Preparation and Biomedical Applications of Cucurbit[n]uril-Based Supramolecular Hydrogels
Abstract
:1. Introduction
2. Q[n]-Cross-Linked Polymer-Based Supramolecular Hydrogels
2.1. Hydrogels Driven by the Polymer Host–Guest Exclusion Interaction
2.2. Hydrogels Driven by the Polymer Host–Guest Inclusion Interaction
2.3. Q[n]-Derivative-Based Supramolecular Hydrogels by the Host–Guest Inclusion Interaction
3. Q[n]-Cross-Linked Small-Molecule-Based Supramolecular Hydrogels
3.1. Hydrogels Driven by the Outer-Surface Interaction
3.2. Hydrogels Driven by the Simple Molecule Exclusion Interaction
3.3. Hydrogels Driven by a Simple Molecule Inclusion Interaction
4. Biomedical Application
4.1. Cell Encapsulation
4.2. Biosensor
4.3. 3D Printing
4.4. Drug Release
4.5. Interfacial Adhesion
5. Conclusions and Future Prospects
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Yang, D.; Liu, M.; Xiao, X.; Tao, Z.; Redshaw, C. Polymeric self-assembled cucurbit[n]urils: Synthesis, structures and applications. Coord. Chem. Rev. 2021, 434, 213733. [Google Scholar] [CrossRef]
- Pochan, D.; Scherman, O.A. Introduction: Molecular self-assembly. Chem. Rev. 2021, 121, 13699–13700. [Google Scholar] [CrossRef] [PubMed]
- Diehl, F.; Hageneder, S.; Fossati, S.; Auer, S.K.; Dostalek, J.; Jonas, U. Plasmonic nanomaterials with responsive polymer hydrogels for sensing and actuation. Chem. Soc. Rev. 2022, 51, 3926–3963. [Google Scholar] [CrossRef] [PubMed]
- Han, F.; Gu, S.Y.; Klimas, A.; Zhao, N.; Zhao, Y.X.; Chen, S.C. Three-dimensional nanofabrication via ultrafast laser patterning and kinetically regulated material assembly. Science 2022, 378, 1325–1331. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Y.; Song, S.L.; Ren, X.Z.; Zhang, J.M.; Lin, Q.; Zhao, Y.L. Supramolecular adhesive hydrogels for tissue engineering application. Chem. Rev. 2022, 122, 5604–5640. [Google Scholar] [CrossRef]
- Nie, H.G.; Wei, Z.; Ni, X.L.; Liu, Y. Assembly and application of macrocyclic-confinement-derived supramolecular organic luminescent emissions from cucrubitruils. Chem. Rev. 2022, 122, 9032–9077. [Google Scholar] [CrossRef]
- Liu, J.X.; Chen, K.; Redshaw, C. Stimuli-responsive mechanically interlocked molecules constructed from cucurbit[n]uril homologues and derivatives. Chem. Soc. Rev. 2023, 52, 1428–1455. [Google Scholar] [CrossRef]
- Gao, R.H.; Huang, Y.; Chen, K.; Tao, Z. Cucurbit[n]uril/metal ion complex-based frameworks and their potential applications. Coord. Chem. Rev. 2021, 437, 213741. [Google Scholar] [CrossRef]
- Huang, Y.; Gao, R.H.; Liu, M.; Chen, L.X.; Ni, X.L.; Xiao, X.; Cong, H.; Zhu, Q.J.; Chen, K.; Tao, Z. Cucrubit[n]uril-based supramolecular frameworks assembled through outer-surface interactions. Angew. Chem. 2021, 60, 15166–15191. [Google Scholar] [CrossRef]
- Zhang, W.; Luo, Y.; Jia, M.H.; Ni, X.L.; Tao, Z.; Xiao, C.D.; Xiao, X. An efficient supramolecular artificial light-harvesting system based on twisted cucurbit[15]uril and cucurbit[10]uril for live cell imaging. Sens. Actuators B Chem. 2022, 366, 132006. [Google Scholar] [CrossRef]
