Gadolinium-Cyclic 1,4,7,10-Tetraazacyclododecane-1,4,7,10-Tetraacetic Acid-Click-Sulfonyl Fluoride for Probing Serine Protease Activity in Magnetic Resonance Imaging
Abstract
1. Introduction
2. Results
2.1. Synthesis of Gd-DOTA-Click-SF with Click Chemistry
2.1.1. Procedure 1: Synthesis of DOTA-Click-SF with Click Chemistry
2.1.2. Procedure 2: Synthesis of Gd-DOTA-Click-SF Probe Using Gd-Azido-DOTA and SF-Alkyne with Click Chemistry
2.2. Relaxivity Measurements
2.3. Transmetallation Kinetic Study
2.4. In Vitro Cell Viability Test
2.5. MALDI-TOF/TOF Mass Spectrometry Shows That Gd-DOTA-Click-SF Probe Specifically Binds to Serine Proteases
2.6. Ex Vivo T1-Weighted MRI for Tracking Elastase Activity in Experimentally Induced Rat AAA Development
2.7. Comparisons of the CNRs of T1-Weighted MRI and of Gadolinium Concentration Measurements Using ICP/MS among Four Different Study Groups
3. Discussion
4. Materials and Methods
4.1. Materials and Reagents
4.2. Instrumentation and Characterization
4.3. Synthesis of Gd-DOTA-Click-SF Probe with Click Chemistry
4.3.1. Procedure 1: Synthesis of DOTA-Click-SF with Click Chemistry
4.3.2. Procedure 2: Synthesis of Gd-DOTA-Click-SF Probe Using Gd-Azido-DOTA and SF-Alkyne with click Chemistry
Step 1: Synthesis of Gd-Azido-DOTA
Step 2: Synthesis of Gd-DOTA-Click-SF Probe [25]
4.4. Relaxivity Measurements of Gd-DOTA-Click-SF Probe [38,39]
4.5. Transmetallation Kinetics Study [13]
4.6. In Vitro Cell Viability Test
4.7. MALDI-TOF/TOF Mass Spectrometry Shows That Gd-DOTA-Click-SF Probe Specifically Binds to Serine Proteases
4.8. Ex Vivo T1-Weighted MRI Tracking Elastase to Visualize AAA Development
4.9. Determination of Gd Concentration with ICP/MS Measurement
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Sample Availability
Abbreviations
References
- Heutinck, K.M.; ten Berge, I.J.; Hack, C.E.; Hamann, J.; Rowshani, A.T. Serine proteases of the human immune system in health and disease. Mol. Immunol. 2010, 47, 1943–1955. [Google Scholar] [CrossRef] [PubMed]
- Antalis, T.; Buzza, M. Extracellular: Plasma Membrane Proteases—Serine Proteases. Encycl. Cell Biol. 2016, 1, 650–660. [Google Scholar] [CrossRef]
- Garcia-Touchard, A.; Henry, T.D.; Sangiorgi, G.; Spagnoli, L.G.; Mauriello, A.; Conover, C.; Schwartz, S.R. Extracellular Proteases in Atherosclerosis and Restenosis. Arter. Thromb. Vasc. Biol. 2005, 25, 1119–1127. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Sharony, R.; Yu, P.J.; Park, J.; Galloway, A.C.; Mignatti, P.; Pintucci, G. Protein targets of inflammatory serine proteases and cardiovascular disease. J. Inflamm. 2010, 7, 45. [Google Scholar] [CrossRef][Green Version]
- Wågsäter, D.; Johansson, D.; Fontaine, V.; Vorkapic, E.; Bäcklund, A.; Razuvaev, A.; Mäyränpää, M.I.; Hjerpe, C.; Caidahl, K.; Hamsten, A.; et al. Serine protease inhibitor A3 in atherosclerosis and aneurysm disease. Int. J. Mol. Med. 2012, 30, 288–294. [Google Scholar] [CrossRef][Green Version]
- Hong, H.; Yang, Y.; Liu, B.; Cai, W. Imaging of abdominal aortic aneurysm: The present and the future. Curr. Vasc. Pharmacol. 2010, 8, 808–819. [Google Scholar] [CrossRef][Green Version]
- Ailawadi, G.; Eliason, J.L.; Roelofs, K.J.; Sinha, I.; Hannawa, K.K.; Kaldjian, E.P.; Lu, G.; Henke, P.K.; Stanley, J.C.; Weiss, S.J.; et al. Gender Differences in Experimental Aortic Aneurysm Formation. Arter. Thromb. Vasc. Biol. 2004, 24, 2116–2122. [Google Scholar] [CrossRef][Green Version]
