Hypolipidemic and Anti-Atherogenic Effects of Sesamol and Possible Mechanisms of Action: A Comprehensive Review
Abstract
:1. Introduction
2. Search Methodology
3. Effects of Sesamol on Lipid Profile
4. Possible Mechanisms of Action Modulating the Hypolipidemic Role of Sesamol
4.1. Effects of Sesamol on Fatty Acid Synthesis
4.2. Effects of Sesamol on Fatty Acid Oxidation
4.3. Effects of Sesamol on Cholesterol Metabolism
4.4. Macrophage Cholesterol Efflux
5. Clinical Significance and Design of Preclinical, Clinical, and Preventive Studies on the Hypolipidemic Effects of Sesamol
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Alloubani, A.; Nimer, R.; Samara, R. Relationship between Hyperlipidemia, Cardiovascular Disease and Stroke: A Systematic Review. Curr. Cardiol. Rev. 2021, 17, 52–66. [Google Scholar]
- Li, Z.-Z.; Huang, Q.; Yang, X.; Zeng, J.; Wang, Q.-H.; Tang, H.-M.; Yu, Z.; Song, Y.-Q.; Liu, Y. Cholesterol Metabolic Markers for Differential Evaluation of Patients with Hyperlipidemia and Familial Hypercholesterolemia. Dis. Markers 2022, 2022, 2008556. [Google Scholar] [CrossRef]
- Vekic, J.; Zeljkovic, A.; Cicero, A.F.G.; Janez, A.; Stoian, A.P.; Sonmez, A.; Rizzo, M. Atherosclerosis Development and Progression: The Role of Atherogenic Small, Dense LDL. Medicina 2022, 58, 299. [Google Scholar] [CrossRef]
- Thompson, P.D.; Panza, G.; Zaleski, A.; Taylor, B. Statin-Associated Side Effects. J. Am. Coll. Cardiol. 2016, 67, 2395–2410. [Google Scholar] [CrossRef] [PubMed]
- Sattar, N.; Preiss, D.; Murray, H.M.; Welsh, P.; Buckley, B.M.; de Craen, A.J.; Seshasai, S.R.; McMurray, J.J.; Freeman, D.J.; Jukema, J.W.; et al. Statins and Risk of Incident Diabetes: A Collaborative Meta-Analysis of Randomised Statin Trials. Lancet 2010, 375, 735–742. [Google Scholar] [CrossRef]
- Desam, N.R.; Al-Rajab, A.J. Herbal Biomolecules: Anticancer Agents. In Herbal Biomolecules in Healthcare Application; Academic Press: Cambridge, MA, USA, 2022; pp. 435–474. [Google Scholar]
- Parikh, M.; Netticadan, T.; Pierce, G.N. Flaxseed: Its Bioactive Components and Their Cardiovascular Benefits. Am. J. Physiol.-Heart Circ. 2018, 314, H146–H159. [Google Scholar] [CrossRef] [PubMed]
- Anilakumar, K.R.; Pal, A.; Khanum, F.; Bawa, A.S. Nutritional, Medicinal and Industrial Uses of Sesame (Sesamum indicum L.) seeds-an overview. Agric. Conspec. Sci. 2010, 75, 159–168. [Google Scholar]
- Wang, J.S.; Tsai, P.H.; Tseng, K.F.; Chen, F.Y.; Yang, W.C.; Shen, M.Y. Sesamol Ameliorates Renal Injury-Mediated Atherosclerosis via Inhibition of Oxidative Stress/IKKα/p53. Antioxidants 2021, 10, 1519. [Google Scholar] [CrossRef] [PubMed]
- Andargie, M.; Vinas, M.; Rathgeb, A.; Möller, E.; Karlovsky, P. Lignans of Sesame (Sesamum Indicum L.): A Comprehensive Review. Molecules 2021, 26, 883. [Google Scholar] [CrossRef]
