Papaverine: A Miraculous Alkaloid from Opium and Its Multimedicinal Application
Abstract
:1. Introduction
2. Natural Source of Papaverine
3. Chemistry of Papaverine
4. Biosynthesis of Papaverine
5. Mechanism of Action of Papaverine
6. Pharmacological Properties of Papaverine
6.1. Activity against Erectile Dysfunction (ED)
6.2. Activity against Pulmonary Vasoconstriction
6.3. Postoperative Vasospasm
6.4. Antiviral Properties
6.5. Cardiovascular Activity
6.6. Anti-Inflammatory Activity
6.7. Anticancer Activity
6.8. Neuroprotective Effect
6.9. Gestational Activity
6.10. Other Activities
7. Limitations of the Study
8. Discussion and Future Recommendations
9. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Arora, L.; Hosn, M.A. Spinal Cord Perfusion Protection for Thoraco-Abdominal Aortic Aneurysm Surgery. Curr. Opin. Anaesthesiol. 2019, 32, 72–79. [Google Scholar] [CrossRef] [PubMed]
- Grdina, D.J.; Murley, J.S.; Kataoka, Y. Radioprotectants: Current Status and New Directions. Oncology 2002, 63, 2–10. [Google Scholar] [CrossRef]
- Weiss, J.F.; Landauer, M.R. Protection against Ionizing Radiation by Antioxidant Nutrients and Phytochemicals. Toxicology 2003, 189, 1–20. [Google Scholar] [CrossRef]
- Alam, S.; Emon, N.; Shahriar, S.; Richi, F.; Haque, M.; Islam, M.; Sakib, S.; Ganguly, A. Pharmacological and Computer-Aided Studies Provide New Insights into Millettia Peguensis Ali (Fabaceae). Saudi Pharm. J. 2020, 28, 1777–1790. [Google Scholar] [CrossRef] [PubMed]
- Ashrafi, S.; Alam, S.; Emon, N.; Ahsan, M. Isolation, Characterization and Pharmacological Investigations of a New Phenolic Compound along with Four Others Firstly Reported Phytochemicals from Glycosmis. Molecules 2022, 27, 5972. [Google Scholar] [CrossRef] [PubMed]
- Amin, M.N.; Emdadul, M.; Mukul, H.; Millat, M.S.; Saif, M.; Rashed, U. Phytochemical Nature and Pharmacological Evaluation of Chloroform Extract of Pandanus Fascicularis L. (Fruits): An in Vivo Study Open Access. Artic. J. Bioanal. Biomed. 2017, 9, 4. [Google Scholar] [CrossRef]
- Pyne, M.E.; Narcross, L.; Fossati, E.; Bourgeois, L.; Burton, E.; Gold, N.D.; Martin, V.J.J. Reconstituting Plant Secondary Metabolism in Saccharomyces Cerevisiae for Production of High-Value Benzylisoquinoline Alkaloids. Methods Enzymol. 2016, 575, 195–224. [Google Scholar] [CrossRef] [PubMed]
- Ziegler, J.; Facchini, P.J. Alkaloid Biosynthesis: Metabolism and Trafficking. Annu. Rev. Plant Biol. 2008, 59, 735–769. [Google Scholar] [CrossRef] [Green Version]
- Benej, M.; Hong, X.; Vibhute, S.; Scott, S.; Wu, J.; Graves, E.; Le, Q.T.; Koong, A.C.; Giaccia, A.J.; Yu, B.; et al. Papaverine and Its Derivatives Radiosensitize Solid Tumors by Inhibiting Mitochondrial Metabolism. Proc. Natl. Acad. Sci. USA 2018, 115, 10756–10761. [Google Scholar] [CrossRef] [Green Version]
- Butnariu, M.; Quispe, C.; Herrera-Bravo, J.J.; Pentea, M.; Sarac, I.; Küşümler, A.; Özçelik, B.; Painuli, S.; Semwal, P.; Imran, M.; et al. Papaver Plants: Current Insights on Phytochemical and Nutritional Composition Along with Biotechnological Applications. Oxid. Med. Cell. Longev. 2022, 2022, 2041769. [Google Scholar] [CrossRef]
- Peter, K. V Handbook of Herbs and Spices; Elsevier: Amsterdam, The Netherlands, 2012; ISBN 0857095684. [Google Scholar]
- Shamma, M. The Isoquinoline Alkaloids Chemistry and Pharmacology; Elsevier: Amsterdam, The Netherlands, 2012. [Google Scholar]
- Desgagné-Penix, I.; Facchini, P.J. Systematic Silencing of Benzylisoquinoline Alkaloid Biosynthetic Genes Reveals the Major Route to Papaverine in Opium Poppy. Plant J. 2012, 72, 331–344. [Google Scholar] [CrossRef] [PubMed]
- Yan, J.; Mi, J.Q.; He, J.T.; Guo, Z.Q.; Zhao, M.P.; Chang, W.B. Development of an Indirect Competitive ELISA for the Determination of Papaverine. Talanta 2005, 66, 1005–1011. [Google Scholar] [CrossRef]
- Han, X.; Lamshöft, M.; Grobe, N.; Ren, X.; Fist, A.; Kutchan, T.; Spiteller, M.; Zenk, M. The Biosynthesis of Papaverine Proceeds via (S)-Reticuline. Phytochemistry 2010, 71, 1305–1312. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gaber, A.; Alsanie, W.F.; Kumar, D.N.; Refat, M.S.; Saied, E.M. Novel Papaverine Metal Complexes with Potential Anticancer Activities. Molecules 2020, 25, 5447. [Google Scholar] [CrossRef]
