A Structural Approach to the Strength Evaluation of Linear Chalcogen Bonds
Abstract
:1. Introduction
2. Results and Discussion
2.1. R–S⋯A Fragments
2.2. R−Se⋯A Fragments
2.3. R−Te⋯A Fragments
2.4. R–Ch⋯A Fragments: A Scale for ChB Strength
3. Methodology
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Scilabra, P.; Terraneo, G.; Resnati, G. The Chalcogen Bond in Crystalline Solids: A World Parallel to Halogen Bond. Acc. Chem. Res. 2019, 52, 1313–1324. [Google Scholar] [CrossRef]
- Politzer, P.; Murray, J.S. σ-Hole Interactions: Perspectives and Misconceptions. Crystals 2017, 7, 212. [Google Scholar] [CrossRef]
- Vogel, L.; Wonner, P.; Huber, S.M. Chalcogen Bonding: An Overview. Angew. Chem. Int. Ed. 2019, 58, 1880–1891. [Google Scholar] [CrossRef] [PubMed]
- Scheiner, S. Participation of S and Se in hydrogen and chalcogen bonds. CrystEngComm 2021, 23, 6821–6837. [Google Scholar] [CrossRef]
- Albano, V.G.; Aragoni, M.C.; Arca, M.; Castellari, C.; Demartin, F.; Devillanova, F.A.; Isaia, F.; Lippolis, V.; Loddo, L.; Verani, G. An unprecedented example of a cis-phosphonodithioato nickel(ii) complex built by an extensive hydrogen bonding supramolecular network. Chem. Commun. 2002, 11, 1170–1171. [Google Scholar] [CrossRef] [PubMed]
- Montis, R.; Arca, M.; Aragoni, M.C.; Blake, A.J.; Castellano, C.; Demartin, F.; Isaia, F.; Lippolis, V.; Pintus, A.; Lenardao, E.J.; et al. Structural diversity in the product formed by the reactions of 2-arylselanyl pyridine derivatives and dihalogens. New J. Chem. 2018, 42, 10592–10602. [Google Scholar] [CrossRef]
- Rosenfield, R.E.; Parthasarathy, R.; Dunitz, J.D. Directional preferences of nonbonded atomic contacts with divalent sulfur. 1. Electrophiles and nucleophiles. J. Am. Chem. Soc. 1977, 99, 4860–4862. [Google Scholar] [CrossRef]
- Murray, J.S.; Lane, P.; Clark, T.; Politzer, P. σ-hole bonding: Molecules containing group VI atoms. J. Mol. Model. 2007, 13, 1033–1038. [Google Scholar] [CrossRef]
- Aakeroy, C.B.; Bryce, D.L.; Desiraju, G.R.; Frontera, A.; Legon, A.C.; Nicotra, F.; Rissanen, K.; Scheiner, S.; Terraneo, G.; Metrangolo, P.; et al. Definition of the chalcogen bond (IUPAC Recommendations 2019). Pure Appl. Chem. 2019, 91, 1889–1892. [Google Scholar] [CrossRef]
- Cordero, B.; Gomez, V.; Platero-Prats, A.E.; Revés, M.; Echeverrìa, J.; Cremades, E.; Barragàn, F.; Alvarez, S. Covalent radii revisited. Dalton Trans. 2008, 21, 2832–2838. [Google Scholar] [CrossRef]
- Pyykkç, P.; Atsumi, M. Molecular Double-Bond Covalent Radii for Elements Li–E112. Chem. Eur. J. 2009, 15, 12770–12779. [Google Scholar] [CrossRef] [PubMed]
- Mahmudov, K.T.; Kopylovich, M.N.; Guedes da Silva, M.F.C.; Pombeiro, A.J.L. Chalcogen bonding in synthesis, catalysis and design of materials. Dalton Trans. 2017, 46, 10121–10138. [Google Scholar] [CrossRef] [PubMed]
