, E. Mechanical, Electrical, and Melt Flow Properties of Polyurethane Elastomer/Surface-Modified Carbon Nanotube Composites. J. Compos. Mater. 2017, 51, 1987–1996. [Google Scholar] [CrossRef]
- Waletzko, R.S.; Korley, L.T.J.; Pate, B.D.; Thomas, E.L.; Hammond, P.T. Role of Increased Crystallinity in Deformation-Induced Structure of Segmented Thermoplastic Polyurethane Elastomers with PEO and PEO−PPO−PEO Soft Segments and HDI Hard Segments. Macromolecules 2009, 42, 2041–2053. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Muñoz-Chilito, J.; Lara-Ramos, J.A.; Marín, L.; Machuca-Martínez, F.; Correa-Aguirre, J.P.; Hidalgo-Salazar, M.A.; García-Navarro, S.; Roca-Blay, L.; Rodríguez, L.A.; Mosquera-Vargas, E.; et al. Morphological Electrical and Hardness Characterization of Carbon Nanotube-Reinforced Thermoplastic Polyurethane (TPU) Nanocomposite Plates. Molecules 2023, 28, 3598. https://doi.org/10.3390/molecules28083598
Muñoz-Chilito J, Lara-Ramos JA, Marín L, Machuca-Martínez F, Correa-Aguirre JP, Hidalgo-Salazar MA, García-Navarro S, Roca-Blay L, Rodríguez LA, Mosquera-Vargas E, et al. Morphological Electrical and Hardness Characterization of Carbon Nanotube-Reinforced Thermoplastic Polyurethane (TPU) Nanocomposite Plates. Molecules. 2023; 28(8):3598. https://doi.org/10.3390/molecules28083598
Chicago/Turabian StyleMuñoz-Chilito, José, José A. Lara-Ramos, Lorena Marín, Fiderman Machuca-Martínez, Juan P. Correa-Aguirre, Miguel A. Hidalgo-Salazar, Serafín García-Navarro, Luis Roca-Blay, Luis A. Rodríguez, Edgar Mosquera-Vargas, and et al. 2023. "Morphological Electrical and Hardness Characterization of Carbon Nanotube-Reinforced Thermoplastic Polyurethane (TPU) Nanocomposite Plates" Molecules 28, no. 8: 3598. https://doi.org/10.3390/molecules28083598
APA StyleMuñoz-Chilito, J., Lara-Ramos, J. A., Marín, L., Machuca-Martínez, F., Correa-Aguirre, J. P., Hidalgo-Salazar, M. A., García-Navarro, S., Roca-Blay, L., Rodríguez, L. A., Mosquera-Vargas, E., & Diosa, J. E. (2023). Morphological Electrical and Hardness Characterization of Carbon Nanotube-Reinforced Thermoplastic Polyurethane (TPU) Nanocomposite Plates. Molecules, 28(8), 3598. https://doi.org/10.3390/molecules28083598