- Li, S.; Jiang, N.; Zhao, W.; Ding, Y.F.; Zheng, Y.; Wang, L.H.; Zheng, J.; Wang, R. An eco-friendly in situ activatable antibiotic via cucurbit[8]uril-mediated supramolecular crosslinking of branched polyethylenimine. Chem. Commun. 2017, 53, 5870–5873. [Google Scholar] [CrossRef] [PubMed]
- Bai, H.; Yuan, H.; Nie, C.; Wang, B.; Lv, F.; Liu, L.; Wang, S. A supramolecular antibiotic switch for antibacterial regulation. Angew. Chem. Int. Ed. 2015, 54, 13208–13213. [Google Scholar] [CrossRef] [PubMed]
- Yin, H.; Wang, R. Applications of cucurbit[n]urils (n=7 or 8) in pharmaceutical sciences and complexation of biomolecules. Isr. J. Chem. 2018, 58, 188–198. [Google Scholar] [CrossRef]
- Wang, Z.Y.; Shui, M.J.; Wyman, I.W.; Zhang, Q.W.; Wang, R.B. Cucurbit[8]uril-based supramolecular hydrogels for biomedical application. RSC Med. Chem. 2021, 12, 722–729. [Google Scholar] [CrossRef]
- Redondo- Gómez, C.; Padilla-Lopátegui, S.; Mata, A.; Azevedo, H.S. Peptide amphiphile hydrogels based on homoternary cucurbit[8]uril host-guest complexes. Bioconjugate Chem. 2022, 33, 111–120. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Y.; Zhao, D.; Li, Z.Y.; Liu, G.; Feng, S.H.; Zhao, B.T.; Ji, B.M. Cucurbit[8]uril mediated ultralong purely organic phosphorescence and excellent mechanical strength performance in double-network supramolecular hydrogels. Dyes Pigment. 2021, 195, 109725. [Google Scholar] [CrossRef]
- Zhang, J.; Hou, S.Z.; Chen, Y.R.; Zhou, J.; Chen, H.; Tan, Y.B. Dual-cross-linked dynamic hydrogels with cucurbit[8]uril and imine likages. Soft Matter 2019, 15, 9797–9804. [Google Scholar] [CrossRef]
- Chang, Y.Z.; Chen, Y.; Liu, Y. Multicolor luminescent supramolecular hydrogels based on cucurbit[8]uril and OPV derivative. Soft Matter 2019, 15, 9881–9885. [Google Scholar] [CrossRef]
- Liu, Z.X.; Lin, W.J.; Liu, Y. Macrocyclic supramolecular assemblies based on hyaluronic acid and their biological applications. Acc. Chem. Res. 2022, 55, 3417–3429. [Google Scholar] [CrossRef]
- Liu, J.; Tan, C.S.Y.; Lan, Y.; Scherman, O.A. Anqueous polymer self-assembley based on cucurbit[n]uril-mediated host-guest interactions. Mocromolecular Chem. Phys. 2016, 217, 319–332. [Google Scholar] [CrossRef]
- Chen, H.; Ma, H.; Chieng, Y.Y.; Hou, S.Z.; Li, X.; Tan, Y.B. Aggregation and thermal gelation of N-isopropylacrylamide based cucurbit[7]uril side-chain polypseudorotaxanes with low pseudorotaxane content. RSC Adv. 2015, 5, 20684–20690. [Google Scholar] [CrossRef]
- Wang, W.Z.; Gao, C.; Zhang, Q.; Ye, X.H.; Qu, D.H. Supramolecular helical nanofibers formed by achiral monomers and their reversible sol-gel transition. Chem.-Asian J. 2017, 12, 410–414. [Google Scholar] [CrossRef] [PubMed]
