Stabilization of Sunflower Oil with Biologically Active Compounds from Berries
Abstract
:1. Introduction
2. Results and Discussion
2.1. Analysis of Oxidation Products and Kinetics of Forced Autoxidation of Sunflower Oil
2.2. Characterization of Plant Raw Material
2.3. Influence of Temperature on Physicochemical Parameters and Carotenoid Content
2.4. Influence of Storage Time on the Formation of Lipid Oxidation Products and Carotenoid Content
2.5. Mathematical Modeling of the Oxidation Processes of Sunflower Oil Stabilized with Sea Buckthorn and Rose Hips Extracts
3. Materials and Methods
3.1. Chemical Materials
3.2. Biological Material
3.3. Analysis of Lipid Oxidation Products
3.4. Carotenoid Extraction
3.5. Separation of Carotenoids by RP-HPLC
3.6. Antioxidant Activity by Reaction with DPPH Radical
3.7. Lipophilic Extract Characterization
3.7.1. Physicochemical Analysis of Sunflower Oil and Lipophilic Extracts
3.7.2. UV–Vis and FTIR Analysis of Oil and Lipophilic Extracts
3.7.3. Total Carotenoid Content
3.8. Mathematical Modeling
3.9. Statistical Analysis
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Siró, I.; Kápolna, E.; Kápolna, B.; Lugasi, A. Functional Food. Product Development, Marketing and Consumer Acceptance—A Review. Appetite 2008, 51, 456–467. [Google Scholar] [CrossRef] [PubMed]
- Kaur, D.; Wani, A.A.; Singh, D.P.; Sogi, D.S. Shelf Life Enhancement of Butter, Ice-Cream, and Mayonnaise by Addition of Lycopene. Int. J. Food Prop. 2011, 14, 1217–1231. [Google Scholar] [CrossRef]
- Ghorbani Gorji, S.; Smyth, H.E.; Sharma, M.; Fitzgerald, M. Lipid Oxidation in Mayonnaise and the Role of Natural Antioxidants: A Review. Trends Food Sci. Technol. 2016, 56, 88–102. [Google Scholar] [CrossRef]
- Caleja, C.; Barros, L.; Antonio, A.L.; Oliveira, M.B.P.P.; Ferreira, I.C.F.R. A Comparative Study between Natural and Synthetic Antioxidants: Evaluation of Their Performance after Incorporation into Biscuits. Food Chem. 2017, 216, 342–346. [Google Scholar] [CrossRef]
- Anguelova, T.; Warthesen, J. Degradation of Lycopene, β-Carotene, and α-Carotene during Lipid Peroxidation. J. Food Sci. 2000, 65, 71–75. [Google Scholar] [CrossRef]
- Khan, S.; Choudhary, S.; Pandey, A.; Khan, M.; Thomas, G. Sunflower Oil: Efficient Oil Source for Human Consumption. Emergent Life Sci. Res. 2015, 1, 1–3. [Google Scholar]
- Lamas, D.L.; Crapiste, G.H.; Constenla, D.T. Changes in quality and composition of sunflower oil during enzymatic degumming process. LWT-Food Sci. Technol. 2014, 58, 71–76. [Google Scholar] [CrossRef]
- Reis, A.; Spickett, C.M. Chemistry of phospholipid oxidation. Biochim. Biophys. Acta Biomembr. 2012, 1818, 2374–2387. [Google Scholar] [CrossRef]
- Popovici, V.; Radu, O.; Hubenia, V.; Kovaliov, E.; Capcanari, T.; Popovici, C. Physico-Chemical and Sensory Properties of Functional Confectionery Products with Rosa canina Powder. Ukr. Food J. 2019, 8, 815–827. [Google Scholar] [CrossRef]
- Ghendov-Mosanu, A.; Cristea, E.; Patras, A.; Sturza, R.; Niculaua, M. Rose Hips, a Valuable Source of Antioxidants to Improve Gingerbread Characteristics. Molecules 2020, 25, 5659. [Google Scholar] [CrossRef]