- Srivastava, A.; Agrawal, L.; Raj, R.; Jaidi, M.; Raj, S.K.; Gupta, S.; Dixit, R.; Singh, P.C.; Tripathi, T.; Sidhu, O.P.; et al. Ageratum Enation Virus Infection Induces Programmed Cell Death and Alters Metabolite Biosynthesis in Papaver Somniferum. Front. Plant Sci. 2017, 8, 1172. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Agarwal, P.; Pathak, S.; Kumar, R.S.; Dhar, Y.V.; Pandey, A.; Shukla, S.; Trivedi, P.K. 3′O-Methyltransferase, Ps3′OMT, from Opium Poppy: Involvement in Papaverine Biosynthesis. Plant Cell Rep. 2019, 38, 1235–1248. [Google Scholar] [CrossRef] [PubMed]
- Beaudoin, G.A.W.; Facchini, P.J. Benzylisoquinoline Alkaloid Biosynthesis in Opium Poppy. Planta 2014, 240, 19–32. [Google Scholar] [CrossRef] [Green Version]
- Ivanova, B.; Spiteller, M. On the Biosynthetic Pathway of Papaverine via (S)-Reticuline—Theoretical vs. Experimental Study. Nat. Prod. Commun. 2012, 7, 581–586. [Google Scholar] [CrossRef] [Green Version]
- Pathak, S.; Lakhwani, D.; Gupta, P.; Mishra, B.K.; Shukla, S.; Asif, M.H.; Trivedi, P.K. Comparative Transcriptome Analysis Using High Papaverine Mutant of Papaver Somniferum Reveals Pathway and Uncharacterized Steps of Papaverine Biosynthesis. PLoS ONE 2013, 8, e65622. [Google Scholar] [CrossRef]
- Pienkny, S.; Brandt, W.; Schmidt, J.; Kramell, R.; Ziegler, J. Functional Characterization of a Novel Benzylisoquinoline O-methyltransferase Suggests Its Involvement in Papaverine Biosynthesis in Opium Poppy (Papaver somniferum L.). Plant J. 2009, 60, 56–67. [Google Scholar] [CrossRef]
- Abusnina, A.; Lugnier, C. Therapeutic Potentials of Natural Compounds Acting on Cyclic Nucleotide Phosphodiesterase Families. Cell. Signal. 2017, 39, 55–65. [Google Scholar] [CrossRef] [PubMed]
- Debnath, B.; Singh, W.; Das, M.; Goswami, S.; Singh, M.; Maiti, D.; Manna, K. Role of Plant Alkaloids on Human Health: A Review of Biological Activities. Mater. Today Chem. 2018, 9, 56–72. [Google Scholar] [CrossRef]
- Dong, H.H.; Guang, Y.B.; Tae, K.Y.; Byung, S.S.; Yong, G.K.; Chul, J.K. The Effect of Papaverine on Ion Channels in Rat Basilar Smooth Muscle Cells. Neurol. Res. 2007, 29, 544–550. [Google Scholar] [CrossRef]
- Gomes, D.; Joubert, A.; Visagie, M. In Vitro Effects of Papaverine on Cell Proliferation, Reactive Oxygen Species, and Cell Cycle Progression in Cancer Cells. Molecules 2021, 26, 6388. [Google Scholar] [CrossRef]
- Shimizu, K.; Yoshihara, E.; Takahashi, M.; Gotoh, K.; Orita, S.; Urakawa, N.; Nakajyo, S. Mechanism of Relaxant Response to Papaverine on the Smooth Muscle of Non-Pregnant Rat Uterus. J. Smooth Muscle Res. 2000, 36, 83–91. [Google Scholar] [CrossRef] [Green Version]
- Liu, J.K.; Couldwell, W.T. Intra-Arterial Papaverine Infusions for the Treatment of Cerebral Vasospasm Induced by Aneurysmal Subarachnoid Hemorrhage. Neurocrit. Care 2005, 2, 124–132. [Google Scholar] [CrossRef]
- Hebb, A.L.O.; Robertson, H.A.; Denovan-Wright, E.M. Phosphodiesterase 10A Inhibition Is Associated with Locomotor and Cognitive Deficits and Increased Anxiety in Mice. Eur. Neuropsychopharmacol. 2008, 18, 339–363. [Google Scholar] [CrossRef] [PubMed]
- Weber, M.; Breier, M.; Ko, D.; Thangaraj, N.; Marzan, D.E.; Swerdlow, N.R. Evaluating the Antipsychotic Profile of the Preferential PDE10A Inhibitor, Papaverine. Psychopharmacology 2009, 203, 723–735. [Google Scholar] [CrossRef] [Green Version]
- Lee, Y.-Y.; Park, J.-S.; Leem, Y.-H.; Park, J.-E.; Kim, D.-Y.; Choi, Y.-H.; Park, E.-M.; Kang, J.L.; Kim, H.-S. The Phosphodiesterase 10 Inhibitor Papaverine Exerts Anti-Inflammatory and Neuroprotective Effects via the PKA Signaling Pathway in Neuroinflammation and Parkinson’s Disease Mouse Models. J. Neuroinflamm. 2019, 16, 246. [Google Scholar] [CrossRef] [Green Version]
- Bakr, A.M.; El-Sakka, A.A.; El-Sakka, A.I. Considerations for Prescribing Pharmacotherapy for the Treatment of Erectile Dysfunction. Expert Opin. Pharmacother. 2020, 22, 821–834. [Google Scholar] [CrossRef]
- Fusi, F.; Manetti, F.; Durante, M.; Sgaragli, G.; Saponara, S. The Vasodilator Papaverine Stimulates L-Type Ca2+ Current in Rat Tail Artery Myocytes via a PKA-Dependent Mechanism. Vascul. Pharmacol. 2016, 76, 53–61. [Google Scholar] [CrossRef]