- Ma, H.L.; Chen, H.; Hou, S.Z.; Tan, Y.B. Tuning thermal gelling behavior of N-isopropylacrylamide based copolymer through introducing cucurbit[8]uril ternary complex on side chain. Chin. J. Polym. Sci. 2016, 34, 1251–1260. [Google Scholar] [CrossRef]
- Yang, Q.; Lv, J.; Li, P.Y. A pH-responsive self-healing gel with crosslinking of cucurbituril (CB[n]) via hydrogen bonding. Chem. Lett. 2018, 47, 192–195. [Google Scholar] [CrossRef]
- Cao, J.; Meng, L.W.; Zhang, S.; Li, Z.H.; Jiang, J.; Lv, X.Y. Self-healing supramolecular hydrogels fabricated by cucurbit[8]uril-enhanced π-π interaction. Int. J. Polym. Mater. Polym. Biomater. 2016, 65, 537–542. [Google Scholar] [CrossRef]
- Tan, C.S.Y.; Liu, J.; Groombridge, A.S.; Barrow, S.J.; Dreiss, C.A.; Scherman, O.A. Controlling spatiotemporal mechanics of supramolecular hydrogel networks with highly branched cucurbit[8]uril polyrotaxanes. Adv. Funct. Mater. 2018, 28, 1702994. [Google Scholar] [CrossRef]
- Liu, J.; Scherman, O.A. Cucurbit[n]uril supramolecular hydrogel networks as tough and healable adhesives. Adv. Funct. Mater. 2018, 28, 1800848. [Google Scholar] [CrossRef]
- Meng, Z.J.; Liu, J.; Yu, Z.Y.; Zhou, H.T.; Deng, X.; Abell, C.; Scherman, O.A. Viscoelastic hydrogel microfibers exploiting cucurbit[8]uril host-guest chemistry and microfluidics. ACS Appl. Mater. Interfaces 2020, 12, 17929–17935. [Google Scholar] [CrossRef]
- Appel, E.A.; Biedermann, F.; Rauwald, U.; Jones, S.T.; Zayed, J.M.; Scherman, O.A. Supramolecular cross-linked networks via host-guest complexation with cucurbit[8]uril. J. Am. Chem. Soc. 2010, 132, 14251–14260. [Google Scholar] [CrossRef]
- Appel, E.A.; Loh, X.J.; Jones, S.T.; Biedermann, F.; Dreiss, C.A.; Scherman, O.A. Ultrahigh-water-content supramolecular hydrogels exhibiting multistimuli responsiveness. J. Am. Chem. Soc. 2012, 134, 11767–11773. [Google Scholar] [CrossRef]
- Rowland, M.; Appel, E.A.; Coulston, R.J.; Scherman, O.A. Dynamically crosslinked materials via recognition of amino acids by cucurbit[8]uril. J. Mater. Chem. B Mater. Biol. Med. 2013, 1, 2904–2910. [Google Scholar] [CrossRef] [PubMed]
- Mckee, J.R.; Appel, E.A.; Seitsonen, J.; Kontturi, E.; Scherman, O.A.; Ikkala, O. Healable stable and stiff hydrogels: Combining conflicting properties using dynamic and selective three-component recognition with reinforcing cellulose nanorods. Adv. Funct. Mater. 2014, 24, 2706–2713. [Google Scholar] [CrossRef]
- Li, C.; Rowland, M.J.; Shao, Y.; Cao, T.Y.; Chen, C.; Jia, H.Y.; Zhou, X.; Yang, Z.Q.; Scherman, O.A.; Liu, D.S. Responsive double network hydrogels of interpenetrating DNA and CB[8] host-guest supramolecular systems. Adv. Mater. 2015, 27, 3298–3304. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Tan, C.S.Y.; Yu, Z.Y.; Li, N.; Abell, C.; Scherman, O.A. Tough supramolecular polymer networks with extreme stretchability and fast room-temperature self-healing. Adv. Mater. 2017, 29, 1605325. [Google Scholar] [CrossRef]