- Ghendov-Moşanu, A.; Sturza, R.; Opriş, O.; Lung, I.; Popescu, L.; Popovici, V.; Soran, M.-L.; Patraş, A. Effect of Lipophilic Sea Buckthorn Extract on Cream Cheese Properties. J. Food Sci. Technol. 2020, 57, 628–637. [Google Scholar] [CrossRef]
- Cristea, E.; Ghendov-Mosanu, A.; Patras, A.; Socaciu, C.; Pintea, A.; Tudor, C.; Sturza, R. The Influence of Temperature, Storage Conditions, PH, and Ionic Strength on the Antioxidant Activity and Color Parameters of Rowan Berry Extracts. Molecules 2021, 26, 3786. [Google Scholar] [CrossRef] [PubMed]
- Jung, M.Y.; Yoon, S.H.; Min, D.B. Effects of Processing Steps on the Contents of Minor Compounds and Oxidation of Soybean Oil. J. Am. Oil Chem. Soc. 1989, 66, 161–180. [Google Scholar] [CrossRef]
- Reische, D.; Lillard, D.; Eitenmiller, R. Antioxidants. In Food Lipids, 2nd ed.; Akoh, C., Min, D., Eds.; Marcel Dekker, Inc.: New York, NY, USA, 2002; pp. 507–535. [Google Scholar]
- Eidhin, D.N.; Burke, J.; O’Beirne, D. Oxidative Stability of Ω3-Rich Camelina Oil and Camelina Oil-Based Spread Compared with Plant and Fish Oils and Sunflower Spread. J. Food Sci. 2003, 68, 345–353. [Google Scholar] [CrossRef]
- Rastogi, A.; Yadav, D.K.; Szymańska, R.; Kruk, J.; Sedlářová, M.; Pospíšil, P. Singlet Oxygen Scavenging Activity of Tocopherol and Plastochromanol in Arabidopsis Thaliana: Relevance to Photooxidative Stress: 1O2 Scavenging by Tocopherol and Plastochromanol. Plant Cell Environ. 2014, 37, 392–401. [Google Scholar] [CrossRef]
- Mordi, R.C.; Ademosun, O.T.; Ajanaku, C.O.; Olanrewaju, I.O.; Walton, J.C. Free Radical Mediated Oxidative Degradation of Carotenes and Xanthophylls. Molecules 2020, 25, 1038. [Google Scholar] [CrossRef]
- Pop, R.M.; Weesepoel, Y.; Socaciu, C.; Pintea, A.; Vincken, J.-P.; Gruppen, H. Carotenoid Composition of Berries and Leaves from Six Romanian Sea Buckthorn (Hippophae rhamnoides L.) Varieties. Food Chem. 2014, 147, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Criste, A.; Urcan, A.C.; Bunea, A.; Pripon Furtuna, F.R.; Olah, N.K.; Madden, R.H.; Corcionivoschi, N. Phytochemical Composition and Biological Activity of Berries and Leaves from Four Romanian Sea Buckthorn (Hippophae rhamnoides L.) Varieties. Molecules 2020, 25, 1170. [Google Scholar] [CrossRef]
- Ghendov-Mosanu, A.; Cristea, E.; Patras, A.; Sturza, R.; Padureanu, S.; Deseatnicova, O.; Turculet, N.; Boestean, O.; Niculaua, M. Potential Application of Hippophae rhamnoides in Wheat Bread Production. Molecules 2020, 25, 1272. [Google Scholar] [CrossRef]
- Skrypnik, L.; Chupakhina, G.; Feduraev, P.; Nataliia, C.; Maslennikov, P. Evaluation of the rose hips of Rosa canina L. and Rosa rugosa Thunb. as a valuable source of biological active compounds and antioxidants on the baltic sea coast. Pol. J. Nat. Sci. 2019, 34, 395–413. [Google Scholar]
- Jiménez, S.; Jiménez-Moreno, N.; Luquin, A.; Laguna, M.; Rodríguez-Yoldi, M.J.; Ancín-Azpilicueta, C. Chemical Composition of Rosehips from Different Rosa Species: An Alternative Source of Antioxidants for the Food Industry. Food Addit. Contam. Part A 2017, 34, 1121–1130. [Google Scholar] [CrossRef] [PubMed]
- Velasco, J.; Andersen, M.L.; Skibsted, L.H. Evaluation of Oxidative Stability of Vegetable Oils by Monitoring the Tendency to Radical Formation. A Comparison of Electron Spin Resonance Spectroscopy with the Rancimat Method and Differential Scanning Calorimetry. Food Chem. 2004, 85, 623–632. [Google Scholar] [CrossRef]