- Gleiter, R.; Haberhauer, G.; Werz, D.B.; Rominger, F.; Bleiholder, C. From Noncovalent Chalcogen-Chalcogen Interactions to Supramolecular Aggregates: Experiments and Calculations. Chem. Rev. 2018, 118, 2010–2041. [Google Scholar] [CrossRef]
- Ho, P.C.; Wang, J.Z.; Meloni, F.; Vargas-Baca, I. Chalcogen bonding in materials chemistry. Coord. Chem. Rev. 2022, 422, 213464. [Google Scholar] [CrossRef]
- Biot, N.; Bonifazi, D. Chalcogen-bond driven molecular recognition at work. Coord. Chem. Rev. 2020, 413, 213243. [Google Scholar] [CrossRef]
- Fourmigué, M.; Dhaka, A. Chalcogen bonding in crystalline diselenides and selenocyanates: From molecules of pharmaceutical interest to conducting materials. Coord. Chem. Rev. 2020, 403, 213084. [Google Scholar] [CrossRef]
- Mahmudov, K.T.; Gurbanov, A.V.; Aliyeva, V.A.; Guedes da Silva, M.F.C.; Resnati, G.; Pombeiro, A.J.L. Chalcogen bonding in coordination chemistry. Coord. Chem. Rev. 2022, 464, 214556. [Google Scholar] [CrossRef]
- Arca, M.; Ciancaleoni, G.; Pintus, A. Chalcogen Chemistry: Fundamentals and Applications; Lippolis, V., Santi, C., Lenardão, E.J., Braga, A.L., Eds.; The Royal Society of Chemistry: London, UK, 2023; Chapter 17; pp. 435–475. [Google Scholar]
- Aragoni, M.C.; Torubaev, Y. Chalcogen Chemistry: Fundamentals and Applications; Lippolis, V., Santi, C., Lenardão, E.J., Braga, A.L., Eds.; The Royal Society of Chemistry: London, UK, 2023; Chapter 16; pp. 476–493. [Google Scholar]
- Romito, D.; Ho, P.C.; Vargas-Baca, I.; Bonifazi, D. Chalcogen Chemistry: Fundamentals and Applications; Lippolis, V., Santi, C., Lenardão, E.J., Braga, A.L., Eds.; The Royal Society of Chemistry: London, UK, 2023; Chapter 18; pp. 494–528. [Google Scholar]
- Reed, A.E.; Curtiss, L.A.; Weinhold, F. Intermolecular interactions from a natural bond orbital, donor-acceptor viewpoint. Chem. Rev. 1988, 88, 899–926. [Google Scholar] [CrossRef]
- Bader, R. Atoms in Molecules: A Quantum Theory; Oxford University Press: New York, NY, USA, 1994; ISBN 978-0-19-855865-1. [Google Scholar]
- Ciancaleoni, G.; Nunzi, F.; Belpassi, L. Charge Displacement Analysis—A Tool to Theoretically Characterize the Charge Transfer Contribution of Halogen Bonds. Molecules 2020, 25, 300. [Google Scholar] [CrossRef]
- Bijina, P.V.; Suresh, C.H. Molecular electrostatic potential analysis of non-covalent complexes. J. Chem. Sci. 2016, 128, 1677–1686. [Google Scholar] [CrossRef]
- Politzer, P.; Murray, J.S.; Clark, T. Halogen bonding: An electrostatically-driven highly directional noncovalent interaction. Phys. Chem. Chem. Phys. 2010, 12, 7748–7757. [Google Scholar] [CrossRef] [PubMed]
- Oliveira, V.; Cremer, D.; Kraka, E. The Many Facets of Chalcogen Bonding: Described by Vibrational Spectroscopy. J. Phys. Chem. A 2017, 121, 6845–6862. [Google Scholar] [CrossRef]
