Stability and Antioxidant Activity of Pouteria macrophylla Fruit Extract, a Natural Source of Gallic Acid
Abstract
:1. Introduction
2. Results
2.1. Evaluation of Colorimetric Assay
2.2. Evaluation of Experimental Planning
2.3. Influence of Operational Variables on TPC, AA, and GA
3. Discussion
4. Materials and Methods
4.1. Plant Material
4.2. Assays
4.2.1. Fruit Extracts
4.2.2. Stability Study
4.2.3. Colorimetric Assay
4.2.4. Total Phenolics
4.2.5. Antioxidant Activity
4.2.6. Analysis of Gallic Acid Content
4.2.7. Statistical Analysis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Sample Availability
References
- Baky, M.H.; Kamal, A.M.; Mohamed Elgindi, C.R. A Review on Phenolic Compounds from Family Sapotaceae. J. Pharmacogn. Phytochem. 2016, 5, 280–287. [Google Scholar]
- Triono, T.; Brown, A.H.D.; West, J.G.; Crisp, M.D. A phylogeny of Pouteria (Sapotaceae) from Malesia and Australasia. Aust. Syst. Bot. 2007, 20, 107–118. [Google Scholar] [CrossRef]
- Silva, C.A.M.; Simeoni, L.A.; Silveira, D. Genus Pouteria: Chemistry and biological activity. Rev. Bras. Farmacogn. 2009, 19, 501–509. [Google Scholar] [CrossRef] [Green Version]
- de Almeida, R.; da Silva, L.L.; Verícimo, M.A. Review on the therapeutic activities of the Genus Pouteria. Int. J. Adv. Eng. Res. Sci. 2020, 7, 388–398. [Google Scholar] [CrossRef]
- Palma-Orozco, G.; Ortiz-Moreno, A.; Dorantes-Álvarez, L.; Sampedro, J.G.; Nájera, H. Purification and partial biochemical characterization of polyphenol oxidase from mamey (Pouteria sapota). Phytochemistry 2011, 72, 82–88. [Google Scholar] [CrossRef] [PubMed]
- de Sales, P.M.; de Souza, P.M.; Dartora, M.; Resck, I.S.; Simeoni, L.A.; Fonseca-Bazzo, Y.M.; de Oliveira Magalhães, P.; Silveira, D. Pouteria torta epicarp as a useful source of α-amylase inhibitor in the control of type 2 diabetes. FCT 2017, 109, 962–969. [Google Scholar] [CrossRef] [PubMed]
- Carriço, C.; Pinto, Z.T.; Dutok, C.M.S.; Caetano, R.L.; Pessanha, R.R.; Chil-Nuñez, I.; Mendonça, P.M.; Escalona-Arranz, J.C.; Reyes-Tur, B.; Queiro, M.M.C. Biological activity of Pouteria sapota leaf extract on postembryonic development of blowfly Chrysomya putoria (Wiedemann, 1818) (Calliphoridae). Rev. Bras. Farmacogn. 2014, 24, 304–308. [Google Scholar] [CrossRef] [Green Version]
- Chan-Zapata, I.; Canul-Canche, J.; Fernández-Martín, K.; Martín-Quintal, Z.; Torres-Romero, J.C.; Lara-Riegos, J.C.; Ramírez-Camacho, M.A.; Arana-Argáez, V.E. Immunomodulatory effects of the methanolic extract from pouteria campechiana leaves in macrophage functions. Food Agric. Immunol. 2018, 29, 386–399. [Google Scholar] [CrossRef] [Green Version]
- Aly, M.E.; Nebal, D.E.T.; Sherifa, F.M.; Rabab, M.A.; Sally, A.W.E.A. Chemical composition, and biological activities of Pouteria campechiana (Kunth) Baehni. J. Med. Plant Res. 2016, 10, 209–215. [Google Scholar] [CrossRef] [Green Version]
- França, C.V.; Perfeito, J.P.S.; Resck, I.S.; Gomes, S.M.; Fagg, C.W.; Castro, C.F.S.; Simeoni, L.A.; Silveira, D. Potential radical-scavenging activity of Pouteria caimito leaves extracts. J. Appl. Pharm. Sci. 2016, 6, 184–188. [Google Scholar] [CrossRef] [Green Version]
