External Catalyst- and Additive-Free Photo-Oxidation of Aromatic Alcohols to Carboxylic Acids or Ketones Using Air/O2
Abstract
:1. Introduction
2. Results and Discussion
3. Experimental Section
3.1. General Information
3.2. Typical Procedure for the Synthesis of Benzoic Acid (3a)
3.3. Characterization Data of Products 3a–3y, 4a–4s, and 5a–5d
- Benzoic acid (3a) [57]: White solid (58 mg, 95%); 1H NMR (400 MHz, DMSO-d6) δ 12.96 (s, 1H), 7.95 (d, J = 7.2 Hz, 2H), 7.62 (t, J = 7.2 Hz, 1H), 7.49 (t, J = 7.6 Hz, 2H); 13C NMR (101 MHz, DMSO-d6) δ 167.8, 133.4, 131.3, 129.8, 129.1.
- [1,1′-biphenyl]-4-carboxylic acid (3b) [58]: White solid (94 mg, 95%); 1H NMR (400 MHz, DMSO-d6) δ 13.00 (s, 1H), 8.03 (d, J = 8.4 Hz, 2H), 7.80 (d, J = 8.4 Hz, 2H), 7.73 (d, J = 8.4 Hz, 2H), 7.50 (t, J = 7.6 Hz, 2H), 7.42 (t, J = 7.6 Hz, 1H); 13C NMR (101 MHz, DMSO-d6) δ 167.7, 144.8, 139.5, 130.5, 130.1, 129.6, 128.8, 127.5, 127.3.
- 4-methylbenzoic acid (3c) [57]: White solid (59 mg, 87%); 1H NMR (400 MHz, DMSO-d6) δ 12.80 (s, 1H), 7.83 (d, J = 8.4 Hz, 2H), 7.29 (d, J = 8.4 Hz, 2H), 2.35 (s, 3H); 13C NMR (101 MHz, DMSO-d6) δ 167.9, 143.6, 129.9, 129.7, 128.6, 21.7.
- 4-isopropylbenzoic acid (3d) [57]: White solid (75 mg, 90%); 1H NMR (400 MHz, DMSO-d6) δ 12.81 (s, 1H), 7.87 (d, J = 8.4 Hz, 2H), 7.36 (d, J = 8.4 Hz, 2H), 3.00–2.89 (m, 1H), 1.21 (d, J = 7.2 Hz, 6H); 13C NMR (101 MHz, DMSO-d6) δ 154.1, 130.0, 127.0, 34.0, 24.1.
- 4-(tert-butyl)benzoic acid (3e) [59]: White solid (82 mg, 92%); 1H NMR (400 MHz, DMSO-d6) δ 12.79 (s, 1H), 7.87 (d, J = 8.4 Hz, 2H), 7.50 (d, J = 8.4 Hz, 2H), 1.28 (s, 9H); 13C NMR (101 MHz, DMSO-d6) δ 167.8, 156.3, 129.7, 128.5, 125.9, 35.3, 31.4.
- 4-(trifluoromethoxy)benzoic acid (3f) [60]: Slight yellow solid (94 mg, 91%); 1H NMR (400 MHz, DMSO-d6) δ 13.19 (s, 1H), 8.06 (d, J = 8.4 Hz, 2H), 7.46 (d, J = 8.0 Hz, 2H); 13C NMR (101 MHz, DMSO-d6) δ 166.7, 152.0, 132.2, 130.4, 121.2, 120.5 (q, J = 255.9 Hz). 19F NMR (376 MHz, CDCl3) δ −56.7.
- 4-fluorobenzoic acid (3g) [57]: White solid (66 mg, 94%); 1H NMR (400 MHz, DMSO-d6) δ 13.06 (s, 1H), 8.02–7.98 (m, 2H), 7.34–7.29 (m, 2H); 13C NMR (101 MHz, DMSO-d6) δ 166.9, 165.4 (d, J = 249.0 Hz), 132.7 (d, J = 9.4 Hz), 127.9 (d, J = 2.8 Hz), 116.2 (d, J = 21.9 Hz); 19F NMR (376 MHz, DMSO-d6) δ −106.9.