- Berkó, S.; Zsikó, S.; Deák, G.; Gácsi, A.; Kovács, A.; Budai-Szűcs, M.; Pajor, L.; Bajory, Z.; Csányi, E. Papaverine Hydrochloride Containing Nanostructured Lyotropic Liquid Crystal Formulation as a Potential Drug Delivery System for the Treatment of Erectile Dysfunction. Drug Des. Dev. Ther. 2018, 12, 2923–2931. [Google Scholar] [CrossRef] [Green Version]
- Bivalacqua, T.J.; Champion, H.C.; Hellstrom, W.J.G.; Kadowitz, P.J. Pharmacotherapy for Erectile Dysfunction. Trends Pharmacol. Sci. 2000, 21, 484–489. [Google Scholar] [CrossRef] [PubMed]
- Mcmahon, C.G. Narrative Review Current Diagnosis and Management of Erectile Dysfunction. MJA 2019, 210, 469–476. [Google Scholar] [CrossRef]
- Padma-Nathan, H.; Christ, G.; Adaikan, G.; Becher, E.; Brock, G.; Carrier, S.; Carson, C.; Corbin, J.; Francis, S.; Debusk, R.; et al. Pharmacotherapy for Erectile Dysfunction. J. Sex. Med. 2010, 7, 524–540. [Google Scholar] [CrossRef] [PubMed]
- Usta, M.; Erdoğru, T.; Tefekil, A.; Köksal, T.; Yücel, B.; Kadioğlu, A. Honeymoon Impotence: Psychogenic or Organic in Origin? Urology 2001, 57, 758–762. [Google Scholar] [CrossRef] [PubMed]
- Wen, M.; El-Kamel, A.; Khalil, S. Systemic Enhancement of Papaverine Transdermal Gel for Erectile Dysfunction. Drug Dev. Ind. Pharm. 2012, 38, 912–922. [Google Scholar] [CrossRef]
- Kilic, M.; Serefoglu, E.C.; Ozdemir, A.T.; Balbay, M.D. The Actual Incidence of Papaverine-Induced Priapism in Patients with Erectile Dysfunction Following Penile Colour Doppler Ultrasonography. Andrologia 2010, 42, 1–4. [Google Scholar] [CrossRef]
- Hatzimouratidis, K.; Hatzichristou, D.G. A Comparative Review of the Options for Treatment of Erectile Dysfunction: Which Treatment for Which Patient? Drugs 2005, 65, 1621–1650. [Google Scholar] [CrossRef]
- Bella, A.J.; Brock, G.B. Intracavernous Pharmacotherapy for Erectile Dysfunction. Endocrine 2004, 23, 149–155. [Google Scholar] [CrossRef]
- Claro, J.; Aboim, J.; Maríngolo, M.; Andrade, E.; Aguiar, W.; Nogueira, M.; Nardozza Junior, A.; Srougi, M. Intracavernous Injection in the Treatment of Erectile Dysfunction after Radical Prostatectomy: An Observational Study. Sao Paulo Med. J. 2001, 119, 135–137. [Google Scholar] [CrossRef] [Green Version]
- Yildiz, N.; Gokkaya, N.K.O.; Koseoglu, F.; Gokkaya, S.; Comert, D. Efficacies of Papaverine and Sildenafil in the Treatment of Erectile Dysfunction in Early-Stage Paraplegic Men. Int. J. Rehabil. Res. 2011, 34, 44–52. [Google Scholar] [CrossRef]
- Trejo, H.E.; Urich, D.; Pezzulo, A.A.; Caraballo, J.C.; Gutiérrez, J.; Castro, I.J.; Centeno, G.R.; Sánchez De León, R. Beneficial Effects of Hydrocortisone and Papaverine on a Model of Pulmonary Embolism Induced by Autologous Blood Clots in Isolated and Perfused Rabbit Lungs. Respirology 2007, 12, 799–806. [Google Scholar] [CrossRef] [PubMed]
- Iguchi, M.; Nakajima, T.; Hisada, T.; Sugimoto, T.; Kurachi, Y. On the Mechanism of Papaverine Inhibition of the Voltage-Dependent Ca++ Current in Isolated Smooth Muscle Cells from the Guinea Pig Trachea. J. Pharmacol. Exp. Ther. 1992, 263, 194–200. [Google Scholar] [PubMed]
- Zhu, W.; Liu, S.; Zhao, J.; Liu, S.; Jiang, S.; Li, B.; Yang, H.; Fan, C.; Cui, W. Highly Flexible and Rapidly Degradable Papaverine-Loaded Electrospun Fibrous Membranes for Preventing Vasospasm and Repairing Vascular Tissue. Acta Biomater. 2014, 10, 3018–3028. [Google Scholar] [CrossRef]
- Liu, H.-M.; Tu, Y.-K. The Efficacy of Papaverine Administration by Different Routes for the Treatment of Experimental Acute Cerebral Vasospasm. J. Clin. Neurosci. 2002, 9, 561–565. [Google Scholar] [CrossRef]
- Biondi, A.; Ricciardi, G.K.; Puybasset, L.; Abdennour, L.; Longo, M.; Chiras, J.; Van Effenterre, R. Intra-Arterial Nimodipine for the Treatment of Symptomatic Cerebral Vasospasm after Aneurysmal Subarachnoid Hemorrhage: Preliminary Results. Am. J. Neuroradiol. 2004, 25, 1067–1076. [Google Scholar] [PubMed]
- Firlik, K.; Kaufmann, A.; Firlik, A.; Jungreis, C.; Yonas, H. Intra-Arterial Papaverine for the Treatment of Cerebral Vasospasm Following Aneurysmal Subarachnoid Hemorrhage. Surg. Neurol. 1999, 51, 66–74. [Google Scholar] [CrossRef] [PubMed]
- Sayama, C.M.; Liu, J.K.; Couldwell, W.T. Update on Endovascular Therapies for Cerebral Vasospasm Induced by Aneurysmal Subarachnoid Hemorrhage. Neurosurg. Focus 2006, 21, 1–11. [Google Scholar] [CrossRef]