- Thompson, R.W.; Curci, J.A.; Ennis, T.L.; Mao, D.; Pagano, M.B.; Pham, C.T. Pathophysiology of abdominal aortic aneurysms: Insights from the elastase-induced model in mice with different genetic backgrounds. Ann. N. Y. Acad. Sci. 2006, 1085, 59–73. [Google Scholar] [CrossRef]
- Pulathan, Z. Experimental Models in Abdominal Aortic Aneurysm. In Abdominal Aortic Aneurysm—From Basic Research to Clinical Practice; IntechOpen: London, UK, 2018. [Google Scholar] [CrossRef][Green Version]
- Shotton, D.M.; Hartley, B.S. Evidence for the Amino Acid Sequence of Porcine Pancreatic Elastase. Biochem. J. 1973, 131, 643–675. [Google Scholar] [CrossRef][Green Version]
- Ong, I.L.H.; Yang, K.L. Recent developments in protease activity assays and sensors. Analyst 2017, 142, 1867–1881. [Google Scholar] [CrossRef][Green Version]
- Wallyn, J.; Anton, N.; Akram, S.; Vandamme, T.F. Biomedical Imaging: Principles, Technologies, Clinical Aspects, Contrast Agents, Limitations and Future Trends in Nanomedicines. Pharm. Res. 2019, 36, 78. [Google Scholar] [CrossRef] [PubMed]
- Zhang, B.; Cheng, L.; Duan, B.; Tang, W.; Yuan, Y.; Ding, Y.; Hu, A. Gadolinium complexes of diethylenetriamine-N-oxide pentaacetic acid-bisamide: A new class of highly stable MRI contrast agents with a hydration number of 3. Dalton Trans. 2019, 48, 1693–1699. [Google Scholar] [CrossRef] [PubMed]
- Ramalho, J.; Semelka, R.C.; Ramalho, M.; Nunes, R.H.; AlObaidy, M.; Castillo, M. Gadolinium-Based Contrast Agent Accumulation and Toxicity: An Update. AJNR Am. J. Neuroradiol. 2016, 37, 1192–1198. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Pierre, V.C.; Allen, M.J.; Caravan, P. Contrast agents for MRI: 30+ years and where are we going? J. Biol. Inorg. Chem. 2014, 19, 127–131. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Thomsen, H.S. Nephrogenic systemic fibrosis: History and epidemiology. Radiol. Clin. N. Am. 2009, 47, 827–831. [Google Scholar] [CrossRef]
- Broome, D.R. Nephrogenic systemic fibrosis associated with gadolinium based contrast agents: A summary of the medical literature reporting. Eur. J. Radiol. 2008, 66, 230–234. [Google Scholar] [CrossRef]
- Abujudeh, H.H.; Kaewlai, R.; Kagan, A.; Chibnik, L.B.; Nazarian, R.M.; High, W.A.; Kay, J. Nephrogenic systemic fibrosis after gadopentetate dimeglumine exposure: Case series of 36 patients. Radiology 2009, 253, 81–89. [Google Scholar] [CrossRef]
- Wertman, R.; Altun, E.; Martin, D.R.; Mitchell, D.G.; Leyendecker, J.R.; O’Malley, R.B.; Parsons, D.J.; Fuller, E.R.; Semelka, R.C. Risk of nephrogenic systemic fibrosis: Evaluation of gadolinium chelate contrast agents at four American universities. Radiology 2008, 248, 799–806. [Google Scholar] [CrossRef]
- Hope, T.A.; Herfkens, R.J.; Denianke, K.S.; LeBoit, P.E.; Hung, Y.Y.; Weil, E. Nephrogenic systemic fibrosis in patients with chronic kidney disease who received gadopentetate dimeglumine. Investig. Radiol. 2009, 44, 135–139. [Google Scholar] [CrossRef]
- Fretellier, N.; Idée, J.M.; Guerret, S.; Hollenbeck, C.; Hartmann, D.; González, W.; Robic, C.; Port, M.; Corot, C. Clinical, biological, and skin histopathologic effects of ionic macrocyclic and nonionic linear gadolinium chelates in a rat model of nephrogenic systemic fibrosis. Investig. Radiol. 2011, 46, 85–93. [Google Scholar] [CrossRef]
- Vidaud, C.; Bourgeois, D.; Meyer, D. Bone as target organ for metals: The case of f-elements. Chem. Res. Toxicol. 2012, 25, 1161–1175. [Google Scholar] [CrossRef] [PubMed]