- Miyazawa, T. Lipid hydroperoxides in nutrition, health, and diseases. Proc. Jpn. Acad. Ser. B Phys. Biol. Sci. 2021, 97, 161–196. [Google Scholar] [CrossRef] [PubMed]
- Nawar, W.W. Thermal Degradation of Lipids. J. Agric. Food Chem. 1969, 17, 18–21. [Google Scholar] [CrossRef]
- Frankel, E.N.; Selke, E.; Neff, W.E.; Miyashita, K. Autoxidation of Polyunsaturated Triacylglycerols. IV. Volatile Decomposition Products from Triacylglycerols Containing Linoleate and Linolenate. Lipids 1992, 27, 442–446. [Google Scholar] [CrossRef]
- Choe, E.; Min, D.B. Mechanisms and Factors for Edible Oil Oxidation. Comp. Rev. Food Sci. Food Saf. 2006, 5, 169–186. [Google Scholar] [CrossRef]
- Vichi, S.; Romero, A.; Tous, J.; Tamames, E.L.; Buxaderas, S. Determination of Volatile Phenols in Virgin Olive Oils and Their Sensory Significance. J. Chromatogr. A 2008, 1211, 1–7. [Google Scholar] [CrossRef]
- Xu, L.; Yu, X.; Li, M.; Chen, J.; Wang, X. Monitoring Oxidative Stability and Changes in Key Volatile Compounds in Edible Oils during Ambient Storage through HS-SPME/GC–MS. Int. J. Food Prop. 2017, 20, S2926–S2938. [Google Scholar] [CrossRef]
- Frankel, E. Chemistry of Autoxidation: Mechanism, Products and Flavor Significance. In Flavor Chemistry of Fats and Oils; Min, D.B., Smouse, T.H., Eds.; American Oil Chemists’ Society: Champaign, IL, USA, 1985; pp. 1–37. [Google Scholar]
- Kiokias, S.; Varzakas, T.H.; Arvanitoyannis, I.S.; Labropoulos, A.E. Lipid Oxidation and Control of Oxidation. In Advances in Food Biochemistry; Yildiz, F., Ed.; CRC Press, Taylor & Francis Group: New York, NY, USA, 2010; 507p. [Google Scholar]
- Beutner, S.; Bloedorn, B.; Frixel, S.; Hernández Blanco, I.; Hoffmann, T.; Martin, H.-D.; Mayer, B.; Noack, P.; Ruck, C.; Schmidt, M.; et al. Quantitative Assessment of Antioxidant Properties of Natural Colorants and Phytochemicals: Carotenoids, Flavonoids, Phenols and Indigoids. The Role of β-Carotene in Antioxidant Functions: Antioxidant Properties of Natural Colorants and Phytochemicals. J. Sci. Food Agric. 2001, 81, 559–568. [Google Scholar] [CrossRef]
- Rodriguez-Amaya, D. Food Carotenoids: Chemistry, Biology and Technology; IFT Press: Chichester, UK; Wiley Blackwell: Hoboken, NJ, USA, 2016; 327p. [Google Scholar]
- Wang, C.C.; Chang, S.C.; Inbaraj, B.S.; Chen, B.H. Isolation of Carotenoids, Flavonoids and Polysaccharides from Lycium barbarum L. and Evaluation of Antioxidant Activity. Food Chem. 2010, 120, 184–192. [Google Scholar] [CrossRef]
- Rodriguez-Amaya, D.B. A Guide to Carotenoid Analysis in Foods; ILSI Press: Washington, DC, USA, 2001; 71p. [Google Scholar]
- Popovici, V.; Ghendov-Mosanu, A.; Patraş, A.; Deseatnicova, O.; Sturza, R. Process for producing functional sauce. Off. Bull. Intellect. Prop. (BOPI) 2022, 5, 62–63. [Google Scholar]
- GD No. 434 from 27.05.2010 for the Approval of the Requirements Regarding the Approval of the Technical Regulations Edible Vegetable Oils. Available online: https://www.legis.md/cautare/getResults?doc_id=86300&lang=ro (accessed on 5 January 2023). (In Romanian).