- Ma, J.; Yang, H.; Basile, M.J.; Kennelly, E.J. Analysis of polyphenolic antioxidants from the fruits of three Pouteria species by selected ion monitoring liquid chromatography-mass spectrometry. J. Agric. Food Chem. 2004, 52, 5873–5878. [Google Scholar] [CrossRef]
- Manosroi, A.; Saraphanchotiwitthaya, A.; Manosroi, J. In vitro immunomodulatory effect of Pouteria cambodiana (Pierre ex Dubard) Baehni extract. J. Ethnopharmacol. 2005, 101, 90–94. [Google Scholar] [CrossRef]
- Rice-Evans, C.A.; Miller, N.J.; Paganga, G. Structure-antioxidant activity relationships of flavonoids and phenolic acids. Free Radic. Biol. Med. 1996, 20, 933–956. [Google Scholar] [CrossRef]
- Pellicciari, R.; Ardon, A.; Bellavita, V. Triterpenes from Pouteria caimito. Planta Med. 1972, 22, 196–200. [Google Scholar] [CrossRef] [PubMed]
- Prabhu, D.S.; Selvam, A.P.; Rajeswari, V.D. Effective anti-cancer property of Pouteria sapota leaf on breast cancer cell lines. Biochem. Biophys. Rep. 2018, 15, 39–44. [Google Scholar] [CrossRef]
- Saleem, M.; Alam, A.; Arifin, S.; Shah, M.S.; Ahmed, B.; Sultana, S. Lupeol, a triterpene, inhibits early responses of tumor promotion induced by benzoyl peroxide in murine skin. Pharmacol. Res. 2001, 43, 127–134. [Google Scholar] [CrossRef] [PubMed]
- Perfeito, J.P.; Santos, M.L.; López, K.S.E.; Paula, J.E.; Silveira, D. Characterization and biological properties of Pouteria torta extracts: A preliminary study. Braz. J. Pharmacog. 2005, 15, 183–186. [Google Scholar] [CrossRef]
- Rios, M.N.S.; Pastore, J.R.F. Plantas da Amazônia: 450 Espécies de uso Geral; Universidade de Brasília: Brasília, Brazil, 2011; pp. 459–480. [Google Scholar]
- Brathwaite, A.C.N.; Alencar-Silva, T.; Carvalho, L.A.C.; Branquinho, M.S.F.; Ferreira-Nunes, R.; Cunha-Filho, M.; Gelfuso, G.M.; Maria-Engler, S.S.; Carvalho, J.L.; Silva, J.K.R.; et al. Pouteria macrophylla Fruit Extract Microemulsion for Cutaneous Depigmentation: Evaluation Using a 3D Pigmented Skin Model. Molecules 2022, 27, 5982. [Google Scholar] [CrossRef] [PubMed]
- Revilla, J. Apontamentos para a Cosmética Amazônica; BDPA: Manaus, Brazil, 2002; 532p. [Google Scholar]
- Da Silva, B.A.; Gordon, A.; Jungfer, E.; Marx, F.; Maia, J.G.S. Antioxidant capacity and phenolics of Pouteria macrophylla, an under-utilized fruit from Brazilian Amazon. Eur. Food Res. Technol. 2012, 234, 761–768. [Google Scholar] [CrossRef]
- Alonso, C.; Martí, M.; Barba, C.; Lis, M.; Rubio, L.; Coderch, L. Skin penetration and antioxidant effect of cosmeto-textiles with gallic acid. J. Photochem. Photobiol. B Biol. 2016, 156, 50–55. [Google Scholar] [CrossRef] [PubMed]
- Choi, Y.; Lee, J.H.; Kwon, H.B.; An, S.; Lee, A.Y. Skin testing of gallic acid-based hair dye in paraphenylenediamine/paratoluenediamine-reactive patients. J. Dermatol. 2016, 43, 795–798. [Google Scholar] [CrossRef] [PubMed]
- Chaikul, P.; Khat-udomkiri, N.; Iangthanarat, K.; Manosroi, J.; Manosroi, A. Characteristics and in vitro anti-skin aging activity of gallic acid loaded in cationic CTAB niosome. Eur. J. Pharm. Sci. 2019, 131, 39–49. [Google Scholar] [CrossRef] [PubMed]