- Wu, M.S.; Aquino, L.B.; Barbaza, M.Y.; Hsieh, C.L.; Castro-Cruz, K.A.; Yang, L.L.; Tsai, P.W. Anti-Inflammatory and Anticancer Properties of Bioactive Compounds from Sesamum indicum L.-A Review. Molecules 2019, 24, 4426. [Google Scholar] [CrossRef]
- Wei, P.; Zhao, F.; Wang, Z.; Wang, Q.; Chai, X.; Hou, G.; Meng, Q. Sesame (Sesamum indicum L.): A Comprehensive Review of Nutritional Value, Phytochemical Composition, Health Benefits, Development of Food, and Industrial Applications. Nutrients 2022, 14, 4079. [Google Scholar] [CrossRef] [PubMed]
- Siriwarin, B.; Weerapreeyakul, N. Sesamol Induced Apoptotic Effect in Lung Adenocarcinoma Cells through both Intrinsic and Extrinsic Pathways. Chem. Biol. Interact. 2016, 254, 109–116. [Google Scholar] [CrossRef] [PubMed]
- Srisayam, M.; Weerapreeyakul, N.; Barusrux, S.; Kanokmedhakul, K. Antioxidant, Antimelanogenic, and Skin-Protective Effect of Sesamol. J. Cosmet. Sci. 2014, 65, 69–79. [Google Scholar]
- Liou, C.-J.; Chen, Y.-L.; Yu, M.-C.; Yeh, K.-W.; Shen, S.-C.; Huang, W.-C. Sesamol Alleviates Airway Hyperresponsiveness and Oxidative Stress in Asthmatic Mice. Antioxidants 2020, 9, 295. [Google Scholar] [CrossRef]
- Bosebabu, B.; Cheruku, S.P.; Chamallamudi, M.R.; Nampoothiri, M.; Shenoy, R.R.; Nandakumar, K.; Parihar, V.K.; Kumar, N. An Appraisal of Current Pharmacological Perspectives of Sesamol: A Review. Mini Rev. Med. Chem. 2020, 20, 988–1000. [Google Scholar] [CrossRef] [PubMed]
- Zheng, W.; Song, Z.; Li, S.; Hu, M.; Shaukat, H.; Qin, H. Protective Effects of Sesamol against Liver Oxidative Stress and Inflammation in High-Fat Diet-Induced Hepatic Steatosis. Nutrients 2021, 13, 4484. [Google Scholar] [CrossRef] [PubMed]
- Kondamudi, P.K.; Kovelamudi, H.; Mathew, G.; Nayak, P.G.; Rao, C.M.; Shenoy, R.R. Modulatory Effects of Sesamol in Dinitrochlorobenzene-Induced Inflammatory Bowel Disorder in Albino Rats. Pharmacol. Rep. 2013, 65, 658–665. [Google Scholar] [CrossRef]
- Narasimhulu, C.A.; Selvarajan, K.; Litvinov, D.; Parthasarathy, S. Anti-Atherosclerotic and Anti-Inflammatory Actions of Sesame Oil. J. Med. Food. 2015, 18, 11–20. [Google Scholar] [CrossRef]
- Kapadia, G.J.; Azuine, M.A.; Tokuda, H.; Takasaki, M.; Mukainaka, T.; Konoshima, T.; Nishino, H. Chemopreventive Effect of Resveratrol, Sesamol, Sesame Oil and Sunflower Oil in the Epstein-Barr Virus Early Antigen Activation Assay and the Mouse Skin Two-Stage Carcinogenesis. Pharmacol. Res. 2002, 45, 499–505. [Google Scholar] [CrossRef]
- Majdalawieh, A.F.; Mansour, Z.R. Sesamol, a Major Lignan in Sesame Seeds (Sesamum indicum): Anti-Cancer Properties and Mechanisms of Action. Eur. J. Pharmacol. 2019, 855, 75–89. [Google Scholar] [CrossRef]
- Jayaraj, P.; Narasimhulu, C.A.; Rajagopalan, S.; Parthasarathy, S.; Desikan, R. Sesamol: A Powerful Functional Food Ingredient from Sesame Oil for Cardioprotection. Food Funct. 2020, 11, 1198–1210. [Google Scholar] [CrossRef] [PubMed]