- Kallio, H.; Yang, B.; Peippo, P. Effects of different origins and harvesting time on vitamin C, tocopherols, and tocotrienols in sea buckthorn (Hippophae rhamnoides) berries. J. Agric. Food Chem. 2002, 50, 6136–6142. [Google Scholar] [CrossRef] [PubMed]
- Andersson, S.C.; Rumpunen, K.; Johansson, E.; Ollson, M.E. Tocopherols and Tocotrienols in Sea Buckthorn (Hippophae rhamnoides L.) Berries during Ripening. J. Agric. Food Chem. 2008, 56, 6701–6706. [Google Scholar] [CrossRef] [PubMed]
- Barros, L.; Carvalho, A.M.; Ferreira, I. Exotic fruits as a source of important phytochemicals: Improving the traditional use of Rosa canina fruits in Portugal. Food Res. Int. 2011, 44, 2233–2236. [Google Scholar] [CrossRef]
- Barouh, N.; Bourlieu-Lacanal, C.; Figueroa-Espinoza, M.C.; Durand, E.; Villeneuve, P. Tocopherols as antioxidants in lipid-based systems: The combination of chemical and physicochemical interactions determines their efficiency. Compr. Rev. Food Sci. Food Saf. 2022, 41, 642–688. [Google Scholar] [CrossRef] [PubMed]
- Giuffrida, D.; Pintea, A.; Dugo, P.; Torre, G.; Pop, R.M.; Mondello, L. Determination of Carotenoids and Their Esters in Fruits of Sea Buckthorn (Hippophae rhamnoides L.) by HPLC-DAD-APCI-MS: Native Carotenoids Composition in Sea Buckthorn Berries. Phytochem. Anal. 2012, 23, 267–273. [Google Scholar] [CrossRef] [PubMed]
- Ciuperca, O.T.; Tebrencu, E.; Volf, I. Polyphenolic content evaluation in branches of Rosa canina L. and Hippophae rhamnoides L. species. Bull. Polytech. Inst. Iasi 2017, 63, 49–58. [Google Scholar]
- Poiana, M.-A.; Alexa, E.; Munteanu, M.-F.; Gligor, R.; Moigradean, D.; Mateescu, C. Use of ATR-FTIR Spectroscopy to Detect the Changesin Extra Virgin Olive Oil by Adulteration Withsoybean Oil and High Temperature Heat Treatment. Open Chem. 2015, 13, 689–698. [Google Scholar] [CrossRef]
- Machate, D.J.; Melo, E.S.P.; de Oliveira, L.C.S.; Bogo, D.; Michels, F.S.; Pott, A.; Cavalheiro, L.F.; Guimarães, R.d.C.A.; Freitas, K.d.C.; do Hiane, P.A.; et al. Oxidative Stability and Elemental Analysis of Sunflower (Helianthus Annuus) Edible Oil Produced in Brazil Using a Domestic Extraction Machine. Front. Nutr. 2022, 9, 977813. [Google Scholar] [CrossRef]
- Sturza, R.; Druţă, R.; Covaci, E.; Duca, G.; Subotin, I. Mechanisms of sunflower oil transforming into forced thermal oxidation processes. J. Eng. Sci. 2020, 47, 239–251. [Google Scholar] [CrossRef]
- Kaminskas, A.; Briedis, V.; Budrionienë, R.; Hendrixson, V. Fatty Acid Composition of Sea Buckthorn (Hippophae rhamnoides L.) Pulp Oil of Lithuanian Origin Stored at Different Temperatures. Biologija 2006, 2, 39–41. [Google Scholar]
- Pénicaud, C.; Achir, N.; Dhuique-Mayer, C.; Dornier, M.; Bohuon, P. Degradation of β-Carotene during Fruit and Vegetable Processing or Storage: Reaction Mechanisms and Kinetic Aspects: A Review. Fruits 2011, 66, 417–440. [Google Scholar] [CrossRef]
- Delgado-Vargas, F.; Jiménez, A.R.; Paredes-López, O. Natural Pigments: Carotenoids, Anthocyanins, and Betalains—Characteristics, Biosynthesis, Processing, and Stability. Crit. Rev. Food Sci. Nutr. 2000, 40, 173–289. [Google Scholar] [CrossRef] [PubMed]