- Wedeking, P.; Tweedle, M. Comparison of the biodistribution of 153Gd-labeled Gd(DTPA)2−, Gd(DOTA)−, and Gd(acetate)n in mice. Int. J. Radiat. Appl. Instrum. Part B Nucl. Med. Biol. 1988, 15, 395–402. [Google Scholar] [CrossRef] [PubMed]
- Ceulemans, M.; Nuyts, K.; De Borggraeve, W.M.; Parac-Vogt, T.N. Gadolinium(III)-DOTA Complex Functionalized with BODIPY as a Potential Bimodal Contrast Agent for MRI and Optical Imaging. Inorganics 2015, 3, 516–533. [Google Scholar] [CrossRef][Green Version]
- Yan, X.; Luo, Y.; Zhang, Z.; Li, Z.; Luo, Q.; Yang, L.; Zhang, B.; Chen, H.; Bai, P.; Wang, Q. Europium-Labeled Activity-Based Probe through Click Chemistry: Absolute Serine Protease Quantification Using 153Eu Isotope Dilution ICP/MS. Angew. Chem. Int. Ed. 2012, 51, 3358–3363. [Google Scholar] [CrossRef] [PubMed]
- Narayanan, A.; Jones, L.H. Sulfonyl fluorides as privileged warheads in chemical biology. Chem. Sci. 2015, 6, 2650–2659. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Shannon, D.A.; Gu, C.; McLaughlin, C.J.; Kaiser, M.; van der Hoorn, R.A.L.; Weerapana, E. Sulfonyl Fluoride Analogues as Activity-Based Probes for Serine Proteases. Chembiochem 2012, 13, 2327–2330. [Google Scholar] [CrossRef]
- Chavas, T.E.J.; Fuchter, M.J.; DiMaggio, P.A., Jr. Unbiased Mass Spectrometry Elucidation of the Targets and Mechanisms of Activity-Based Probes: A Case Study involving Sulfonyl Fluorides. ACS Chem. Biol. 2018, 13, 2897–2907. [Google Scholar] [CrossRef] [PubMed]
- Gu, C.; Shannon, D.A.; Colby, T.; Wang, Z.; Shabab, M.; Kumari, S.; Villamor, J.G.; McLaughlin, C.J.; Weerapana, E.; Kaiser, M.; et al. Chemical Proteomics with Sulfonyl Fluoride Probes Reveals Selective Labeling of Functional Tyrosines in Glutathione Transferases. Chem. Biol. 2013, 20, 541–548. [Google Scholar] [CrossRef][Green Version]
- Vanasschen, C.; Bouslimani, N.; Thonon, D.; Desreux, J.F. Gadolinium DOTA Chelates Featuring Alkyne Groups Directly Grafted on the Tetraaza Macrocyclic Ring: Synthesis, Relaxation Properties, “Click” Reaction, and High-Relaxivity Micelles. Inorg. Chem. 2011, 50, 8946–8958. [Google Scholar] [CrossRef]
- Gale, E.M.; Caravan, P.; Rao, A.G.; McDonald, R.J.; Winfeld, M.; Fleck, R.J.; Gee, M.S. Gadolinium-based contrast agents in pediatric magnetic resonance imaging. Pediatr. Radiol. 2017, 47, 507–521. [Google Scholar] [CrossRef]
- Rohrer, M.; Bauer, H.; Mintorovitch, J.; Requardt, M.; Weinmann, H.J. Comparison of Magnetic Properties of MRI Contrast Media Solutions at Different Magnetic Field Strengths. Investig. Radiol. 2005, 40, 715–724. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Toth, E.; Helm, L.; Merbach, A. Relaxivity of Gadolinium(III) complexes: Theory and mechanism. In The Chemistry of Contrast Agents in Medical Magnetic Resonance Imaging; John Wiley & Sons: Hoboken, NJ, USA, 2013; pp. 25–81. [Google Scholar] [CrossRef]
- Caravan, P.; Ellison, J.J.; McMurry, T.J.; Lauffer, R.B. Gadolinium(III) Chelates as MRI Contrast Agents: Structure, Dynamics, and Applications. Chem. Rev. 1999, 99, 2293–2352. [Google Scholar] [CrossRef] [PubMed]