- Tsai, P.H.; Chen, L.Z.; Tseng, K.F.; Chen, F.Y.; Shen, M.Y. Apolipoprotein C3-Rich Low-Density Lipoprotein Induces Endothelial Cell Senescence via FBXO31 and Its Inhibition by Sesamol In Vitro and In Vivo. Biomedicines 2022, 10, 854. [Google Scholar] [CrossRef] [PubMed]
- Ying, Z.; Kherada, N.; Kampfrath, T.; Mihai, G.; Simonetti, O.; Desikan, R.; Selvendiran, K.; Sun, Q.; Ziouzenkova, O.; Parthasarathy, S.; et al. A Modified Sesamol Derivative Inhibits Progression of Atherosclerosis. Arterioscler. Thromb. Vasc. Biol. 2011, 31, 536–542. [Google Scholar] [CrossRef]
- Yang, Y.; Qu, Y.; Lv, X.; Zhao, R.; Yu, J.; Hu, S.; Kang, J.; Zhang, Y.; Gong, Y.; Cui, T.; et al. Sesamol Supplementation Alleviates Nonalcoholic Steatohepatitis and Atherosclerosis in High-Fat, High Carbohydrate and High-Cholesterol Diet-Fed Rats. Food Funct. 2021, 12, 9347–9359. [Google Scholar] [CrossRef]
- Karr, S. Epidemiology and Management of Hyperlipidemia. Am. J. Manag. Care 2017, 23, S139–S148. [Google Scholar]
- Nelson, R.H. Hyperlipidemia as a Risk Factor for Cardiovascular Disease. Prim. Care-Clin. Off. Pract. 2013, 40, 195–211. [Google Scholar] [CrossRef]
- Cooney, M.T.; Dudina, A.; De Bacquer, D.; Wilhelmsen, L.; Sans, S.; Menotti, A.; De Backer, G.; Jousilahti, P.; Keil, U.; Thomsen, T.; et al. HDL Cholesterol Protects against Cardiovascular Disease in Both Genders, at All Ages and at All Levels of Risk. Atherosclerosis 2009, 206, 611–616. [Google Scholar] [CrossRef] [PubMed]
- Sharma, A.K.; Bharti, S.; Bhatia, J.; Nepal, S.; Malik, S.; Ray, R.; Kumari, S.; Arya, D.S. Sesamol Alleviates Diet-Induced Cardiometabolic Syndrome in Rats via Up-Regulating PPARγ, PPARα and E-NOS. J. Nutr. Biochem. 2012, 23, 1482–1489. [Google Scholar] [CrossRef]
- Qin, H.; Xu, H.; Yu, L.; Yang, L.; Lin, C.; Chen, J. Sesamol Intervention Ameliorates Obesity-Associated Metabolic Disorders by Regulating Hepatic Lipid Metabolism in High-Fat Diet-Induced Obese Mice. Food Nutr. Res. 2019, 63, 3637. [Google Scholar] [CrossRef]
- Lin, C.; Chen, J.; Hu, M.; Zheng, W.; Song, Z.; Qin, H. Sesamol Promotes Browning of White Adipocytes to Ameliorate Obesity by Inducing Mitochondrial Biogenesis and Inhibition Mitophagy via β3-AR/PKA Signaling Pathway. Food Nutr. Res. 2021, 65, 7577. [Google Scholar] [CrossRef]
- Chamallamudi, M.; John, J.; Nampoothiri, M.; Kumar, N.; Mudgal, J.; Nampurath, G. Sesamol, a Lipid Lowering Agent, Ameliorates Aluminium Chloride Induced Behavioral and Biochemical Alterations in Rats. Pharmacogn. Mag. 2015, 11, 327. [Google Scholar] [CrossRef]
- Kumar, N.; Mudgal, J.; Parihar, V.K.; Nayak, P.G.; Kutty, N.G.; Rao, C.M. Sesamol Treatment Reduces Plasma Cholesterol and Triacylglycerol Levels in Mouse Models of Acute and Chronic Hyperlipidemia. Lipids 2013, 48, 633–638. [Google Scholar] [CrossRef] [PubMed]
- Chen, W.-Y.; Chen, F.-Y.; Lee, A.-S.; Ting, K.-H.; Chang, C.-M.; Hsu, J.-F.; Lee, W.-S.; Sheu, J.-R.; Chen, C.-H.; Shen, M.-Y. Sesamol Reduces the Atherogenicity of Electronegative L5 LDL In Vivo and In Vitro. J. Nat. Prod. 2015, 78, 225–233. [Google Scholar] [CrossRef]