- Kerz, T.; Boor, S.; Beyer, C.; Welschehold, S.; Schuessler, A.; Oertel, J. Effect of Intraarterial Papaverine or Nimodipine on Vessel Diameter in Patients with Cerebral Vasospasm after Subarachnoid Hemorrhage. Br. J. Neurosurg. 2012, 26, 517–524. [Google Scholar] [CrossRef]
- Kim, J.H.; Yi, H.-J.; Ko, Y.; Kim, Y.-S.; Kim, D.-W.; Kim, J.-M. Effectiveness of Papaverine Cisternal Irrigation for Cerebral Vasospasm after Aneurysmal Subarachnoid Hemorrhage and Measurement of Biomarkers. Neurol. Sci. 2014, 35, 715–722. [Google Scholar] [CrossRef] [PubMed]
- Vajkoczy, P.; Horn, P.; Bauhuf, C.; Munch, E.; Hubner Ing, U.; Thome, C.; Poeckler-Schoeninger, C.; Roth, H.; Schmiedek, P. Effect of Intra-Arterial Papaverine on Regional Cerebral Blood Flow in Hemodynamically Relevant Cerebral Vasospasm. Stroke 2001, 32, 498–505. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Baltsavias, G.; Yella, S.; Al Shameri, R.A.; Luft, A.; Valavanis, A. Intra-Arterial Administration of Papaverine during Mechanical Thrombectomy for Acute Ischemic Stroke. J. Stroke Cerebrovasc. Dis. 2015, 24, 41–47. [Google Scholar] [CrossRef]
- Dabus, G.; Nogueira, R. Current Options for the Management of Aneurysmal Subarachnoid Hemorrhage-Induced Cerebral Vasospasm: A Comprehensive Review of the Literature. Interv. Neurol. 2013, 2, 30–51. [Google Scholar] [CrossRef] [Green Version]
- Badjatia, N.; Topcuoglu, M.A.; Pryor, J.C.; Rabinov, J.D.; Ogilvy, C.S.; Carter, B.S.; Rordorf, G.A. Preliminary Experience with Intra-Arterial Nicardipine as a Treatment for Cerebral Vasospasm. Am. J. Neuroradiol. 2004, 25, 819–826. [Google Scholar]
- Yu, D.; Morris-Natschke, S.; Lee, K. New Developments in Natural Products-based Anti-AIDS Research. Med. Res. Rev. 2007, 27, 108–132. [Google Scholar] [CrossRef]
- Rima, B.; Duprex, W. Molecular Mechanisms of Measles Virus Persistence. Virus Res. 2005, 111, 132–147. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hudson, J.B. Antiviral Compounds from Plants; CRC Press: Boca Raton, FL, USA, 2018; ISBN 9781351078177. [Google Scholar]
- Dereli, F.; Ilhan, M.; Belwal, T. Novel Drug Targets with Traditional Herbal Medicines: Scientific and Clinical Evidence; Springer Nature: Berlin/Heidelberg, Germany, 2022. [Google Scholar]
- Griffin, D.E.; Lin, W.H.; Pan, C.H. Measles Virus, Immune Control, and Persistence. FEMS Microbiol. Rev. 2012, 36, 649–662. [Google Scholar] [CrossRef] [PubMed]
- Aggarwal, M.; Leser, G.P.; Lamb, R.A. Repurposing Papaverine as an Antiviral Agent against Influenza Viruses and Paramyxoviruses. J. Virol. 2020, 94, e01888-19. [Google Scholar] [CrossRef] [Green Version]
- Ellinger, B.; Bojkova, D.; Zaliani, A.; Cinatl, J.; Claussen, C.; Westhaus, S.; Keminer, O.; Reinshagen, J.; Kuzikov, M.; Wolf, M.; et al. A SARS-CoV-2 Cytopathicity Dataset Generated by High-Content Screening of a Large Drug Repurposing Collection. Sci. Data 2021, 8, 70. [Google Scholar] [CrossRef]
- Pluta, R.; Hansen-Schwartz, J.; Dreier, J.; Vajkoczy, P.; Macdonald, R.; Nishizawa, S.; Kasuya, H.; Wellman, G.; Keller, E.; Zauner, A.; et al. Cerebral Vasospasm Following Subarachnoid Hemorrhage: Time for a New World of Thought. Neurol. Res. 2009, 31, 151–158. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Polur, H.; Joshi, T.; Workman, C.T.; Lavekar, G.; Kouskoumvekaki, I. Back to the Roots: Prediction of Biologically Active Natural Products from Ayurveda Traditional Medicine. Mol. Inform. 2011, 30, 181–187. [Google Scholar] [CrossRef]
- Choe, H.; Lee, Y.K.; Lee, Y.T.; Choe, H.; Ko, S.H.; Joo, C.U.; Kim, M.H.; Kim, G.S.; Eun, J.S.; Kim, J.H.; et al. Papaverine Blocks HKv1.5 Channel Current and Human Atrial Ultrarapid Delayed Rectifier K+ Currents. J. Pharmacol. Exp. Ther. 2003, 304, 706–712. [Google Scholar] [CrossRef] [Green Version]
- Zhou, T.; Zhu, Y. Cascade Signals of Papaverine Inhibiting LPS-Induced Retinal Microglial Activation. J. Mol. Neurosci. 2019, 68, 111–119. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yoshikawa, M.; Suzumura, A.; Tamaru, T.; Takayanagi, T.; Sawada, M. Effects of Phosphodiesterase Inhibitors on Cytokine Production by Microglia. Mult. Scler. J. 1999, 5, 126–133. [Google Scholar] [CrossRef]
- Tamada, K.; Nakajima, S.; Ogawa, N.; Inada, M.; Shibasaki, H.; Sato, A.; Takasawa, R.; Yoshimori, A.; Suzuki, Y.; Watanabe, N.; et al. Papaverine Identified as an Inhibitor of High Mobility Group Box 1/Receptor for Advanced Glycation End-Products Interaction Suppresses High Mobility Group Box 1-Mediated Inflammatory Responses. Biochem. Biophys. Res. Commun. 2019, 511, 665–670. [Google Scholar] [CrossRef] [PubMed]