- Zou, L.; Webber, M.J. Reversible hydrogel dynamics by physical-chemical crosslink photoswitching using a supramolecular macrocycle template. Chem. Commun. 2019, 55, 9931–9934. [Google Scholar] [CrossRef]
- Zhang, X.Z.; Liu, Y.X.; Wen, J.W.; Zhao, Z.Y.; Chen, H.X.; Liu, X.H.; Liu, S.M. Host-guest interaction-mediated fabrication of a hybrid microsphere-structured supramolecular hydrogel showing high mechanical strength. Soft Matter 2020, 16, 3416–3424. [Google Scholar] [CrossRef]
- Park, K.M.; Yang, J.A.; Jung, H.; Yeom, J.; Park, K.H.; Hoffman, A.S.; Hahn, S.K.; Kim, K. In situ supramolecular assembly and modular modification of hyaluronic acid hydrogels for 3D cellular engineering. ACS Nano 2012, 6, 2960–2968. [Google Scholar] [CrossRef]
- Jung, H.; Park, J.S.; Yeom, J.; Selvapalam, N.; Park, K.M.; Oh, K.; Yang, J.-A.; Park, K.H.; Hahn, S.K.; Kim, K. 3D tissue engineered supramolecular hydrogels for controlled chondrogenesis of human mesen-chymal stem cells. Biomacromolecules 2014, 15, 707–714. [Google Scholar] [CrossRef]
- Yeom, J.; Kim, S.J.; Jung, H.; Namkoong, H.; Yang, J.; Hwang, B.W.; Oh, K.; Kim, K.; Sung, Y.C.; Hahn, S.K. Supramolecular hydrogels for long-term bioengineered stem cell therapy. Adv. Heathcare Mater. 2015, 4, 237–244. [Google Scholar] [CrossRef]
- Hwang, I.; Jeon, W.S.; Kim, H.-J.; Kim, D.; Kim, H.; Selvapalam, N.; Fujita, N.; Shinkai, S.; Kim, K. Cucurbit[7]uril: A simple macrocyclic, pH-triggered hydrogelator exhibiting guest-induced stimuli-responsive behavior. Angew. Chem. Int. Ed. 2007, 46, 210–213. [Google Scholar] [CrossRef]
- Guo, H.L.; Yang, S.D.; Cao, L.; Chen, L.X.; Gao, R.H.; Huang, Y.; Xue, B.; Tao, Z. Multiple stimuli-responsive supramolecular hydrogels constructed by decamethylcucurbit[5]uril-para-phenylenediamine exclusion complex. Macromol. Rapid Commun. 2021, 42, 2100431. [Google Scholar] [CrossRef] [PubMed]
- Sun, X.R.; Yang, H.P.; Zhang, W.; Zhang, S.; Hu, J.H.; Liu, M.; Zeng, X.; Li, Q.; Redshaw, C.; Tao, Z.; et al. Supramolecular Room-Temperature Phosphorescent Hydrogel Based on Hexamethyl cucurbit[5]uril for cell imaging. ACS Appl. Mater. Interfaces 2023, 15, 4668–4676. [Google Scholar] [CrossRef] [PubMed]
- Groombridge, A.S.; Palma, A.; Parker, R.M.; Abell, C.; Scherman, O.A. Aqueous interfacial gels assembled from small molecule supramolecular polymers. Chem. Sci. 2017, 8, 1350–1355. [Google Scholar] [CrossRef] [PubMed]
- Jin, J.H.; Cai, L.L.; Jia, Y.G.; Liu, S.; Chen, Y.H.; Ren, L. Progress in self-healing hydrogels assembled by host-guest interactions: Preparation and biomedical applications. J. Mater. Chem. B 2019, 7, 1637–1651. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.Y.; Sun, C.; Yang, K.K.; Chen, X.Y.; Wang, R.B. Cucurbituril-based supramolecular polymers for biomedical application. Angew. Chem. Int. Ed. 2022, 61, e202206763. [Google Scholar] [CrossRef]
- Blache, U.; Ford, E.M.; Ha, B.; Rijins, L.; Chaudhuri, O.; Dankers, P.Y.W.; Kloxin, A.M.; Snedeker, J.G.; Gentlemen, E. Engineered hydrogels for mechanobiology. Nat. Rev. Methods Prim. 2022, 2, 98. [Google Scholar] [CrossRef]