- Choi, S.H.; Ginsberg, H.N. Increased Very Low Density Lipoprotein (VLDL) Secretion, Hepatic Steatosis, and Insulin Resistance. Trends Endocrinol. Metab. 2011, 22, 353–363. [Google Scholar] [CrossRef] [PubMed]
- Vennila, L.; Pugalendi, K.V. Efficacy of Sesamol on Plasma and Tissue Lipids in Isoproterenol-Induced Cardiotoxicity in Wistar Rats. Arch. Pharmacal Res. 2012, 35, 1465–1470. [Google Scholar] [CrossRef] [PubMed]
- Chennuru, A.; Saleem, M.T.S. Antioxidant, Lipid Lowering, and Membrane Stabilization Effect of Sesamol against Doxorubicin-Induced Cardiomyopathy in Experimental Rats. BioMed Res. Int. 2013, 2013, 1–5. [Google Scholar] [CrossRef]
- Xu, H.-Y.; Yu, L.; Chen, J.-H.; Yang, L.-N.; Lin, C.; Shi, X.-Q.; Qin, H. Sesamol Alleviates Obesity-Related Hepatic Steatosis via Activating Hepatic PKA Pathway. Nutrients 2020, 12, 329. [Google Scholar] [CrossRef]
- Shi, L.; Karrar, E.; Wang, X. Sesamol Ameliorates Hepatic Lipid Accumulation and Oxidative Stress in Steatosis HepG2 Cells via the PPAR Signaling Pathway. J. Food Biochem. 2021, 45, e13976. [Google Scholar] [CrossRef]
- Xie, Y.-D.; Xu, Y.-H.; Liu, J.-P.; Wang, B.; Shi, Y.-H.; Wang, W.; Wang, X.-P.; Sun, M.; Xu, X.-Y.; Bian, X.-L. 1,3-Benzodioxole-Based Fibrate Derivatives as Potential Hypolipidemic and Hepatoprotective Agents. Bioorg. Med. Chem. Lett. 2021, 43, 127898. [Google Scholar] [CrossRef]
- Xie, Y.; Liu, J.; Shi, Y.; Wang, B.; Wang, X.; Wang, W.; Sun, M.; Xu, X.; He, S. Synthesis and Evaluation of New Sesamol-Based Phenolic Acid Derivatives with Hypolipidemic, Antioxidant, and Hepatoprotective Effects. Med. Chem. Res. 2021, 30, 1688–1702. [Google Scholar] [CrossRef]
- Xie, Y.; Liu, J.; Shi, Y.; Wang, B.; Wang, X.; Wang, W.; Sun, M.; Xu, X.; Jiang, H.; Guo, M.; et al. The Combination of Sesamol and Clofibric Acid Moieties Leads to a Novel Potent Hypolipidemic Agent with Antioxidant, Anti-Inflammatory and Hepatoprotective Activity. Bioorg. Med. Chem. Lett. 2021, 44, 128121. [Google Scholar] [CrossRef] [PubMed]
- Majdalawieh, A.F.; Dalibalta, S.; Yousef, S.M. Effects of Sesamin on Fatty Acid and Cholesterol Metabolism, Macrophage Cholesterol Homeostasis and Serum Lipid Profile: A Comprehensive Review. Eur. J. Pharmacol. 2020, 885, 173417. [Google Scholar] [CrossRef]
- Geerts, H. Of Mice and Men. CNS Drugs 2009, 23, 915–926. [Google Scholar] [CrossRef] [PubMed]
- Lai, M.; Chandrasekera, P.C.; Barnard, N.D. You Are What You Eat, or Are You? The Challenges of Translating High-Fat-Fed Rodents to Human Obesity and Diabetes. Nutr. Diabetes 2014, 4, e135. [Google Scholar] [CrossRef]
- Calder, P.C. Functional Roles of Fatty Acids and Their Effects on Human Health. JPEN J. Parenter. Enter. Nutr. 2015, 39 (Suppl. 1), 18S32S. [Google Scholar] [CrossRef]
- Siri-Tarino, P.W.; Sun, Q.; Hu, F.B.; Krauss, R.M. Saturated Fat, Carbohydrate, and Cardiovascular Disease. Am. J. Clin. Nutr. 2010, 91, 502–509. [Google Scholar] [CrossRef] [PubMed]