- Yanishlieva, N.V.; Marinova, E.M. Stabilisation of Edible Oils with Natural Antioxidants. Eur. J. Lipid Sci. Technol. 2001, 103, 752–767. [Google Scholar] [CrossRef]
- Crapiste, G.H.; Brevedan, M.I.V.; Carelli, A.A. Oxidation of Sunflower Oil during Storage. J. Am. Oil Chem. Soc. 1999, 76, 1437–1443. [Google Scholar] [CrossRef]
- Qiu, W.; Jiang, H.; Wang, H.; Gao, Y. Effect of High Hydrostatic Pressure on Lycopene Stability. Food Chem. 2006, 97, 516–523. [Google Scholar] [CrossRef]
- Odriozola-Serrano, I.; Soliva-Fortuny, R.; Martín-Belloso, O. Changes of Health-Related Compounds throughout Cold Storage of Tomato Juice Stabilized by Thermal or High Intensity Pulsed Electric Field Treatments. Innov. Food Sci. Emerg. Technol. 2008, 9, 272–279. [Google Scholar] [CrossRef]
- Schweiggert, R.M.; Kopec, R.E.; Villalobos-Gutierrez, M.G.; Högel, J.; Quesada, S.; Esquivel, P.; Schwartz, S.J.; Carle, R. Carotenoids Are More Bioavailable from Papaya than from Tomato and Carrot in Humans: A Randomised Cross-over Study. Br. J. Nutr. 2014, 111, 490–498. [Google Scholar] [CrossRef]
- Ghendov-Mosanu, A.; Sturza, R.; Cherecheș, T.; Patras, A. A Fuzzy Logic Approach to Modeling of the Extraction Process of Bioactive Compounds. J. Eng. Sci. 2019, 3, 89–99. [Google Scholar] [CrossRef]
- Popescu, L.; Ceșco, T.; Gurev, A.; Ghendov-Mosanu, A.; Sturza, R.; Tarna, R. Impact of Apple Pomace Powder on the Bioactivity, and the Sensory and Textural Characteristics of Yogurt. Foods 2022, 11, 3565. [Google Scholar] [CrossRef]
- Bulgaru, V.; Popescu, L.; Netreba, N.; Ghendov-Mosanu, A.; Sturza, R. Assessment of Quality Indices and Their Influence on the Texture Profile in the Dry-Aging Process of Beef. Foods 2022, 11, 1526. [Google Scholar] [CrossRef] [PubMed]
- Akbarzadeh, A.; Rezaei-Sadabady, R.; Davaran, S.; Joo, S.W.; Zarghami, N.; Hanifehpour, Y.; Samiei, M.; Kouhi, M.; Nejati-Koshki, K. Liposome: Classification, Preparation, and Applications. Nanoscale Res. Lett. 2013, 8, 102. [Google Scholar] [CrossRef] [PubMed]
- Kucharski, H.; Zajac, J. (Eds.) Handbook of Vitamin C Research: Daily Requirements, Dietary Sources and Adverse Effects; Nutrition and diet research progress series; Nova Biomedical Books: New York, NY, USA, 2009; 415p. [Google Scholar]
- Liu, X. Progress in the Mechanism and Kinetics of Fenton Reaction. MOJ Ecol. Environ. Sci. 2018, 3, 10–14. [Google Scholar] [CrossRef]
- Timoshnikov, V.A.; Kobzeva, T.V.; Polyakov, N.E.; Kontoghiorghes, G.J. Redox Interactions of Vitamin C and Iron: Inhibition of the Pro-Oxidant Activity by Deferiprone. Int. J. Mol. Sci. 2020, 21, 3967. [Google Scholar] [CrossRef] [PubMed]
- Zhang, D.; Gong, C.; Wang, J.; Mu, C.; Wang, W.; Zhang, X. Beyond Lipid Peroxidation: Distinct Mechanisms Observed for POPC and POPG Oxidation Initiated by UV-enhanced Fenton Reactions at the Air–Water Interface. J. Mass Spectrom. 2021, 56, e4626. [Google Scholar] [CrossRef]
- Ayala, A.; Muñoz, M.F.; Argüelles, S. Lipid Peroxidation: Production, Metabolism, and Signaling Mechanisms of Malondialdehyde and 4-Hydroxy-2-Nonenal. Oxid. Med. Cell. Longev. 2014, 2014, 1–31. [Google Scholar] [CrossRef]
- Zielinski, Z.A.M.; Pratt, D.A. Lipid Peroxidation: Kinetics, Mechanisms, and Products. J. Org. Chem. 2017, 82, 2817–2825. [Google Scholar] [CrossRef]