- Livramento, J.B.; Weidensteiner, C.; Prata, M.I.M.; Allegrini, P.R.; Geraldes, C.F.G.C.; Helm, L.; Kneuer, R.; Merbach, A.E.; Santos, A.C.; Schmidt, P.; et al. First in vivo MRI assessment of a self-assembled metallostar compound endowed with a remarkable high field relaxivity. Contrast Med. Mol. Imaging 2006, 1, 30–39. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Werner, P.; Taupitz, M.; Schröder, L.; Schuenke, P. An NMR relaxometry approach for quantitative investigation of the transchelation of gadolinium ions from GBCAs to a competing macromolecular chelator. Sci. Rep. 2021, 11, 21731. [Google Scholar] [CrossRef]
- Chan, T.R.; Hilgraf, R.; Sharpless, K.B.; Fokin, V.V. Polytriazoles as Copper(I)-Stabilizing Ligands in Catalysis. Org. Lett. 2004, 6, 2853–2855. [Google Scholar] [CrossRef]
- Vorobiev, V.; Adriouach, S.; Crowe, L.A.; Lenglet, S.; Thomas, A.; Chauvin, A.S.; Allemann, E. Vascular-targeted micelles as a specific MRI contrast agent for molecular imaging of fibrin clots and cancer cells. Eur. J. Pharm. Biopharm. 2020, 158, 347–358. [Google Scholar] [CrossRef]
- Park, J.Y.; Daksha, P.; Lee, G.H.; Woo, S.; Chang, Y. Highly water-dispersible PEG surface modified ultra small superparamagnetic iron oxide nanoparticles useful for target-specific biomedical applications. Nanotechnology 2008, 19, 365603. [Google Scholar] [CrossRef]
- Messroghli, D.R.; Rudolph, A.; Abdel-Aty, H.; Wassmuth, R.; Kühne, T.; Dietz, R.; Schulz-Menger, J. An open-source software tool for the generation of relaxation time maps in magnetic resonance imaging. BMC Med. Imaging 2010, 10, 16–23. [Google Scholar] [CrossRef][Green Version]
- Pintaske, J.; Martirosian, P.; Graf, H.; Erb, G.; Lodemann, K.P.; Claussen, C.D.; Schick, F. Relaxivity of Gadopentetate Dimeglumine (Magnevist), Gadobutrol (Gadovist), and Gadobenate Dimeglumine (MultiHance) in human blood plasma at 0.2, 1.5, and 3 Tesla. Investig. Radiol. 2006, 41, 213–221. [Google Scholar] [CrossRef]
- Gregory, H.T.; Alan, R.O.; Roberta, E.B.; Karpagam, A.; Heather, W.K.; Rosanna, C.M.; Robert, N.W.; Peter, J.G.; Beat, M.J. In Vivo Serial Assessment of Aortic Aneurysm Formation in Apolipoprotein E–Deficient Mice via MRI. Circ. Cardiovasc. Imaging 2008, 1, 220–226. [Google Scholar] [CrossRef][Green Version]
Contrast Agents | MW (Da) | 3.0 T, 22.3 °C r1 (mM−1 s−1) | 9.4 T, 19 °C r1 (mM−1 s−1) |
---|---|---|---|
Dotarem | 735.9 | 3.99 | 4.63 |
Gd-SF | 939.2 | 7.04 | 6.82 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Huynh, P.T.; Vu, H.D.; Ryu, J.; Kim, H.S.; Jung, H.; Youn, S.W. Gadolinium-Cyclic 1,4,7,10-Tetraazacyclododecane-1,4,7,10-Tetraacetic Acid-Click-Sulfonyl Fluoride for Probing Serine Protease Activity in Magnetic Resonance Imaging. Molecules 2023, 28, 3538. https://doi.org/10.3390/molecules28083538
Huynh PT, Vu HD, Ryu J, Kim HS, Jung H, Youn SW. Gadolinium-Cyclic 1,4,7,10-Tetraazacyclododecane-1,4,7,10-Tetraacetic Acid-Click-Sulfonyl Fluoride for Probing Serine Protease Activity in Magnetic Resonance Imaging. Molecules. 2023; 28(8):3538. https://doi.org/10.3390/molecules28083538
Chicago/Turabian StyleHuynh, Phuong Tu, Huy Duc Vu, Junghwa Ryu, Hee Su Kim, Hoesu Jung, and Sung Won Youn. 2023. "Gadolinium-Cyclic 1,4,7,10-Tetraazacyclododecane-1,4,7,10-Tetraacetic Acid-Click-Sulfonyl Fluoride for Probing Serine Protease Activity in Magnetic Resonance Imaging" Molecules 28, no. 8: 3538. https://doi.org/10.3390/molecules28083538
APA StyleHuynh, P. T., Vu, H. D., Ryu, J., Kim, H. S., Jung, H., & Youn, S. W. (2023). Gadolinium-Cyclic 1,4,7,10-Tetraazacyclododecane-1,4,7,10-Tetraacetic Acid-Click-Sulfonyl Fluoride for Probing Serine Protease Activity in Magnetic Resonance Imaging. Molecules, 28(8), 3538. https://doi.org/10.3390/molecules28083538