- Go, G.; Sung, J.-S.; Jee, S.-C.; Kim, M.; Jang, W.-H.; Kang, K.-Y.; Kim, D.-Y.; Lee, S.; Shin, H.-S. In Vitro Anti-Obesity Effects of Sesamol Mediated by Adenosine Monophosphate-Activated Protein Kinase and Mitogen-Activated Protein Kinase Signaling in 3T3-L1 Cells. Food Sci. Biotechnol. 2017, 26, 195–200. [Google Scholar] [CrossRef]
- Chavali, S.R.; Forse, R.A. Decreased Production of Interleukin-6 and Prostaglandin E2 Associated with Inhibition of Delta5 Desaturation of ω6 Fatty Acids in Mice Fed Safflower Oil Diets Supplemented with Sesamol. Prostaglandins Leukot. Essent. Fat. Acids 1999, 61, 347–352. [Google Scholar] [CrossRef] [PubMed]
- Wynn, J.P.; Kendrick, A.; Ratledge, C. Sesamol as an Inhibitor of Growth and Lipid Metabolism in Mucor Circinelloides via Its Action on Malic Enzyme. Lipids 1997, 32, 605–610. [Google Scholar] [CrossRef] [PubMed]
- Liu, B.; Liu, J.; Sun, P.; Ma, X.; Jiang, Y.; Chen, F. Sesamol Enhances Cell Growth and the Biosynthesis and Accumulation of Docosahexaenoic Acid in the Microalga Crypthecodinium Cohnii. J. Agric. Food Chem. 2015, 63, 5640–5645. [Google Scholar] [CrossRef]
- Khan, S.; Choudhary, S.; Kumar, A.; Tripathi, A.M.; Alok, A.; Adhikari, J.S.; Rizvi, M.A.; Chaudhury, N.K. Evaluation of Sesamol-Induced Histopathological, Biochemical, Haematological and Genomic Alteration after Acute Oral Toxicity in Female C57bl/6 Mice. Toxicol. Rep. 2016, 3, 880–894. [Google Scholar] [CrossRef]
- Bao, Z.; Zhu, Y.; Feng, Y.; Zhang, K.; Zhang, M.; Wang, Z.; Yu, L. Enhancement of Lipid Accumulation and Docosahexaenoic Acid Synthesis in Schizochytrium Sp. H016 by Exogenous Supplementation of Sesamol. Bioresour. Technol. 2022, 345, 126527. [Google Scholar] [CrossRef]
- Jiang, P.; Du, W.; Mancuso, A.; Wellen, K.E.; Yang, X. Reciprocal Regulation of p53 and Malic Enzymes Modulates Metabolism and Senescence. Nature 2013, 493, 689–693. [Google Scholar] [CrossRef] [PubMed]
- Ide, T.; Azechi, A.; Kitade, S.; Kunimatsu, Y.; Suzuki, N.; Nakajima, C. Combined Effect of Sesamin and α-Lipoic Acid on Hepatic Fatty Acid Metabolism in Rats. Eur. J. Nutr. 2012, 52, 1015–1027. [Google Scholar] [CrossRef] [PubMed]
- van Raalte, D.H.; Li, M.; Pritchard, P.H.; Wasan, K.M. Peroxisome Proliferator-Activated Receptor (PPAR)-Alpha: A Pharmacological Target with a Promising Future. Pharm. Res. 2004, 21, 1531–1538. [Google Scholar] [CrossRef]
- Schlaepfer, I.R.; Joshi, M. CPT1A-Mediated Fat Oxidation, Mechanisms, and Therapeutic Potential. Endocrinology 2020, 161, bqz046. [Google Scholar] [CrossRef]
- Liu, Z.; Qiao, Q.; Sun, Y.; Chen, Y.; Ren, B.; Liu, X. Sesamol Ameliorates Diet-Induced Obesity in C57BL/6J Mice and Suppresses Adipogenesis in 3T3-L1 Cells via Regulating Mitochondria-Lipid Metabolism. Mol. Nutr. Food Res. 2017, 61, 1600717. [Google Scholar] [CrossRef] [PubMed]
