Synthesis and Behavior of DNA Oligomers Containing the Ambiguous Z-Nucleobase 5-Aminoimidazole-4-carboxamide
Abstract
:1. Introduction
2. Results and Discussions
2.1. Chemistry
2.2. Physical Assessment of the Base-Pairing Ability of Z-Base
2.3. Enzymatic Assessment of the Base-Pairing Ability of Z-Base
3. Conclusions
4. Materials and Methods
4.1. General Methods
4.2. Chemistry
4.3. Oligonucleotide Synthesis
4.4. Calculation Details
4.5. Thermal and Thermodynamic Analysis
4.6. Single Nucleotide Insertion Analysis
4.7. PCR and Sequencing Analysis
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Sample Availability
References
- Pochet, S.; Dugué, L. Oligodeoxynucleotides Embodying the Ambiguous Base Z, 5-Amino-Imidazole-4-Carboxamide. Nucleosides Nucleotides 1995, 14, 1195–1210. [Google Scholar] [CrossRef]
- Sala, M.; Pezo, V.; Pochet, S.; Wain-Hobson, S. Ambiguous Base Pairing of the Purine Analogue 1-(2-Deoxy-Beta-D-Ribofuranosyl)-Imidazole-4-Carboxamide during PCR. Nucleic Acids Res. 1996, 24, 3302–3306. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bonnac, L.F.; Mansky, L.M.; Patterson, S.E. Structure-Activity Relationships and Design of Viral Mutagens and Application to Lethal Mutagenesis. J. Med. Chem. 2013, 56, 9403–9414. [Google Scholar] [CrossRef]
- Hadj Hassine, I.; Ben M’hadheb, M.; Menéndez-Arias, L. Lethal Mutagenesis of RNA Viruses and Approved Drugs with Antiviral Mutagenic Activity. Viruses 2022, 14, 841. [Google Scholar] [CrossRef] [PubMed]
- Sidwell, R.W.; Huffman, J.H.; Khare, G.P.; Allen, L.B.; Witkowski, J.T.; Robins, R.K. Broad-Spectrum Antiviral Activity of Virazole: 1-β-D-Ribofuranosyl-1,2,4-Triazole-3-Carboxamide. Science 1972, 177, 705–706. [Google Scholar] [CrossRef]
- Smith, R.A.; Kirkpatrick, W. Ribavirin: A Broad Spectrum Antiviral Agent. In Ribavirin: A Broad Spectrum Antiviral Agent; Academic Press, Inc.: New York, NY, USA, 1980; ISBN 9780126523508. [Google Scholar]
- Crotty, S.; Maag, D.; Arnold, J.J.; Zhong, W.; Lau, J.Y.; Hong, Z.; Andino, R.; Cameron, C.E. The Broad-Spectrum Antiviral Ribonucleoside Ribavirin Is an RNA Virus Mutagen. Nat. Med. 2000, 6, 1375–1379. [Google Scholar] [CrossRef] [PubMed]
- Vo, N.V.; Young, K.-C.; Lai, M.M.C. Mutagenic and Inhibitory Effects of Ribavirin on Hepatitis C Virus RNA Polymerase. Biochemistry 2003, 42, 10462–10471. [Google Scholar] [CrossRef]
- Te, H.S.; Randall, G.; Jensen, D.M. Mechanism of Action of Ribavirin in the Treatment of Chronic Hepatitis C. Gastroenterol. Hepatol. 2007, 3, 218–225. [Google Scholar]
- Sheng, Z.; Liu, R.; Yu, J.; Ran, Z.; Newkirk, S.J.; An, W.; Li, F.; Wang, D. Identification and Characterization of Viral Defective RNA Genomes in Influenza B Virus. J. Gen. Virol. 2018, 99, 475–488. [Google Scholar] [CrossRef]
- Galli, A.; Mens, H.; Gottwein, J.M.; Gerstoft, J.; Bukh, J. Antiviral Effect of Ribavirin against HCV Associated with Increased Frequency of G-to-A and C-to-U Transitions in Infectious Cell Culture Model. Sci. Rep. 2018, 8, 4619. [Google Scholar] [CrossRef] [Green Version]
- Furuta, Y.; Takahashi, K.; Fukuda, Y.; Kuno, M.; Kamiyama, T.; Kozaki, K.; Nomura, N.; Egawa, H.; Minami, S.; Watanabe, Y.; et al. In Vitro and In Vivo Activities of Anti-Influenza Virus Compound T-705. Antimicrob. Agents Chemother. 2002, 46, 977–981. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sidwell, R.W.; Barnard, D.L.; Day, C.W.; Smee, D.F.; Bailey, K.W.; Wong, M.-H.; Morrey, J.D.; Furuta, Y. Efficacy of Orally Administered T-705 on Lethal Avian Influenza A (H5N1) Virus Infections in Mice. Antimicrob. Agents Chemother. 2007, 51, 845–851. [Google Scholar]