- Yamazaki, Y.; Kawano, Y. Inhibitory Effects of Herbal Alkaloids on the Tumor Necrosis Factor-.ALPHA. and Nitric Oxide Production in Lipopolysaccharide-Stimulated RAW264 Macrophages. Chem. Pharm. Bull. 2011, 59, 388–391. [Google Scholar] [CrossRef] [Green Version]
- Dang, Y.; Mu, Y.; Wang, K.; Xu, K.; Yang, J.; Zhu, Y.; Luo, B. Papaverine Inhibits Lipopolysaccharide-Induced Microglial Activation by Suppressing NF-ΚB Signaling Pathway. Drug Des. Dev. Ther. 2016, 10, 851. [Google Scholar] [CrossRef] [Green Version]
- Gomes, D.; Joubert, A.; Visagie, M. In Vitro Effects of Papaverine on Cell Migration and Vascular Endothelial Growth Factor in Cancer Cell Lines. Int. J. Mol. Sci. 2022, 23, 4654. [Google Scholar] [CrossRef]
- Shimizu, T.; Ohta, Y.; Ozawa, H.; Matsushima, H.; Takeda, K. Papaverine Combined with Prostaglandin E2 Synergistically Induces Neuron-like Morphological Changes and Decrease of Malignancy in Human Prostatic Cancer LNCaP Cells. Anticancer Res. 2000, 20, 761–767. [Google Scholar]
- Huang, H.; Li, L.-J.; Zhang, H.-B.; Wei, A.-Y. Papaverine Selectively Inhibits Human Prostate Cancer Cell (PC-3) Growth by Inducing Mitochondrial Mediated Apoptosis, Cell Cycle Arrest and Downregulation of NF-ΚB/PI3K/Akt Signalling Pathway. J. BUON 2017, 22, 112–118. [Google Scholar]
- Afzali, M.; Ghaeli, P.; Khanavi, M.; Parsa, M.; Montazeri, H.; Ghahremani, M.H.; Ostad, S.N. Non-Addictive Opium Alkaloids Selectively Induce Apoptosis in Cancer Cells Compared to Normal Cells. DARU J. Pharm. Sci. 2015, 23, 16. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sajadian, S.; Vatankhah, M.; Majdzadeh, M.; Kouhsari, S.M.; Ghahremani, M.H.; Ostad, S.N. Cell Cycle Arrest and Apoptogenic Properties of Opium Alkaloids Noscapine and Papaverine on Breast Cancer Stem Cells. Toxicol. Mech. Methods 2015, 25, 388–395. [Google Scholar] [CrossRef] [PubMed]
- Noureini, S.K.; Wink, M. Antiproliferative Effect of the Isoquinoline Alkaloid Papaverine in Hepatocarcinoma HepG-2 Cells—Inhibition of Telomerase and Induction of Senescence. Molecules 2014, 19, 11846–11859. [Google Scholar] [CrossRef]
- Hultman, K.A.; Scott, A.W.; Johnson, S.L. Small Molecule Modifier Screen for Kit-Dependent Functions in Zebrafish Embryonic Melanocytes. Zebrafish 2008, 5, 279–287. [Google Scholar] [CrossRef]
- Inada, M.; Sato, A.; Shindo, M.; Yamamoto, Y.; Akasaki, Y.; Ichimura, K.; Tanuma, S.-I. Anticancer Non-Narcotic Opium Alkaloid Papaverine Suppresses Human Glioblastoma Cell Growth. Anticancer Res. 2019, 39, 6743–6750. [Google Scholar] [CrossRef] [PubMed]
- Inada, M.; Shindo, M.; Kobayashi, K.; Sato, A.; Yamamoto, Y.; Akasaki, Y.; Ichimura, K.; Tanuma, S. Anticancer Effects of a Non-Narcotic Opium Alkaloid Medicine, Papaverine, in Human Glioblastoma Cells. PLoS ONE 2019, 14, e0216358. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nohl, H.; Rohr-Udilova, N.; Gille, L.; Bieberschulte, W.; Jurek, D.; Marian, B.; Schulte-Hermann, R. Ubiquinol and the Papaverine Derivative Caroverine Prevent the Expression of Tumour- Promoting Factors in Adenoma and Carcinoma Colon Cancer Cells Induced by Dietary Fat. BioFactors 2005, 25, 87–95. [Google Scholar] [CrossRef] [PubMed]
- Rubis, B.; Kaczmarek, M.; Szymanowska, N.; Galezowska, E.; Czyrski, A.; Juskowiak, B.; Hermann, T.; Rybczynska, M. The Biological Activity of G-Quadruplex DNA Binding Papaverine-Derived Ligand in Breast Cancer Cells. Investig. New Drugs 2009, 27, 289–296. [Google Scholar] [CrossRef]
- Parcha, P.K.; Sarvagalla, S.; Ashok, C.; Sudharshan, S.J.; Dyavaiah, M.; Coumar, M.S.; Rajasekaran, B. Repositioning Antispasmodic Drug Papaverine for the Treatment of Chronic Myeloid Leukemia. Pharmacol. Rep. 2021, 73, 615–628. [Google Scholar] [CrossRef]
- So, H.; Chau, C.; Chiu, W.; Ho, K.; Lo, C.; Yim, S.; Sham, P. Analysis of Genome-Wide Association Data Highlights Candidates for Drug Repositioning in Psychiatry. Nat. Neurosci. 2017, 20, 1342–1349. [Google Scholar] [CrossRef] [PubMed]
- Siuciak, J.A.; Strick, C.A. Treating Neuropsychiatric Disorders with PDE10A Inhibitors. Drug Discov. Today Ther. Strateg. 2006, 3, 527–532. [Google Scholar] [CrossRef]