- Haberhauer, G.; Gleiter, R. The Nature of Strong Chalcogen Bonds Involving Chalcogen-Containing Heterocycles. Angew. Chem. Int. Ed. 2020, 59, 21236–21243. [Google Scholar] [CrossRef]
- Pascoe, D.J.; Ling, K.B.; Cockroft, S.L. The Origin of Chalcogen-Bonding Interactions. J. Am. Chem. Soc. 2017, 139, 15160–15167. [Google Scholar] [CrossRef] [PubMed]
- Kolář, M.H.; Hobza, P. Computer Modeling of Halogen Bonds and Other σ-Hole Interactions. Chem. Rev. 2016, 116, 5155–5187. [Google Scholar] [CrossRef]
- Bleiholder, C.; Werz, D.B.; Köppel, H.; Gleiter, R. Theoretical Investigations on Chalcogen−Chalcogen Interactions: What Makes These Nonbonded Interactions Bonding? J. Am. Chem. Soc. 2006, 128, 2666–2674. [Google Scholar] [CrossRef]
- Tarannam, N.; Shukla, R.; Kozuch, S. Yet another perspective on hole interactions. Phys. Chem. Chem. Phys. 2021, 23, 19948–19963. [Google Scholar] [CrossRef]
- Zhang, J.; Li, W.; Cheng, J.; Liua, Z.; Li, Q. Cooperative effects between π-hole triel and π-hole chalcogen bonds. RSC Adv. 2018, 8, 26580–26588. [Google Scholar] [CrossRef]
- Esrafili, M.D.; Nurazar, R. Chalcogen bonds formed through π-holes: SO3 complexes with nitrogen and phosphorus bases. Mol. Phys. 2016, 114, 276–282. [Google Scholar] [CrossRef]
- Azofra, L.M.; Alkorta, I.; Scheiner, S. Chalcogen Bonds in Complexes of SOXY (X, Y = F, Cl) with Nitrogen Bases. J. Phys. Chem. A 2015, 119, 535–541. [Google Scholar] [CrossRef]
- Bodart, L.; Wouters, J. Crystal Structures of Organoselenium Compounds: Structural Descriptors for Chalcogen Bonds. Synthesis 2023, 55, 297–306. [Google Scholar] [CrossRef]
- Aragoni, M.C.; Arca, M.; Devillanova, F.A.; Garau, A.; Isaia, F.; Lippolis, V.; Mancini, A. The nature of the chemical bond in linear three-body systems: From I3– to mixed chalcogen/halogen and trichalcogen moieties. Bioinorg. Chem. Appl. 2007, 2007, 17416, PMCID:PMC2276819. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Zeng, Y.; Li, X. Noncovalent interactions between benzochalcogenadiazoles and nitrogen bases. J. Mol. Model. 2022, 28, 248. [Google Scholar] [CrossRef] [PubMed]
- Lundemba, A.S.; Bibelayi, D.D.; Wood, P.A.; Pradon, J.; Yav, Z.G. σ-Hole interactions in small-molecule compounds containing divalent sulfur groups R1—S—R2. Acta crystallogr. Sect. B Struct. Sci. Cryst. Eng. Mater. 2020, 76, 707–718. [Google Scholar] [CrossRef]
- Aragoni, M.C.; Arca, M.; Devillanova, F.A.; Isaia, F.; Lippolis, V. Adducts of S/Se Donors with Dihalogens as a Source of Information for Categorizing the Halogen Bonding. Cryst. Growth Des. 2012, 12, 2769–2779. [Google Scholar] [CrossRef]
R–S⋯A | N | O | S | Se | F | Cl | Br | I |
---|---|---|---|---|---|---|---|---|
C S⋯A Nc | −4.57 0.95 | −5.15 0.95 | −3.87 0.96 | −4.69 0.95 | −4.83 0.95 | −4.18 0.96 | −3.58 0.96 | −3.13 0.97 |
N S⋯A Nc | −7.48 0.93 | −9.13 0.91 | −6.25 0.94 | −4.18 0.96 | −8.22 0.92 | −9.24 0.91 | −8.81 0.91 | −5.85 0.94 |