- Paez, J.I.; Farrukh, A.; Valbuena-Mendoza, R.; Wło-darczyk-Biegun, M.K.; Campo, A. Thiol-methylsulfone-based hydrogels for 3D cell encapsulation. ACS Appl. Mater. Interfaces 2020, 12, 8062–8072. [Google Scholar] [CrossRef]
- Zou, L.; Su, B.; Addonizio, C.J.; Pramudya, I.; Webber, M.J. Temperature-responsive supramolecular hydrogels by ternary complex formation with subsequent photo-cross-linking to alter network dynamics. Biomacromolecules 2019, 20, 4512–4521. [Google Scholar] [CrossRef]
- Madl, A.C.; Madl, C.M.; Myung, D. Injectable cucurbit[8]uril-based supramolecular gelatin hydrogels for cell encapsulation. ACS Macro Lett. 2020, 9, 619–626. [Google Scholar] [CrossRef]
- Nishat, Z.S.; Hossain, T.; Islam, M.N.; Phan, H.P.; Wahab, M.A.; Moni, M.A.; Salomon, C.; Amin, M.A.; Sina, A.A.I.; Hossain, M.S.A.; et al. Hydrogel nanoarchitetonics: An evolving paradigm for ultrasensitive biosensing. Small 2022, 18, 2107571. [Google Scholar] [CrossRef]
- Huang, Z.; Chen, X.; O’Neill, S.J.K.; Wu, G.; Whitaker, D.J.; Li, J.; McCune, J.A.; Scherman, O.A. Highly compressible glass-like su-pramolecular polymer network. Nat. Mater. 2022, 21, 103–109. [Google Scholar] [CrossRef] [PubMed]
- Highley, C.B.; Rodell, C.B.; Burdick, J.A. Direct 3D printing of shear-thinning hydrogels into self-healing hydrogels. Adv. Mater. 2015, 27, 5075–5079. [Google Scholar] [CrossRef] [PubMed]
- Slaughter, B.V.; Khurshid, S.S.; Fisher, O.Z.; Khademhosseini, A.; Peppas, N.A. Hydrogels in regenerative medicine. Adv. Mater. 2009, 21, 3307–3329. [Google Scholar] [CrossRef] [PubMed]
- Shim, J.H.; Jang, K.M.; Hahn, S.K.; Park, J.Y.; Jung, H.; Oh, K.; Park, K.M.; Yeom, J.; Park, S.H.; Kim, S.W.; et al. Three-dimensional bioprinting of multilayered constructs containing human mesenchymal stromal cells for osteochondral tissue regeneration in the rabbit knee joint. Biofabrication 2016, 8, 014102/1–014102/12. [Google Scholar] [CrossRef]
- Gao, W.; Chao, H.; Zheng, Y.C.; Zhang, W.C.; Liu, J.; Jin, F.; Dong, X.Z.; Liu, Y.H.; Li, S.J.; Zheng, M.L. Ionic carbazole-based water-soluble two-photon photoinitiator and the fabrication of biocompatible 3D hydrogel scaffold. ACS Appl. Mater. Interfaces 2021, 13, 27796–27805. [Google Scholar] [CrossRef]
- Barclay, T.G.; Day, C.M.; Petrovsky, N.; Garg, S. Review of polysaccharide particle-based functional drug delivery. Carbohydr. Polym. 2019, 221, 94–112. [Google Scholar] [CrossRef]
- Gao, Y.Y.; Gao, Y.; Ding, Y.F.; Tan, H.P.; Zou, A.H.; Li, S.K. Polysaccharide-based supramolecular drug delivery systems mediated via host-guest interactions of cucurbiturils. Chin. Chem. Lett. 2021, 32, 949–953. [Google Scholar] [CrossRef]
- Xie, J.; Zeng, Z.; Tao, Z.; Zhang, Q. Study on the interaction and properties of cucurbit[8]uril with oroxin B. Chem. Res. Chin. Univ. 2020, 36, 804–809. [Google Scholar] [CrossRef]