- 4-chlorobenzoic acid (3h) [57]: White solid (73 mg, 93%); 1H NMR (400 MHz, DMSO-d6) δ 13.20 (s, 1H), 7.94 (d, J = 8.8 Hz, 2H), 7.57 (d, J = 8.8 Hz, 2H); 13C NMR (101 MHz, DMSO-d6) δ 167.0, 138.3, 131.7, 130.1, 129.3.
- 4-bromobenzoic acid (3i) [61]: White solid (95 mg, 95%); 1H NMR (400 MHz, DMSO-d6) δ 13.19 (s, 1H), 7.86 (d, J = 8.4 Hz, 2H), 7.70 (d, J = 8.4 Hz, 2H); 13C NMR (101 MHz, DMSO-d6) δ 167.1, 132.2, 131.8, 130.5, 127.4.
- 4-cyanobenzoic acid (3j) [58]: Gray white solid (55 mg, 75%); 1H NMR (400 MHz, DMSO-d6) δ 13.28 (s, 1H), 8.06 (s, 2H), 8.00 (s, 2H), 13C NMR (101 MHz, DMSO-d6) δ 195.9, 133.6, 118.7, 115.5.
- 4-(methoxycarbonyl)benzoic acid (3k) [60]: White solid (84 mg, 93%); 1H NMR (400 MHz, DMSO-d6) δ 13.36 (s, 1H), 8.05 (s, 4H), 3.87 (s, 3H); 13C NMR (101 MHz, DMSO-d6) δ 167.1, 166.1, 135.3, 133.7, 130.1, 129.9, 53.0.
- 2-chlorobenzoic acid (3l) [62]: White solid (73 mg, 94%); 1H NMR (400 MHz, DMSO-d6) δ 13.37 (s, 1H), 7.78 (d, J = 7.6 Hz, 1H), 7.55–7.50 (m, 2H), 7.45–7.39(m, 1H); 13C NMR (101 MHz, DMSO-d6) δ 167.3, 133.1, 132.1, 132.0, 131.3, 131.1, 127.7.
- 2-methylbenzoic acid (3m) [60]: White solid (58 mg, 86%); 1H NMR (400 MHz, DMSO-d6) δ 12.79 (s, 1H), 7.80 (d, J = 8.0 Hz, 1H), 7.43–7.39 (m, 1H), 7.26(t, J = 7.6 Hz, 2H); 13C NMR (101 MHz, DMSO-d6) δ 169.2, 139.5, 132.2, 132.0, 131.0, 130.7, 126.3, 21.8.
- 3-chlorobenzoic acid (3n) [60]: White solid (72 mg, 92%); 1H NMR (400 MHz, DMSO-d6) δ 13.34 (s, 1H), 7.90–7.88 (m, 2H), 7.70–7.67 (m, 1H), 7.53 (t, J = 8.0 Hz, 1H); 13C NMR (101 MHz, DMSO-d6) δ 166.6, 133.9, 133.4, 133.2, 131.2, 129.4, 128.4.
- 3-methylbenzoic acid (3o) [60]: Slight yellow solid (55 mg, 81%); 1H NMR (400 MHz, DMSO-d6) δ 12.89 (s, 1H), 7.76–7.73 (m, 2H), 7.44–7.36 (m, 2H), 2.36 (s, 3H); 13C NMR (101 MHz, DMSO-d6) δ 167.9, 138.4, 134.0, 131.2, 130.2, 129.0, 127.0, 21.3.
- 3,4-dichlorobenzoic acid (3p) [62]: White solid (92 mg, 96%); 1H NMR (400 MHz, DMSO-d6) δ 13.50 (s, 1H), 8.04 (d, J = 2.0 Hz, 1H), 7.87 (dd, J = 8.4, 2.0 Hz, 1H), 7.76 (d, J = 8.4 Hz, 1H); 13C NMR (101 MHz, DMSO-d6) δ 165.9, 136.3, 132.0, 131.9, 131.5, 131.5, 129.8.
- terephthalic acid (3q) [57]: White solid (59 mg, 71%); 1H NMR (400 MHz, DMSO-d6) δ 13.29 (s, 2H), 8.03 (s, 4H); 13C NMR (101 MHz, DMSO-d6) δ 167.3, 135.1, 130.1.