- Gardos, G.; Granacher, R.P.; Cole, J.O.; Sniffin, C. The Effects of Papaverine in Tardive Dyskinesia. Prog. Neuropsychopharmacol. 1979, 3, 543–550. [Google Scholar] [CrossRef]
- El-Sayeh, H.G.; Lyra da Silva, J.P.; Rathbone, J.; Soares-Weiser, K. Non-Neuroleptic Catecholaminergic Drugs for Neuroleptic-Induced Tardive Dyskinesia. Cochrane Database Syst. Rev. 2006, 1. [Google Scholar] [CrossRef]
- Soares-Weiser, K.; Rathbone, J.; Ogawa, Y.; Shinohara, K.; Bergman, H. Miscellaneous Treatments for Antipsychotic-Induced Tardive Dyskinesia. Cochrane Database Syst. Rev. 2018, 3. [Google Scholar] [CrossRef]
- Itoh, K.; Ishima, T.; Kehler, J.; Hashimoto, K. Potentiation of NGF-Induced Neurite Outgrowth in PC12 Cells by Papaverine: Role Played by PLC-γ, IP3 Receptors. Brain Res. 2011, 1377, 32–40. [Google Scholar] [CrossRef]
- Guan, S.; Liu, Q.; Gu, H.; Zhang, Y.; Wei, P.; Qi, Y.; Liu, J.; Wang, Z. Pluripotent Anti-Inflammatory Immunomodulatory Effects of Papaverine against Cerebral Ischemic-Reperfusion Injury. J. Pharmacol. Sci. 2020, 144, 69–75. [Google Scholar] [CrossRef]
- Leem, Y.H.; Park, J.S.; Park, J.E.; Kim, D.Y.; Kim, H.S. Papaverine Exerts Neuroprotective Effect by Inhibiting NLRP3 Inflammasome Activation in an MPTP-Induced Microglial Priming Mouse Model Challenged with LPS. Biomol. Ther. 2021, 29, 295. [Google Scholar] [CrossRef] [PubMed]
- Leem, Y.H.; Park, J.S.; Park, J.E.; Kim, D.Y.; Kang, J.L.; Kim, H.S. Papaverine Inhibits α-Synuclein Aggregation by Modulating Neuroinflammation and Matrix Metalloproteinase-3 Expression in the Subacute MPTP/P Mouse Model of Parkinson’s Disease. Biomed. Pharmacother. 2020, 130, 110576. [Google Scholar] [CrossRef]
- Giralt, A.; Saavedra, A.; Carretón, O.; Arumí, H.; Tyebji, S.; Alberch, J.; Pérez-Navarro, E. PDE10 Inhibition Increases GluA1 and CREB Phosphorylation and Improves Spatial and Recognition Memories in a Huntington’s Disease Mouse Model. Hippocampus 2013, 23, 684–695. [Google Scholar] [CrossRef]
- Otto, C. Heartbeat: Improving Diagnosis and Management of Aortic Valve Disease. Heart 2018, 104, 1809. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, H.; Zhu, X.; Yao, G.; Wang, Z. Papaverine Improves Sublingual Blood Flow in Patients with Septic Shock. J. Surg. Res. 2015, 195, 271–276. [Google Scholar] [CrossRef] [PubMed]
- Saravala, H. Instrumental and Analytical Study of Active Pharmaceutical Ingredients and Bio Active Molecules. Ph.D. Thesis, Saurashtra University, Rajkot, India, 2011. [Google Scholar]
- Madhu, C.; Mahavarkar, S.; Bhave, S. A Randomised Controlled Study Comparing Drotaverine Hydrochloride and Valethamate Bromide in the Augmentation of Labour. Arch. Gynecol. Obstet. 2010, 282, 11–15. [Google Scholar] [CrossRef]
- Gueta, I.; Braun, A.; Gilan, A.; Berlin, M.; Kohn, E.; Barchel, D.; Markovits, N.; Berkovitch, M.; Loebstein, R. Pregnancy Outcomes Following Gestational Exposure to Papaverine: An Observational Comparative Study. Br. J. Clin. Pharmacol. 2021, 87, 3910–3915. [Google Scholar] [CrossRef] [PubMed]
- Kublickiene, K.; Lindblom, B.; Krüger, K.; Nisell, H. Preeclampsia: Evidence for Impaired Shear Stress–Mediated Nitric Oxide Release in Uterine Circulation. Am. J. Obstet. Gynecol. 2000, 183, 160–166. [Google Scholar] [CrossRef]
- Snir, N.; Moskovitz, B.; Nativ, O.; Margel, D.; Sandovski, U.; Sulkes, J.; Livne, P.M.; Lifshitz, D.A. Papaverine Hydrochloride for the Treatment of Renal Colic: An Old Drug Revisited. A Prospective, Randomized Study. J. Urol. 2008, 179, 1411–1414. [Google Scholar] [CrossRef]
- Karagoz, M.A.; Doluoglu, O.G.; Ünverdi, H.; Resorlu, B.; Sunay, M.M.; Demirbas, A.; Karakan, T.; Aydin, A. The Protective Effect of Papaverine and Alprostadil in Rat Testes after Ischemia and Reperfusion Injury. Int. Braz. J. Urol. 2018, 44, 617–622. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Z.; Tang, W. Drug Metabolism in Drug Discovery and Development. Acta Pharm. Sin. B 2018, 8, 721–732. [Google Scholar] [CrossRef]
- Mohs, R.; Greig, N. Drug Discovery and Development: Role of Basic Biological Research. Transl. Res. Clin. Interv. 2017, 3, 651–657. [Google Scholar] [CrossRef]
- Nair, A.; Aly Morsy, M.; Jacob, S. Dose Translation between Laboratory Animals and Human in Preclinical and Clinical Phases of Drug Development. Drug Dev. Res. 2018, 79, 373–382. [Google Scholar] [CrossRef]