- Britton, S.; Liaaen-Jenson, S.; Pfander, H. Carotenoids; Birkhauser Verlag: Basel, Switzerland, 1995; Volume 1A, pp. 210–214. [Google Scholar]
- Ghendov-Mosanu, A. Obtaining and Stabilizing Dyes, Antioxidants and Preservatives of Plant Origin for Functional Foods. Ph.D. Thesis, Technical University of Moldova, Chisinau, Moldova, 2021. [Google Scholar]
- Brand-Williams, W.; Cuvelier, M.E.; Berset, C. Use of a Free Radical Method to Evaluate Antioxidant Activity. LWT-Food Sci. Technol. 1995, 28, 25–30. [Google Scholar] [CrossRef]
- AOCS. Official Method Cd 3d-63, Acid Value of Fats and Oils, 7th ed.; AOCS: Urbana, IL, USA, 1999. [Google Scholar]
- AOCS. Official Method 8-53, Peroxide Value-Acetic Acid-Chloroform Method, 7th ed.; AOCS: Urbana, IL, USA, 2003. [Google Scholar]
- AOCS. Official Method Cd 18-90, p-Anisidine Value, 7th ed.; AOCS: Urbana, IL, USA, 2017. [Google Scholar]
- AOCS. Official Method Cd 7-58, Polyunsaturated Acids, Ultraviolet Spectrophotometric Method, 7th ed.; AOCS: Urbana, IL, USA, 2022. [Google Scholar]
- Biehler, E.; Mayer, F.; Hoffmann, L.; Krause, E.; Bohn, T. Comparison of 3 Spectrophotometric Methods for Carotenoid Determination in Frequently Consumed Fruits and Vegetables. J. Food Sci. 2010, 75, C55–C61. [Google Scholar] [CrossRef]
- Tesfaye, B.; Abebaw, A.; Reddy, M.U. Determination of Cholesterol and β-Carotene Content in Some Selected Edible Oils. Int. J. Innov. Sci. Res. Technol. 2017, 2, 14–18. [Google Scholar]
- Paninski, L. Estimation of Entropy and Mutual Information. Neural Comput. 2003, 15, 1191–1253. [Google Scholar] [CrossRef]
Aldehyde | Molar Mass, g/mol | Chemical Formula | Formation Path | RT |
---|---|---|---|---|
Pentanal | 86.13 | C5H10O | Truncation | 3.11 |
Hexanal | 100.16 | C6H12O | Truncation | 3.73 |
Octenal | 126.20 | C8H14O | Truncation | 5.09 |
Hydroxynonenal | 156.11 | C9H16O2 | Truncation | 3.73 |
Hydroxy Octadecanal | 284.48 | C18H36O2 | Truncation OH addition | 12.59 |
PC (1:0/20:4 <oxo@C1>) | 571.68 | C29H50NO8P | Truncation | 25.52 |
PC (P-18:1/5:0 <oxo@C5>) | 605.78 | C31H60NO8P | Truncation | 11.19 |
PC (P-18:0/11:2 <OH@C5>) | 659.83 | C34H62NO9P | Truncation OH addition | 11.61 |
1-LysoPC | 543.67 | C28H50NO7P | Truncation | 4.75 |
PC (P-18:0/20:4 <epoxy@sn2>) | 810.13 | C46H84NO8P | Epoxidation | 16.75 |
PC (P-18:0/20:4 <OH@C11>) | 810.13 | C46H84NO8P | OH addition | 17.21 |
PC (P-18:0/7:1 <oxo@C7>) | 631.82 | C33H62NO8P | Truncation | 10.14 |
Indices | Quantity |
---|---|
Mutatoxanthin, mg/100 g fresh weight (FW) | 0.33 ± 0.06 |
Lutein, mg/100 g FW | 0.38 ± 0.03 |
Zeaxanthin, mg/100 g FW | 2.54 ± 0.08 |
β-Cryptoxanthin, mg/100 g FW | 0.25 ± 0.04 |
cis-β-Carotene, mg/100 g FW | 0.14 ± 0.02 |
all-trans-β-Carotene mg/100 g FW | 0.45 ± 0.05 |
γ-Carotene, mg/100 g FW | 0.12 ± 0.01 |
Lycopene, mg/100 g FW | 0.11 ± 0.01 |
DPPH Antioxidant activity, mmol trolox equivalent (TE)/100 g FW | 144.2 ± 0.4 |
Parameter | Sunflower Oil | SLE | RLE | ||||||
---|---|---|---|---|---|---|---|---|---|
30 °C | 45 °C | 65 °C | 30 °C | 45 °C | 65 °C | 30 °C | 45 °C | 65 °C | |