- 1-naphthoic acid (3r) [57]: White solid (65 mg, 78%); 1H NMR (400 MHz, DMSO-d6) δ 13.17 (s, 1H), 8.86 (d, J = 8.4 Hz, 1H), 8.17–8.14 (m, 2H), 8.02 (d, J = 7.6 Hz, 1H), 7.66–7.57 (m, 3H); 13C NMR (101 MHz, DMSO-d6) δ 169.2, 134.0, 133.5, 131.2, 130.4, 129.1, 128.2, 128.1, 126.7, 126.0, 125.4.
- anthracene-9-carboxylic acid (3s) [63]: Yellow solid (97 mg, 87%); 1H NMR (400 MHz, DMSO-d6) δ 13.94 (s, 1H), 8.73 (s, 1H), 8.16 (d, J = 8.4 Hz, 2H), 8.05 (d, J = 8.4 Hz, 2H), 7.64–7.57 (m, 4H); 13C NMR (101 MHz, DMSO-d6) δ 170.7, 131.0, 130.2, 129.1, 128.8, 127.6, 127.4, 126.2, 125.4.
- isonicotinic acid (3t) [62]: White solid (45 mg, 74%); 1H NMR (400 MHz, DMSO-d6) δ 13.64 (s, 1H), 8.78 (dd, J = 4.4, 1.6 Hz, 2H), 7.81 (dd, J = 4.4 1.6 Hz, 2H); 13C NMR (101 MHz, DMSO-d6) δ 166.7, 151.1, 138.6, 123.3.
- thiophene-2-carboxylic acid (3u) [57]: Gray white solid (54 mg, 85%); 1H NMR (400 MHz, DMSO-d6) δ 13.06 (s, 1H), 7.88 (dd, J = 4.8, 1.2 Hz, 1H), 7.73 (dd, J = 3.6, 1.2 Hz, 1H), 7.18 (dd, J = 4.8, 3.6 Hz, 1H); 13C NMR (101 MHz, DMSO-d6) δ 163.4, 135.2, 133.8, 133.7, 128.7.
- isobenzofuran-1(3H)-one (3v) [57]: White solid (48 mg, 71%); 1H NMR (400 MHz, CDCl3) δ 7.92 (d, J = 8.0 Hz, 1H), 7.70–7.67 (m, 1H), 7.55–7.49 (m, 2H), 5.32 (s, 2H); 13C NMR (101 MHz, CDCl3) δ 171.1, 146.5, 134.0, 129.0, 125.7, 125.7, 122.1, 69.6.
- 2-((3-(trifluoromethyl)phenyl)amino)nicotinic acid (3y) [64]: Gray white solid (96 mg, 68%); 1H NMR (400 MHz, DMSO-d6) δ 10.64 (s, 1H), 8.42 (dd, J = 4.8, 2.0 Hz, 1H), 8.28–8.26 (m, 2H), 7.84 (d, J = 8.0 Hz, 1H), 7.50 (t, J = 8.0 Hz, 1H), 7.30 (d, J = 8.0 Hz, 1H), 6.92 (dd, J = 7.6, 4.8 Hz, 1H); 13C NMR (101 MHz, DMSO-d6) δ 169.5, 155.7, 153.0, 141.2 (d, JC-F = 7.5 Hz), 130.2, 130.1 (d, JC-F = 93.5 Hz), 129.9, 124.8 (q, JC-F = 270.7 Hz), 123.9, 118.7 (JC-F = 3.9 Hz), 116.2 (JC-F = 4.0 Hz), 115.3, 108.9; 19F NMR (376 MHz, CDCl3) δ −61.2.
- acetophenone (4a) [65]: Colorless liquid (55 mg, 91%); 1H NMR (400 MHz, DMSO-d6) δ 7.93 (d, J = 8.0 Hz, 2H), 7.53 (t, J = 7.8 Hz, 1H), 7.43 (t, J = 8.0 Hz, 2H), 2.57 (s, 3H); 13C NMR (101 MHz, DMSO-d6) δ 198.0, 136.9, 133.0, 128.4, 128.1, 26.4.
- 1-(p-tolyl)ethanone (4b) [65]: Colorless liquid (55 mg, 82%); 1H NMR (400 MHz, DMSO-d6) δ 7.84 (d, J = 8.0 Hz, 2H), 7.24 (d, J = 8.0 Hz, 2H), 2.56 (s, 3H), 2.39 (s, 3H); 13C NMR (101 MHz, DMSO-d6) δ 197.8, 143.8, 134.6, 129.1, 128.3, 26.4, 21.5.