- Davison, E.K.; Brimble, M.A. Natural Product Derived Privileged Scaffolds in Drug Discovery. Curr. Opin. Chem. Biol. 2019, 52, 1–8. [Google Scholar] [CrossRef]
- Yuan, H.; Ma, Q.; Cui, H.; Liu, G.; Zhao, X.; Li, W.; Piao, G. How Can Synergism of Traditional Medicines Benefit from Network Pharmacology? Molecules 2017, 22, 1135. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gomes, D.; Joubert, A.; Visagie, M. The Biological Relevance of Papaverine in Cancer Cells. Cells 2022, 11, 3385. [Google Scholar] [CrossRef]
- Yerevanian, A.; Soukas, A.A. Metformin: Mechanisms in Human Obesity and Weight Loss. Curr. Obes. Rep. 2019, 8, 156–164. [Google Scholar] [CrossRef] [PubMed]
- Ziqubu, K.; Mazibuko-Mbeje, S.E.; Mthembu, S.X.H.; Mabhida, S.E.; Jack, B.U.; Nyambuya, T.M.; Nkambule, B.B.; Basson, A.K.; Tiano, L.; Dludla, P.V. Anti-Obesity Effects of Metformin: A Scoping Review Evaluating the Feasibility of Brown Adipose Tissue as a Therapeutic Target. Int. J. Mol. Sci. 2023, 24, 2227. [Google Scholar] [CrossRef] [PubMed]
- Emon, N.; Rudra, S.; Alam, S.; Al Haidar, I.; Paul, S.; Richi, F.; Shahriar, S.; Sayeed, M.; Tumpa, N.; Ganguly, A. Chemical, Biological and Protein-Receptor Binding Profiling of Bauhinia Scandens L. Stems Provide New Insights into the Management of Pain, Inflammation. Biomed. Pharmacother. 2021, 143, 112185. [Google Scholar] [CrossRef]
- Ashrafi, S.; Rahman, M.; Ahmed, P.; Alam, S.; Hossain, M.A. Prospective Asian Plants with Corroborated Antiviral Potentials: Position Standing in Recent Years. Beni-Suef Univ. J. Basic Appl. Sci. 2022, 11, 1–26. [Google Scholar] [CrossRef]
- Choo, T.M. Nigella Sativa Tea Mitigates Type-2 Diabetes and Edema: A Case Report. Adv. Tradit. Med. 2023, 1–6. [Google Scholar] [CrossRef]
- Akinloye, O.A.; Sulaimon, L.A.; Ogunbiyi, O.E.; Odubiyi, A.E.; Adewale, A.A.; Toriola, M.A.; Salami, O.A.; Boyenle, I.D. Amaranthus Spinosus (Spiny Pigweed) Methanol Leaf Extract Alleviates Oxidative and Inflammation Induced by Doxorubicin in Male Sprague Dawley Rats. Adv. Tradit. Med. 2023, 1–8. [Google Scholar] [CrossRef]
- Alam, S.; Rashid, M.A.; Sarker, M.M.R.; Emon, N.U.; Arman, M.; Mohamed, I.N.; Haque, M.R. Antidiarrheal, Antimicrobial and Antioxidant Potentials of Methanol Extract of Colocasia Gigantea Hook. f. Leaves: Evidenced from in Vivo and in Vitro Studies along with Computer-Aided Approaches. BMC Complement. Med. Ther. 2021, 21, 119. [Google Scholar] [CrossRef]
- Alam, S.; Sarker, M.M.R.; Afrin, S.; Richi, F.T.; Zhao, C.; Zhou, J.R.; Mohamed, I.N. Traditional Herbal Medicines, Bioactive Metabolites, and Plant Products against COVID-19: Update on Clinical Trials and Mechanism of Actions. Front. Pharmacol. 2021, 12, 671498. [Google Scholar] [CrossRef] [PubMed]
- Alam, S.; Sarker, M.; Sultana, T.; Chowdhury, M.; Rashid, M.; Chaity, N.; Zhao, C.; Xiao, J.; Hafez, E.; Khan, S.; et al. Antidiabetic Phytochemicals from Medicinal Plants: Prospective Candidates for New Drug Discovery and Development. Front. Endocrinol. 2022, 13, 800714. [Google Scholar] [CrossRef] [PubMed]
Molecule | Activity Against | Experimental Approaches | Key Result | Mechanism of Action | Reference |
---|---|---|---|---|---|
Papaverine hydrochloride | HIV | Determination of viral replication by liquid competition radioimmunoassay in H9 cell line and in peripheral blood mononuclear cell (PBMC) culture. |
|
| [58] |
Determination of viral replication in MT4 cell line and in peripheral blood mononuclear cell (PBMC) culture. Examination of T-cell lymphocytes. | Papaverine significantly inhibited HIV replication by more than 99% at doses of 30 μM with an CD50 and ED50 of 32 μM and 5.8 μM, respectively. | The drug might affect cellular DNA synthesis and reverse transcription, indirectly inhibiting HIV replication. | [61] | ||
Papaverine | Measles virus | Determination of viral replication in neural and non-neural cells. Analysis of mechanism for the inhibition of viral replication. | Suppression of virus growth was most prominent in neuroblastoma cells, followed by that in epidermoid carcinoma and glioblastoma cells. |
| [59] |