- Tang, B.; Li, W.; Chang, Y.; Yuan, B.; Wu, Y.; Zhang, M.; Xu, J.; Li, J.; Zhang, X. A supramolecular radical dimer: High-efficiency NIR-Ⅱ photothermal conversion and therapy. Angew. Chem. Int. Ed. 2019, 58, 15526–15531. [Google Scholar] [CrossRef]
- Xu, X.D.; Li, X.; Chen, H.Z.; Qu, Q.Y.; Zhao, L.Z.; Agren, H.; Zhao, Y.L. Host-guest interaction-mediated construction of hydrogels and nanovesicles for drug delivery. Small 2015, 11, 5901–5906. [Google Scholar] [CrossRef]
- Xiao, T.X.; Xu, L.X.; Zhou, L.; Sun, X.Q.; Lin, C.; Wang, L.Y. Dynamic hydrogels mediated by macrocyclic host-guest interactions. J. Mater. Chem. B Mater. Biol. Med. 2019, 7, 1526–1540. [Google Scholar] [CrossRef] [PubMed]
- Huang, X.L.; Tan, Y.B.; Zhou, Q.F.; Wang, Y.X.; Che, Y.J. Aggregation behavior of sodium alginate with cucurbit[6]uril in aqueous solution. Carbohydr. Polym. 2008, 74, 685–690. [Google Scholar] [CrossRef]
- Huang, X.L.; Tan, Y.B.; Wang, Y.X.; Yang, H.; Cao, J.; Che, Y.J. Synthesis, characterization, and properties of copolymer of acrylamide and complex pseudorotaxane monomer consisting of cucurbit[6]uril with butylammonium methacrylate. J. Polym. Sci. Part A Polym. Chem. 2008, 46, 5999–6008. [Google Scholar] [CrossRef]
- Ding, Y.F.; Wei, J.W.; Li, S.K.; Pan, Y.T.; Wang, L.H.; Wang, R.B. Host-guest interactions initiated supramolecular chitosan nanogels for selective intracellular drug delivery. ACS Appl. Mater. Interfaces 2019, 11, 28665–28670. [Google Scholar] [CrossRef]
- Yu, Z.Z.; Cheng, H.Y. Tunable adhesion for bio-integrated devices. Micromachines 2018, 9, 529. [Google Scholar] [CrossRef] [PubMed]
- Drotlef, D.M.; Amjadi, M.; Yunusa, M.; Sitti, M. Microfibers: Bioinspired composite microfibers for skin adhesion and signal amplification of wearable sensors. Adv. Mater. 2017, 29, 1701353. [Google Scholar] [CrossRef] [PubMed]
- Ghobril, C.; Grinstaff, M.W. The chemistry and engineering of polymeric hydrogel adhesives for wound closure: A tutorial. Chem. Soc. Rev. 2015, 44, 1820–1835. [Google Scholar] [CrossRef]
- Liu, J.; Cindy, S.Y.T.; Yang, L.; Scherman, O.A. Toward a versatile toolbox for cucurbit[n]uril-based supramolecular hydrogel networks through in situ polymerization. J. Polym. Sci. Part A Polym. Chem. 2017, 55, 3105–3109. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gao, R.; Ge, Q.; Cong, H.; Zhang, Y.; Zhao, J. Preparation and Biomedical Applications of Cucurbit[n]uril-Based Supramolecular Hydrogels. Molecules 2023, 28, 3566. https://doi.org/10.3390/molecules28083566
Gao R, Ge Q, Cong H, Zhang Y, Zhao J. Preparation and Biomedical Applications of Cucurbit[n]uril-Based Supramolecular Hydrogels. Molecules. 2023; 28(8):3566. https://doi.org/10.3390/molecules28083566
Chicago/Turabian StyleGao, Ruihan, Qingmei Ge, Hang Cong, Yunqian Zhang, and Jianglin Zhao. 2023. "Preparation and Biomedical Applications of Cucurbit[n]uril-Based Supramolecular Hydrogels" Molecules 28, no. 8: 3566. https://doi.org/10.3390/molecules28083566