Acid value, mg KOH/g | 0.17 ± 0.01 a,b | 0.17 ± 0.01 a,b | 0.18 ± 0.01 b,c | 0.19 ± 0.01 c,d | 0.20 ± 0.0 d | 0.20 ± 0.0 d | 0.21 ± 0.01 e,f | 0.21 ± 0.01 e,f | 0.22 ± 0.0 f |
Peroxide value, mmol O2/kg | 2.81 ± 0.01 c | 2.82 ± 0.0 c | 2.82 ± 0.0 c | 1.31 ± 0.02 a | 1.31 ± 0.02 a | 1.33 ± 0.01 a | 1.62 ± 0.01 b | 1.62 ± 0.01 b | 1.63 ± 0.01 b |
Content of conjugated dienes, µmol/g | 8.59 ± 0.05 c | 8.60 ± 0.06 c | 8.66 ± 0.05 c | 7.18 ± 0.06 a | 7.20 ± 0.05 a | 7.29 ± 0.06 a,b | 7.23 ± 0.04 a | 7.25 ± 0.06 a,b | 7.32 ± 0.05 b |
Conjugated triene content, µmol/g | 3.97 ± 0.02 b | 3.99 ± 0.03 b,c | 4.01 ± 0.04 b,c | 3.32 ± 0.02 a | 3.34 ± 0.03 a | 3.37 ± 0.02 a | 3.36 ± 0.02 a | 3.37 ± 0.03 a | 3.40 ± 0.0 a |
p-anisidine value, u.c. | 0.848 ± 0.001 e,f | 0.848 ± 0.001e,f | 0.849 ± 0.0 f | 0.841 ± 0.001 a,b | 0.841 ± 0.001 a,b | 0.842 ± 0.0 b | 0.844 ± 0.001 c,d | 0.844 ± 0.001 c,d | 0.845 ± 0.0 d |
β-Carotene, mg/100 g DW | nd | nd | nd | 7.58 ± 0.02 a | 8.45 ± 0.05 b | 7.47 ± 0.09 a | 20.59 ± 0.18 c | 21.56 ± 0.15 c | 19.70 ± 0.11 c |
Lycopene, mg/100 g DW | nd | nd | nd | 8.42 ± 0.08 a | 9.40 ± 0.09 b | 8.31 ± 0.08 a | 22.88 ± 0.12 d | 24.01 ± 0.17 d | 21.94 ± 0.16 c |
Zeaxanthin, mg/100 g DW | nd | nd | nd | 8.57 ± 0.07 a | 9.55 ± 0.09 a,b | 8.44 ± 0.09 a | 23.26 ± 0.15 c | 24.36 ± 0.14 c | 22.26 ± 0.19 c |
β-Cryptoxanthin, mg/100 g DW | nd | nd | nd | 7.95 ± 0.05 a | 8.87 ± 0.09 a | 7.80 ± 0.08 a | 21.65 ± 0.09 b | 22.68 ± 0.07 b | 20.75 ± 0.09 b |
Lutein, mg/100 g DW | nd | nd | nd | 6.95 ± 0.03 a,b | 7.76 ± 0.05 c | 6.84 ± 0.06 a | nd | nd | nd |
Parameter | Research Period | Name of the Sample | ||
---|---|---|---|---|
Sunflower Oil | SLE | RLE | ||
Acid value, mg KOH/g | Initial | 0.17 ± 0.01 a,b | 0.20 ± 0.0 d | 0.21 ± 0.01 e,f |
3 months | 0.17 ± 0.01 a,b | 0.20 ± 0.0 d | 0.21 ± 0.01 e,f | |
6 months | 0.18 ± 0.0 b | 0.21 ± 0.01 e,f | 0.21 ± 0.01 e,f | |
9 months | 0.19 ± 0.01 c,d | 0.21 ± 0.01 e,f | 0.22 ± 0.01 f,g | |
12 months | 0.21 ± 0.01 e,f | 0.22 ± 0.01 f,g | 0.23 ± 0.0 g | |
Peroxide value, mmol O2/kg | Initial | 2.82 ± 0.04 c | 1.31 ± 0.06 a | 1.62 ± 0.05 b |
3 months | 3.05 ± 0.05 d | 1.53 ± 0.05 a,b | 1.95 ± 0.04 b | |
6 months | 3.81 ± 0.02 e | 1.92 ± 0.07 b | 2.51 ± 0.01 c | |
9 months | 4.64 ± 0.05 f | 2.56 ± 0.05 c | 2.93 ± 0.07 c | |
12 months | 5.12 ± 0.06 g | 3.24 ± 0.08 d | 3.71 ± 0.05 e | |
Conjugated diene content, µmol/g | Initial | 8.60 ± 0.19 b | 7.20 ± 0.11 a | 7.25 ± 0.12 a |
3 months | 9.84 ± 0.17 d | 8.32 ± 0.17 b | 8.76 ± 0.11 b,c | |
6 months | 11.32 ± 0.14 f | 8.98 ± 0.14 c | 9.51 ± 0.16 d,c | |
9 months | 12.47 ± 0.18 g | 9.81 ± 0.18 d | 10.39 ± 0.18 e | |
12 months | 13.66 ± 0.17 h | 10.95 ± 0.14 f | 11.31 ± 0.12 f | |
Conjugated triene content, µmol/g | Initial | 3.99 ± 0.04 b,c | 3.34 ± 0.04 a | 3.37 ± 0.03 a |
3 months | 4.64 ± 0.05 d | 3.92 ± 0.07 b | 4.13 ± 0.06 b,c | |
6 months | 5.34 ± 0.03 f | 4.24 ± 0.05 c | 4.49 ± 0.07 c,d | |
9 months | 5.88 ± 0.04 g | 4.63 ± 0.02 d | 4.90 ± 0.08 e | |
12 months | 6.35 ± 0.05 h | 5.09 ± 0.08 e,f | 5.33 ± 0.09 f | |
p-anisidine value, c.u. | Initial | 0.848 ± 0.006 a,b | 0.841 ± 0.009 a,b | 0.844 ± 0.007 a,b |
3 months | 0.883 ± 0.009 c | 0.858 ± 0.006 b | 0.862 ± 0.006 b | |
6 months | 0.928 ± 0.007 e | 0.898 ± 0.010 c,d | 0.902 ± 0.009 d | |