Papaverine | CMV | Assays for inhibition of infectious CMV yields on human embryo skin-muscle (SM) cells. Assays for the rate of cell DNA synthesis by measuring the incorporation of [methyl3H] thymidine into cell DNA. | Inhibition of the multiplication of CMV. Papaverine was the most potent of the three drugs (papaverine, verapamil and sodium nitroprusside); at a concentration of 30 μg/m (80 μM) the CMV yield was inhibited by 5.21 log10 at 120 hr postinfection (PI). |
| [60] |
Papaverine | Various strains of influenza virus as well as the paramyxoviruses parainfluenza virus 5 (PIV5), human parainfluenza virus 3 (HPIV3), and respiratory syncytial virus (RSV) | Determination of antiviral activity by plaque reduction neutralization test (PRNT). | Dose-dependent inhibition of influenza virus strains. |
| [63] |
Papaverine | SARS-CoV-2 | Cytopathicity assays. | Inhibit SARS-CoV-2 cytopathicity in the human epithelial colorectal adenocarcinoma cell line, Caco-2, with IC50 value of 1.1 ± 0.39. | Additional studies required. | [64] |
Molecule | Cell Line | Cell Type | Significant Benefit Achieved | Reference |
---|---|---|---|---|
Papaverine | PC-3, DU145, and LNCaP | Prostate cancer | Induced morphologic change and also raised intracellular cyclic AMP levels in LNCaP cells. | [73] |
Papaverine combined with prostaglandin E2 (PGE2) | LNCaP | Prostate cancer | Decreased proliferation and malignancy of LNCaP cells and caused the suppression of the expression of oncogenes such as c-myc and Bcl-2 in differentiated LNCaP cells. | [74] |
Papaverine | PC-3 | Prostate cancer | Showed cytotoxic effects by inducing early and late apoptosis along with inducing sub-G1 cell cycle arrest, and caused the downregulation of Blc-2, Bax, and NF-kB proteins and PI3K and phospho-Akt expression. | [75] |
Papaverine | HT29, T47D, and HT1080 | Colorectal cancer, breast cancer, and fibrosarcoma cells | Showed cytotoxic effects by selective DNA damage and induction of apoptosis. | [76] |
Papaverine | MCF-7 and MDA-MB-231 | Breast cancer | Showed cytotoxic effects by arresting cell cycle in G0/G1 phase and inducing apoptosis. | [77] |
Papaverine | HepG-2 | Hepatocarcinoma | Induced antiproliferative activity by inhibiting telomerase through downregulation of hTERT gene. | [78] |
Papaverine combined with temozolomide | U87MG and T98G | Glioblastoma | Significantly inhibited the clonogenicity of the cell lines, delayed tumor growth, and increased the radiosensitivity of T98G cells. | [80,81] |
Papaverine–Au(III) complex | MCF-7 and HepG-2 | Breast cancer and hepatocellular carcinoma | Showed significant cytotoxic activity against the examined cell lines. Additionally, the Au complex showed anticancer activity against the breast cancer MCF-7 cells better than that of cisplatin. | [16] |
Papaverine | HCT15 (colon), A549 (lung), HeLa (cervical), K562 (Bcr-Abl positive CML), and RAW 264.7 | Colon, lung, cervical, and lymphoblast cancers | Induced ROS-mediated apoptosis and inhibited Bcr-Abl downstream signaling. | [84] |
Caroverine, derivative of papaverine | LT97 and SW480 | Colorectal cancer | Inhibition of expression of VEGF. | [82] |
6a,12a-diazadibenzo-[a,g]fluorenylium, derivative of papaverine | MCF-7 | Breast cancer | Inhibition of MCF-7 cell line by blocking G0/G1 phase of the cell cycle and telomerase activity. | [83] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ashrafi, S.; Alam, S.; Sultana, A.; Raj, A.; Emon, N.U.; Richi, F.T.; Sharmin, T.; Moon, M.; Park, M.N.; Kim, B. Papaverine: A Miraculous Alkaloid from Opium and Its Multimedicinal Application. Molecules 2023, 28, 3149. https://doi.org/10.3390/molecules28073149
Ashrafi S, Alam S, Sultana A, Raj A, Emon NU, Richi FT, Sharmin T, Moon M, Park MN, Kim B. Papaverine: A Miraculous Alkaloid from Opium and Its Multimedicinal Application. Molecules. 2023; 28(7):3149. https://doi.org/10.3390/molecules28073149
Chicago/Turabian StyleAshrafi, Sania, Safaet Alam, Arifa Sultana, Asef Raj, Nazim Uddin Emon, Fahmida Tasnim Richi, Tasnuva Sharmin, Myunghan Moon, Moon Nyeo Park, and Bonglee Kim. 2023. "Papaverine: A Miraculous Alkaloid from Opium and Its Multimedicinal Application" Molecules 28, no. 7: 3149. https://doi.org/10.3390/molecules28073149
APA StyleAshrafi, S., Alam, S., Sultana, A., Raj, A., Emon, N. U., Richi, F. T., Sharmin, T., Moon, M., Park, M. N., & Kim, B. (2023). Papaverine: A Miraculous Alkaloid from Opium and Its Multimedicinal Application. Molecules, 28(7), 3149. https://doi.org/10.3390/molecules28073149