- Martí, M.; Alonso, C.; Martínez, V.; Lis, M.; de la Maza, A.; Parra, J.L.; Coderch, L. Cosmetotextiles with Gallic Acid: Skin Reservoir Effect. J. Drug Deliv. 2013, 2013, 456248. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chaaban, H.; Ioannou, I.; Paris, C.; Charbonnel, C.; Ghoul, M. The photostability of flavanones, flavonols and flavones and evolution of their antioxidant activity. JPPA 2017, 336, 131–139. [Google Scholar] [CrossRef]
- Fitriansyah, S.N.; Fidrianny, I.; Hartati, R. Pharmacological Activities and Phytochemical Compounds: Overview of Pouteria Genus. Pharmacogn. J. 2021, 13, 577–584. [Google Scholar] [CrossRef]
- Schroeder, W.A.; Johnson, E.A. Singlet oxygen and peroxyl radicals regulate carotenoid biosynthesis in Phaffia rhodozyma. JBC 1995, 270, 18374–18379. [Google Scholar] [CrossRef] [Green Version]
- Davies, A.J.; Mazza, G. Copigmentation of Simple and Acylated Anthocyanins with colorless Phenolic Compounds. J. Agric Food Chem. 1993, 41, 716–720. [Google Scholar] [CrossRef]
- Malien-Aubert, C.; Dangles, O.; Amiot, M.J. Color stability of commercial anthocyanin-based extracts in relation to the phenolic composition. Protective effects by intra- and intermolecular copigmentation. J. of Agric. Food Chem. 2001, 49, 170–176. [Google Scholar] [CrossRef]
- Suresh, D.; Nethravathi, P.C.; Rajanaika, H.; Nagabhushana, H.; Sharma, S.C. Green synthesis of multifunctional zinc oxide (ZnO) nanoparticles using Cassia fistula plant extract and their photodegradative, antioxidant and antibacterial activities. Mater. Sci. Semicond. Process. 2015, 31, 446–454. [Google Scholar] [CrossRef]
- Rashmi, H.B.; Negi, P.S. Phenolic acids from vegetables: A review on processing stability and health benefits. Food Res. Int. 2020, 136, 109298. [Google Scholar] [CrossRef]
- Im, M.H.; Park, Y.; Leontowicz, H.; Leontowicz, M.; Namiesnik, J.; Ham, K.; Kang, S.; Najman, K.; Gorinstein, S. The thermostability, bioactive compounds and antioxidant activity of some vegetables subjected to different durations of boiling: Investigation in vitro. LWT—Food sci and Technol. 2011, 44, 92–99. [Google Scholar] [CrossRef]
- Volf, I.; Ignat, I.; Neamtu, M.; Popa, V.I. Thermal stability, antioxidant activity, and photo-oxidation of natural polyphenols. Chem. Pap. 2013, 68, 121–129. [Google Scholar] [CrossRef]
- Jeong, S.M.; Kim, S.Y.; Kim, D.R.; Jo, S.C.; Nam, K.C.; Ahn, D.U.; Lee, S.C. Effect of heat treatment on the antioxidant activity of extracts from citrus peels. J. Agric. Food Chem. 2004, 52, 3389–3393. [Google Scholar] [CrossRef]
- Pinelo, M.; Rubilar, M.; Sineiro, J.; Núñez, M.J. Extraction of antioxidant phenolics from almond hulls (Prunus amygdalus) and pine sawdust (Pinus pinaster). Food Chem. 2004, 85, 267–273. [Google Scholar] [CrossRef]
- Pinelo, M.; Rubilar, M.; Jerez, M.; Sineiro, J.; Núñez, M.J. Effect of solvent, temperature, and solvent-to-solid ratio on the total phenolic content and antiradical activity of extracts from different components of grape pomace. J. Agric. Food Chem. 2005, 53, 2111–2117. [Google Scholar] [CrossRef] [PubMed]