9 months | 0.956 ± 0.008 f | 0.921 ± 0.009 d,e | 0.947 ± 0.005 f | |
12 months | 1.087 ± 0.005 h | 0.986 ± 0.008 g | 0.991 ± 0.004 g | |
β-Carotene, mg/100 g DW | Initial | nd | 8.45 ± 0.95 b | 21.56 ± 0.04 e |
3 months | nd | 7.33 ± 0.62 b | 18.44 ± 0.78 d,e | |
6 months | nd | 7.01 ± 0.78 a,b | 17.87 ± 0.52 d | |
9 months | nd | 6.78 ± 0.67 a,b | 16.91 ± 0.68 c,d | |
12 months | nd | 6.51 ± 0.50 a | 16.26 ± 0.82 c,d | |
Lycopene, mg/100 g DW | Initial | nd | 9.40 ± 0.06 b | 24.01 ± 0.95 f |
3 months | nd | 7.85 ± 0.32 b | 20.04 ± 0.93 d,e | |
6 months | nd | 7.41 ± 0.64 a,b | 18.93 ± 0.56 d | |
9 months | nd | 6.91 ± 0.71 a,b | 17.58 ± 0.89 c,d | |
12 months | nd | 6.41 ± 0.89 a | 16.43 ± 0.78 c | |
Zeaxanthin, mg/100 g DW | Initial | nd | 9.55 ± 0.53 b | 24.36 ± 0.35 d |
3 months | nd | 8.28 ± 0.84 a,b | 20.83 ± 0.17 c | |
6 months | nd | 7.89 ± 0.55 a,b | 20.04 ± 0.64 c | |
9 months | nd | 7.54 ± 0.92 a,b | 19.62 ± 0.78 c | |
12 months | nd | 7.35 ± 0.64 a | 18.38 ± 0.33 c | |
β-Cryptoxanthin, mg/100 g DW | Initial | nd | 8.87 ± 0.70 b | 22.68 ± 0.57 e |
3 months | nd | 7.43 ± 0.84 a,b | 19.01 ± 0.19 d | |
6 months | nd | 7.16 ± 0.43 a,b | 17.58 ± 0.65 d | |
9 months | nd | 6.71 ± 0.56 a,b | 16.11 ± 0.59 c | |
12 months | nd | 6.26 ± 0.75 a | 14.96 ± 0.51 c | |
Lutein, mg/100 g DW | Initial | nd | 7.76 ± 0.05 e | nd |
3 months | nd | 6.52 ± 0.28 d | nd | |
6 months | nd | 6.14 ± 0.41 c,d | nd | |
9 months | nd | 5.58 ± 0.31 a,b | nd | |
12 months | nd | 5.29 ± 0.23 a | nd |
Compound | Retention Time (min) | Max Absorption (nm) |
---|---|---|
Mutatoxanthin | 7.572 | 400, 425, 448 |
Lutein | 8.130 | 421, 445, 473 |
Zeaxanthin | 10.406 | 426, 450, 476 |
β-Cryptoxanthin | 37.622 | 428, 451, 476 |
cis-β-Carotene | 70.144 | 424, 446, 472 |
all-trans-β-Carotene | 75.181 | 421, 452, 478 |
γ-Carotene | 83.695 | 434, 461, 488 |
Lycopene | 98.317 | 448, 471, 503 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ghendov-Mosanu, A.; Popovici, V.; Constantinescu, C.G.; Deseatnicova, O.; Siminiuc, R.; Subotin, I.; Druta, R.; Pintea, A.; Socaciu, C.; Sturza, R. Stabilization of Sunflower Oil with Biologically Active Compounds from Berries. Molecules 2023, 28, 3596. https://doi.org/10.3390/molecules28083596
Ghendov-Mosanu A, Popovici V, Constantinescu CG, Deseatnicova O, Siminiuc R, Subotin I, Druta R, Pintea A, Socaciu C, Sturza R. Stabilization of Sunflower Oil with Biologically Active Compounds from Berries. Molecules. 2023; 28(8):3596. https://doi.org/10.3390/molecules28083596
Chicago/Turabian StyleGhendov-Mosanu, Aliona, Violina Popovici, Cristina Gabriela Constantinescu (Pop), Olga Deseatnicova, Rodica Siminiuc, Iurie Subotin, Raisa Druta, Adela Pintea, Carmen Socaciu, and Rodica Sturza. 2023. "Stabilization of Sunflower Oil with Biologically Active Compounds from Berries" Molecules 28, no. 8: 3596. https://doi.org/10.3390/molecules28083596
APA StyleGhendov-Mosanu, A., Popovici, V., Constantinescu, C. G., Deseatnicova, O., Siminiuc, R., Subotin, I., Druta, R., Pintea, A., Socaciu, C., & Sturza, R. (2023). Stabilization of Sunflower Oil with Biologically Active Compounds from Berries. Molecules, 28(8), 3596. https://doi.org/10.3390/molecules28083596