- Baranovich, T.; Wong, S.-S.; Armstrong, J.; Marjuki, H.; Webby, R.J.; Webster, R.G.; Govorkova, E.A. T-705 (Favipiravir) Induces Lethal Mutagenesis in Influenza A H1N1 Viruses In Vitro. J. Virol. 2013, 87, 3741–3751. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jin, Z.; Smith, L.K.; Rajwanshi, V.K.; Kim, B.; Deval, J. The Ambiguous Base-Pairing and High Substrate Efficiency of T-705 (Favipiravir) Ribofuranosyl 5′-Triphosphate towards Influenza A Virus Polymerase. PLoS ONE 2013, 8, e68347. [Google Scholar] [CrossRef] [PubMed]
- Sabina, R.L.; Holmes, E.W.; Becker, M.A. The Enzymatic Synthesis of 5-Amino-4-Imidazolecarboxamide Riboside Triphosphate (ZTP). Science 1984, 223, 1193–1195. [Google Scholar] [CrossRef] [PubMed]
- Tarashima, N.S.; Kumanomido, Y.; Nakashima, K.; Tanaka, Y.; Minakawa, N. Synthesis of a Cyclic Dinucleotide Analogue with Ambiguous Bases, 5-Aminoimidazole-4-carboxamide. J. Org. Chem. 2021, 86, 15004–15010. [Google Scholar]
- Napoli, L.D.; Messere, A.; Montesarchio, D.; Piccialli, G. Synthesis of [1-15N]-Labeled 2′-Deoxyinosine and 2′-Deoxyadenosine. J. Org. Chem. 1995, 60, 2251–2253. [Google Scholar] [CrossRef]
- Oliviero, G.; Amato, J.; Borbone, N.; D’Errico, S.; Piccialli, G.; Mayol, L. Synthesis of N-1 and Ribose Modified Inosine Analogues on Solid Support. Tetrahedron Lett. 2007, 48, 397–400. [Google Scholar]
- Oliviero, G.; Amato, J.; Borbone, N.; D’Errico, S.; Piccialli, G.; Bucci, E.; Piccialli, V.; Mayol, L. Synthesis of 4-N-Alkyl and Ribose-Modified AICAR Analogues on Solid Support. Tetrahedron 2008, 64, 6475–6481. [Google Scholar] [CrossRef]
- Ouchi, H.; Asakawa, T.; Ikeuchi, K.; Inai, M.; Choi, J.-H.; Kawagishi, H.; Kan, T. Synthesis of Double-13C-Labeled Imidazole Derivatives. Tetrahedron Lett. 2018, 59, 3516–3518. [Google Scholar] [CrossRef]
- Narukulla, R.; Shuker, D.E.G.; Xu, Y.-Z. Post-Synthetic and Site-Specific Modification of Endocyclic Nitrogen Atoms of Purines in DNA and Its Potential for Biological and Structural Studies. Nucleic Acids Res. 2005, 33, 1767–1778. [Google Scholar] [CrossRef] [PubMed]
- Guckian, K.M.; Schweitzer, B.A.; Ren, R.X.-F.; Sheils, C.J.; Paris, P.L.; Tahmassebi, D.C.; Kool, E.T. Experimental Measurement of Aromatic Stacking Affinities in the Context of Duplex DNA. J. Am. Chem. Soc. 1996, 118, 8182–8183. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Frisch, G.W.; Trucks, H.B.; Schlegel, G.E.; Scuseria, M.A.; Robb, J.R.; Cheeseman, G.; Scalmani, V.; Barone, B.; Mennucci, G.A.; Petersson, H.; et al. Gaussian 09; Revision E.01; Gaussian, Inc.: Wallingford, CT, USA, 2013. [Google Scholar]
- Sugimoto, N.; Nakano, S.; Yoneyama, M.; Honda, K. Improved Thermodynamic Parameters and Helix Initiation Factor to Predict Stability of DNA Duplexes. Nucleic Acids Res. 1996, 24, 4501–4505. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nogi, Y.; Saito-Tarashima, N.; Karanjit, S.; Minakawa, N. Synthesis and Behavior of DNA Oligomers Containing the Ambiguous Z-Nucleobase 5-Aminoimidazole-4-carboxamide. Molecules 2023, 28, 3265. https://doi.org/10.3390/molecules28073265
Nogi Y, Saito-Tarashima N, Karanjit S, Minakawa N. Synthesis and Behavior of DNA Oligomers Containing the Ambiguous Z-Nucleobase 5-Aminoimidazole-4-carboxamide. Molecules. 2023; 28(7):3265. https://doi.org/10.3390/molecules28073265
Chicago/Turabian StyleNogi, Yuhei, Noriko Saito-Tarashima, Sangita Karanjit, and Noriaki Minakawa. 2023. "Synthesis and Behavior of DNA Oligomers Containing the Ambiguous Z-Nucleobase 5-Aminoimidazole-4-carboxamide" Molecules 28, no. 7: 3265. https://doi.org/10.3390/molecules28073265
APA StyleNogi, Y., Saito-Tarashima, N., Karanjit, S., & Minakawa, N. (2023). Synthesis and Behavior of DNA Oligomers Containing the Ambiguous Z-Nucleobase 5-Aminoimidazole-4-carboxamide. Molecules, 28(7), 3265. https://doi.org/10.3390/molecules28073265