O S⋯A Nc | −2.46 0.97 | −4.12 0.96 | −2.77 0.97 | −2.12 0.98 | −5.95 0.94 | −3.41 0.97 | −1.97 0.98 | −1.41 0.99 |
S S⋯A Nc | −6.14 0.94 | −7.05 0.97 | −5.54 0.94 | −8.87 0.91 | −7.42 0.93 | −7.92 0.92 | −12.25 0.88 | −10.47 0.89 |
R–Se⋯A | N | O | S | Se | Te | F | Cl | Br | I |
---|---|---|---|---|---|---|---|---|---|
C Se⋯A Nc | −7.6 0.92 | −8.2 0.92 | −4.2 0.96 | −4.4 0.96 | −3.6 0.96 | −6.03 0.94 | −6.12 0.94 | −6.71 0.93 | −5.11 0.95 |
N Se⋯A Nc | −14.65 0.85 | −16.5 0.83 | −14.2 0.86 | −10.2 0.90 | − | −10.88 0.89 | −10.85 0.89 | −12.8 0.87 | −11.9 0.88 |
O Se⋯A Nc | −5.74 0.94 | −11.45 0.88 | − | −4.71 0.95 | − | − | −7.45 0.92 | − | −3.30 0.97 |
S Se⋯A Nc | −17.71 0.82 | −13.56 0.86 | −6.91 0.93 | −10.93 0.89 | − | − | −13.87 0.86 | −14.69 0.85 | −17.15 0.83 |
Se Se⋯A Nc | −10.56 0.89 | −9.05 0.91 | −11.21 0.89 | −8.21 0.92 | −0.43 0.99 | −8.13 0.92 | −11.84 0.88 | −14.12 0.86 | −10.31 0.90 |
R–Te⋯A | N | O | S | Se | Te | F | Cl | Br | I |
---|---|---|---|---|---|---|---|---|---|
C Te⋯A Nc | −12.46 0.87 | −12.96 0.87 | −7.73 0.92 | −9.03 0.91 | −5.46 0.94 | −10.89 0.89 | −9.39 0.91 | −8.25 0.92 | −7.69 0.92 |
N Te⋯A Nc | −18.77 0.81 | −18.71 0.81 | −5.71 0.94 | − | −1.33 0.99 | −15.44 0.85 | −11.84 0.89 | −13.91 0.86 | −13.13 0.87 |
O Te⋯A Nc | −9.53 0.90 | −20,67 0.79 | −2.69 0.97 | − | −6.91 0.97 | − | −13.61 0.86 | −19.67 0.80 | −15.76 0.84 |
S Te⋯A Nc | −16.15 0.84 | −16.66 0.83 | −12.2 0.88 | − | −10.27 0.90 | −13.34 0.87 | −6.86 0.93 | −18.26 0.82 | −19.64 0.84 |
Se Te⋯A Nc | −8.58 0.91 | −13.61 0.86 | −5.93 0.94 | − | −8.92 0.91 | −11.55 0.88 | −10.78 0.89 | −14.51 0.85 | −11.81 0.88 |
av(S⋯A) | C–Ch⋯A | N–Ch⋯A | O–Ch⋯A | S–Ch⋯A | Se–Ch⋯A | Te–Ch⋯A |
---|---|---|---|---|---|---|
Ch = S av(S⋯A) | −4.41 | −7.40 | −3.07 | −8.21 | − | − |
Ch = Se av(Se⋯A) | −5.77 | −12.75 | −6.53 | −13.55 | −9.32 | − |
Ch = Te av(Te⋯A) | −9.32 | −12.36 | −12.69 | −14.17 | − | −10.71 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Aragoni, M.C.; Arca, M.; Lippolis, V.; Pintus, A.; Torubaev, Y.; Podda, E. A Structural Approach to the Strength Evaluation of Linear Chalcogen Bonds. Molecules 2023, 28, 3133. https://doi.org/10.3390/molecules28073133
Aragoni MC, Arca M, Lippolis V, Pintus A, Torubaev Y, Podda E. A Structural Approach to the Strength Evaluation of Linear Chalcogen Bonds. Molecules. 2023; 28(7):3133. https://doi.org/10.3390/molecules28073133
Chicago/Turabian StyleAragoni, Maria Carla, Massimiliano Arca, Vito Lippolis, Anna Pintus, Yury Torubaev, and Enrico Podda. 2023. "A Structural Approach to the Strength Evaluation of Linear Chalcogen Bonds" Molecules 28, no. 7: 3133. https://doi.org/10.3390/molecules28073133
APA StyleAragoni, M. C., Arca, M., Lippolis, V., Pintus, A., Torubaev, Y., & Podda, E. (2023). A Structural Approach to the Strength Evaluation of Linear Chalcogen Bonds. Molecules, 28(7), 3133. https://doi.org/10.3390/molecules28073133