- Hagerman, A.E.; Riedl, K.M.; Jones, G.A.; Sovik, K.N.; Ritchard, N.T.; Hartzfeld, P.W.; Riechel, T.L. High Molecular Weight Plant Polyphenolics (Tannins) as Biological Antioxidants. J. Agric. Food Chem. 1998, 46, 1887–1892. [Google Scholar] [CrossRef] [PubMed]
- Tsioptsias, C.; Tsivintzelis, I. Insights on thermodynamic thermal properties and infrared spectroscopic band assignments of gallic acid. J. Pharm. Biomed. Anal. 2022, 221, 115065. [Google Scholar] [CrossRef] [PubMed]
- Boles, J.S.; Crerar, D.A.; Grissom, G.; Key, T.C. Aqueous thermal degradation of gallic acid. GCA 1988, 52, 341–344. [Google Scholar] [CrossRef]
- Ferreira, S.L.C.; Bruns, R.E.; Ferreira, H.S.; Matos, G.D.; David, J.M.; Brandão, G.C.; da Silva, E.G.P.; Portugal, L.A.; dos Reis, P.S.; Souza, A.S.; et al. Box-Behnken design: An alternative for the optimization of analytical methods. Anal. Chim. Acta 2007, 597, 179–186. [Google Scholar] [CrossRef]
- Segnini, S.; Dejmek, P.; Öste, R. A low cost video technique for colour measurement of potato chips. LWT—Food Sci. Technol. 1999, 32, 216–222. [Google Scholar] [CrossRef]
- Yam, K.L.; Papadakis, S.E. A simple digital imaging method for measuring and analyzing color of food surfaces. J. Food Eng. 2004, 61, 137–142. [Google Scholar] [CrossRef]
- Singleton, V.L.; Rossi, J.A. Colorimetry of total phenolics with phosphomolibdic-phosphotungstic acid reagents. Am J Enol Vitic. 1965, 16, 144–149. [Google Scholar] [CrossRef]
- Alves, N.S.F.; Kaory Inoue, S.G.; Carneiro, A.R.; Albino, U.B.; Setzer, W.N.; Maia, J.G.; Andrade, E.H.; da Silva, J.K.R. Variation in Peperomia pellucida growth and secondary metabolism after rhizobacteria inoculation. PLoS ONE 2022, 17, e0262794. [Google Scholar] [CrossRef] [PubMed]
- Brand-Williams, W.; Cuvelier, M.E.; Berset, C. Use of a free radical method to evaluate antioxidant activity. LWT—Food Sci. Technol. 1995, 28, 25–30. [Google Scholar] [CrossRef]
- Barros, L.S.P.; Cruz, E.N.S.; Guimarães, B.A.; Setzer, W.N.; Mourão, R.H.V.; Silva, J.K.R.; Costa, J.S.; Figueiredo, P.L.B. Chemometric analysis of the seasonal variation in the essential oil composition and antioxidant activity of a new geraniol chemotype of Lippia alba (Mill.) N.E.Br. ex Britton & P. Wilson from the Brazilian Amazon. Biochem. Syst. Ecol. 2022, 105, 104503. [Google Scholar] [CrossRef]
- Box, G.E.P.; Behnken, D.W. Some New Three Level Designs for the Study of Quantitative Variables. Technometrics 1960, 2, 455–475. [Google Scholar] [CrossRef]
Assay | Tm (X1) | Tp (X2) | C (X3) | TPC (mgGAE.g−1) | AA (µgTE.g−1) | GA (mgGAE.g−1) |
---|---|---|---|---|---|---|
1 | 60 (−1) | 30 (−1) | 1.5 (0) | 11.27 | 72.44 | 102.34 |
2 | 120 (+1) | 30 (−1) | 1.5 (0) | 12.21 | 79.58 | 89.28 |
3 | 60 (−1) | 90 (+1) | 1.5 (0) | 21.04 | 133.25 | 141.22 |
4 | 120 (+1) | 90 (+1) | 1.5 (0) | 14.38 | 97.03 | 91.29 |
5 | 60 (−1) | 60 (0) | 0.5 (−1) | 17.41 | 119.16 | 49.94 |
6 | 120 (+1) | 60 (0) | 0.5 (−1) | 17.75 | 110.40 | 50.25 |
7 | 60 (−1) | 60 (0) | 2.5 (+1) | 14.79 | 121.10 | 151.21 |
8 | 120 (+1) | 60 (0) | 2.5 (+1) | 15.76 | 112.78 | 251.25 |
9 | 90 (0) | 30 (−1) | 0.5 (−1) | 13.40 | 87.23 | 114.14 |
10 | 90 (0) | 90 (+1) | 0.5 (−1) | 14.51 | 102.95 | 25.36 |