- Kim, M.; Lee, Y.-J.; Jee, S.-C.; Choi, I.; Sung, J.-S. Anti-Adipogenic Effects of Sesamol on Human Mesenchymal Stem Cells. Biochem. Biophys. Res. Commun. 2016, 469, 49–54. [Google Scholar] [CrossRef]
- Cortes, V.A.; Busso, D.; Maiz, A.; Arteaga, A.; Nervi, F.; Rigotti, A. Physiological and Pathological Implications of Cholesterol. Front. Biosci. 2014, 19, 416. [Google Scholar] [CrossRef]
- Ruotsalainen, A.-K.; Mäkinen, P.; Ylä-Herttuala, S. Novel RNAi-Based Therapies for Atherosclerosis. Curr. Atheroscler. Rep. 2021, 23, 45. [Google Scholar] [CrossRef]
- Pullinger, C.R.; Eng, C.; Salen, G.; Shefer, S.; Batta, A.K.; Erickson, S.K.; Verhagen, A.; Rivera, C.R.; Mulvihill, S.J.; Malloy, M.J.; et al. Human Cholesterol 7α-Hydroxylase (CYP7A1) Deficiency Has a Hypercholesterolemic Phenotype. J. Clin. Investig. 2002, 110, 109–117. [Google Scholar] [CrossRef] [PubMed]
- Majdalawieh, A.F.; Ro, H.-S. Sesamol and Sesame (Sesamum indicum) Oil Enhance Macrophage Cholesterol Efflux via Up-Regulation of PPARγ1 and LXRα Transcriptional Activity in a MAPK-Dependent Manner. Eur. J. Nutr. 2014, 54, 691–700. [Google Scholar] [CrossRef] [PubMed]
Main Effect | Experimental Model | Dosage | Administration Mode | Administration Duration | Ref. |
---|---|---|---|---|---|
| Male Wistar albino rats | 2, 4, and 8 mg/kg/day | Oral gavage | Treatment for 30 days | [29] |
| Male C57BL/6J mice | 100 mg/kg body weight/day | Gavage | Treatment for 4 weeks | [30] |
| Male C57BL/6J mice | 100 mg/kg body weight/day | Gavage | Treatment for 8 weeks | [31] |
| Male Wistar rats | 10 and 20 mg/kg | Oral administration | Pretreatment for 60 days (45 min prior to administering AlCl3) | [32] |
| Male Swiss Albino mice | 100 and 200 mg/kg (Acute model) 200 mg/kg (Tyloxapol-induced mice) 50 and 100 mg/kg (HFFD-induced mice) | Oral administration | Treatment for 240 min (Acute model) Treatment for 24 h (Tyloxapol-induced mice) Treatment for 45 days (HFD-induced mice) | [33] |
| Male Syrian hamsters | 50 or 100 mg/kg | Oral gavage | Treatment for 16 weeks | [34] |
| Male Albino Wistar rats | 50, 100, and 200 mg/kg of body weight | Intraperitoneal administration | Treatment for 7 days | [36] |
| Albino Wistar rats | 50 mg/kg of body weight | Not available | Pretreatment for 7 days | [37] |
| Male C57BL/6J mice | 100 mg/kg body weight/day | Gavage | Treatment for 8 weeks | [38] |
| HepG2 cells | 0.75, 1.5, and 3 μg/mL | Not available | Treatment for 36 h | [39] |
| Hyperlipidemic mice | N/A (sesamol-based fibrate derivative compound 12) | Not available | Not available | [40] |
| KM mice | 0.36 mmol/kg (compounds T1–T15) | Intragastric administration | Treatment for 7 days | [41] |
KM mice | 0.36 mmol/kg (compound T6) | Intragastric administration | Treatment for 4 weeks | ||
| KM mice | 0.36 mmol/kg (CF-sesamol) | Intragastric administration | Treatment for 1 month | [42] |
Main Effect | Experimental Model | Dosage | Administration Mode | Administration Duration | Ref. |
---|---|---|---|---|---|
| 3T3-L1 cells | 0, 50, 100, and 150 μM | Not available | Treatment for 24 h | [48] |
| Male Wistar albino rats | 2, 4, and 8 mg/kg/day | Oral gavage | Treatment for 30 days | [29] |
| HepG2 cells | 0.75, 1.5, and 3 μg/mL | Not available | Treatment for 36 h | [39] |
| Female BALB/c mice | 1 wt% | Oral administration | Treatment for 14 days | [49] |
| Mucor circinelloides | 0–10.1 mM | Not available | Not available | [50] |
| Crypthecodinium cohniiz | 0.5, 1, 1.5, and 2 mM | Not available | Not available | [51] |
| Schizochytrium sp. H016 | 0.5–7 mM | Not available | Not available | [52] |
Main Effect | Experimental Model | Dosage | Administration Mode | Administration Duration | Ref. |
---|---|---|---|---|---|
| 3T3-L1 cells | 0, 50, 100, and 150 μM | Not available | Treatment for 24 h | [48] |
| Male C57BL/6J mice | 100 mg/kg body weight/day (C57BL/6J mice) | Gavage (C57BL/6J mice) | Treatment for 8 weeks (C57BL/6J mice) | [38] |
HepG2 cells | 12.5, 25, and 50 µM | N/A (HepG2 cells) | Treatment for 24 h (HepG2 cells) | ||
| HepG2 cells | 0.75, 1.5, and 3 μg/mL | Not available | Treatment for 36 h | [39] |
| C57BL/6J mice | 0.05% w/v | Oral administration | Treatment for 12 weeks | [58] |
| Male C57BL/6J mice | 100 mg/kg body weight/day | Gavage | Treatment for 4 weeks | [30] |
| hMSCs | 1, 10, 50, and 100 mM | Not available | Treatment for 14 days | [59] |
Main Effect | Experimental Model | Dosage | Administration Mode | Administration Duration | Ref. |
---|---|---|---|---|---|
| C57BL/6J mice | 0.05% w/v | Oral administration | Treatment for 12 weeks | [58] |
| HepG2 cells | 0.75, 1.5, and 3 μg/mL | Not available | Treatment for 36 h | [39] |
Main Effect | Experimental Model | Dosage | Administration Mode | Administration Duration | Ref. |
---|---|---|---|---|---|
| CHO cells | 25, 50, 75, and 100 μM | Not available | Treatment for 24 h | [63] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Majdalawieh, A.F.; Eltayeb, A.E.; Abu-Yousef, I.A.; Yousef, S.M. Hypolipidemic and Anti-Atherogenic Effects of Sesamol and Possible Mechanisms of Action: A Comprehensive Review. Molecules 2023, 28, 3567. https://doi.org/10.3390/molecules28083567
Majdalawieh AF, Eltayeb AE, Abu-Yousef IA, Yousef SM. Hypolipidemic and Anti-Atherogenic Effects of Sesamol and Possible Mechanisms of Action: A Comprehensive Review. Molecules. 2023; 28(8):3567. https://doi.org/10.3390/molecules28083567
Chicago/Turabian StyleMajdalawieh, Amin F., Aaram E. Eltayeb, Imad A. Abu-Yousef, and Sarah M. Yousef. 2023. "Hypolipidemic and Anti-Atherogenic Effects of Sesamol and Possible Mechanisms of Action: A Comprehensive Review" Molecules 28, no. 8: 3567. https://doi.org/10.3390/molecules28083567
APA StyleMajdalawieh, A. F., Eltayeb, A. E., Abu-Yousef, I. A., & Yousef, S. M. (2023). Hypolipidemic and Anti-Atherogenic Effects of Sesamol and Possible Mechanisms of Action: A Comprehensive Review. Molecules, 28(8), 3567. https://doi.org/10.3390/molecules28083567