11 | 90 (0) | 30 (−1) | 2.5 (+1) | 11.91 | 61.68 | 281.11 |
12 | 90 (0) | 90 (+1) | 2.5 (+1) | 10.83 | 91.22 | 116.79 |
13 | 90 (0) | 60 (0) | 1.5 (0) | 13.03 | 100.62 | 105.26 |
14 | 90 (0) | 60 (0) | 1.5 (0) | 14.59 | 118.25 | 172.72 |
15 | 90 (0) | 60 (0) | 1.5 (0) | 13.73 | 116.85 | 153.67 |
Factors | df | TPC | AA | GA | ||||||
---|---|---|---|---|---|---|---|---|---|---|
Coef | p | SS | Coef | p | SS | Coef | p | SS | ||
X1 | 1 | −0.550 | 0.184 | 2.421 | −5.769 | 0.238 | 266.299 | 4.669 | 0.741 | 174.40 |
X2 | 1 | 1.496 | 0.032 * | 17.896 | 15.438 | 0.047 * | 1906.606 | −26.528 | 0.164 | 5630.09 |
X3 | 1 | −1.222 | 0.047 * | 11.948 | −4.119 | 0.357 | 135.744 | 70.083 | 0.029 * | 39,292.83 |
X12 | 1 | 2.355 | 0.028 * | 20.482 | 6.881 | 0.310 | 174.813 | −23.269 | 0.505 | 1999.27 |
X22 | 1 | −1.410 | 0.074 | 7.345 | −23.211 | 0.045 * | 1989.275 | −14.581 | 0.1479 | 784.99 |
X32 | 1 | 0.290 | 0.548 | 0.311 | −2.926 | 0.624 | 31.604 | 5.047 | 0.806 | 94.06 |
X1X2 | 1 | −1.900 | 0.039 * | 14.445 | −10.840 | 0.157 | 469.992 | −9.217 | 0.649 | 339.82 |
X1X3 | 1 | 0.157 | 0.726 | 0.098 | 0.108 | 0.984 | 0.047 | 24.932 | 0.288 | 2486.50 |
X2X3 | 1 | −0.548 | 0.295 | 1.202 | 3.454 | 0.554 | 47.709 | −18.884 | 0.391 | 1426.46 |
Lack of fit | 3 | 0.071 | 23.994 | 0.466 | 370.356 | 0.208 | 14,379.96 | |||
Pure error | 2 | 1.214 | 192.199 | 2418.98 | ||||||
SS total | 14 | 103.294 | 5668.741 | 68,980.27 | ||||||
Intercept | 13.782 | 0.001 * | 111.906 | 0.002 * | 143.883 | 0.019 * | ||||
R2 | 0.7560 | 0.9008 | 0.7565 |
Levels | |||
---|---|---|---|
Factors | −1 | 0 | 1 |
X1 = time of exposure (min) | 60 | 90 | 120 |
X2 = temperature of exposure (°C) | 30 | 60 | 90 |
X3 = concentrations (% m/v) | 0.5 | 1.5 | 2.5 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pantoja, R.K.; Albuquerque, C.F.B.; do Nascimento, R.A.; De Faria, L.J.G.; Maia, J.G.S.; Setzer, W.N.; Gratieri, T.; da Silva, J.K.R. Stability and Antioxidant Activity of Pouteria macrophylla Fruit Extract, a Natural Source of Gallic Acid. Molecules 2023, 28, 3477. https://doi.org/10.3390/molecules28083477
Pantoja RK, Albuquerque CFB, do Nascimento RA, De Faria LJG, Maia JGS, Setzer WN, Gratieri T, da Silva JKR. Stability and Antioxidant Activity of Pouteria macrophylla Fruit Extract, a Natural Source of Gallic Acid. Molecules. 2023; 28(8):3477. https://doi.org/10.3390/molecules28083477
Chicago/Turabian StylePantoja, Raioní K., Camila Fernanda B. Albuquerque, Rafael A. do Nascimento, Lênio José G. De Faria, José Guilherme S. Maia, William N. Setzer, Tais Gratieri, and Joyce Kelly R. da Silva. 2023. "Stability and Antioxidant Activity of Pouteria macrophylla Fruit Extract, a Natural Source of Gallic Acid" Molecules 28, no. 8: 3477. https://doi.org/10.3390/molecules28083477
APA StylePantoja, R. K., Albuquerque, C. F. B., do Nascimento, R. A., De Faria, L. J. G., Maia, J. G. S., Setzer, W. N., Gratieri, T., & da Silva, J. K. R. (2023). Stability and Antioxidant Activity of Pouteria macrophylla Fruit Extract, a Natural Source of Gallic Acid. Molecules, 28(8), 3477. https://doi.org/10.3390/molecules28083477