- 1-(4-fluorophenyl)ethanone (4c) [65]: Colorless liquid (63 mg, 91%); 1H NMR (400 MHz, DMSO-d6) δ 7.99–7.93 (m, 2H), 7.13–7.07 (m, 2H), 2.57 (s, 3H); 13C NMR (101 MHz, DMSO-d6) δ 196.4, 165.7 (d, JC-F = 253.1), 133.5, 130.9 (d, JC-F = 9.3 Hz), 115.6 (d, JC-F = 21.7), 26.4. 19F NMR (376 MHz, CDCl3) δ −105.3.
- 1-(4-chlorophenyl)ethanone (4d) [65]: Colorless liquid (74 mg, 96%);1H NMR (400 MHz, DMSO-d6) δ 7.87 (d, J = 8.4 Hz, 2H), 7.40 (d, J = 8.4 Hz, 2H), 2.56 (s, 3H); 13C NMR (101 MHz, DMSO-d6) δ 196.7, 139.5, 135.3, 129.6, 128.8, 26.5.
- 1-(4-bromophenyl)ethanone (4e) [65]: Colorless liquid (97 mg, 97%); 1H NMR (400 MHz, DMSO-d6) δ 7.82 (d, J = 8.4 Hz, 2H), 7.60 (d, J = 8.4 Hz, 2H), 2.58 (s, 3H); 13C NMR (101 MHz, DMSO-d6) δ 197.0, 135.8, 131.9, 129.8, 128.3, 26.5.
- benzophenone (4f) [66]: White solid (87 mg, 96%); 1H NMR (400 MHz, DMSO-d6) δ 7.80 (d, J = 7.2 Hz, 4H), 7.57 (t, J = 7.2 Hz, 2H), 7.47 (t, J = 7.6 Hz, 4H); 13C NMR (101 MHz, DMSO-d6) δ 196.6, 137.4, 132.3, 129.9, 128.1.
- phenyl(p-tolyl)methanone (4g) [67]: White solid (88 mg, 90%); 1H NMR (400 MHz, DMSO-d6) δ 7.80–7.77 (m, 2H), 7.73 (d, J = 8.0 Hz, 2H), 7.60–7.56 (m, 1H), 7.47 (t, J = 7.6 Hz, 2H), 7.28 (d, J = 8.0 Hz, 2H), 2.44 (s, 3H); 13C NMR (101 MHz, DMSO-d6) δ 196.5, 143.2, 137.9, 134.8, 132.1, 130.3, 129.9, 128.9, 128.2, 21.6.
- (4-fluorophenyl)(phenyl)methanone (4h) [67]: Colorless liquid (93 mg, 93%); 1H NMR (400 MHz, DMSO-d6) δ 7.87–7.82 (m, 2H), 7.78–7.76 (m, 2H), 7.62–7.58 (m, 1H), 7.19–7.13 (m, 2H); 13C NMR (101 MHz, DMSO-d6) δ 195.3, 165.4 (d, JC-F = 252.6 Hz), 137.5, 133.8, 133.7, 132.7, 132.6, 132.5, 129.9, 128.3, 115.5, 115.3. 19F NMR (376 MHz, CDCl3) δ −105.9.
- (4-chlorophenyl)(phenyl)methanone (4i) [68]: Colorless liquid (103 mg, 95%); 1H NMR (400 MHz, DMSO-d6) δ 7.78–7.74 (m, 4H), 7.62–7.58 (m, 1H), 7.51–7.44 (m, 4H); 13C NMR (101 MHz, DMSO-d6) δ 195.5, 138.9, 137.2, 135.8, 132.6, 131.4, 129.9, 128.6, 128.4.
- (4-bromophenyl)(phenyl)methanone (4j) [68]: Colorless liquid (123 mg, 94%); 1H NMR (400 MHz, DMSO-d6) δ 7.78–7.76 (m, 2H), 7.69–7.67 (m, 2H), 7.64–7.61 (m, 3H), 7.49 (t, J = 7.6 Hz, 2H); 13C NMR (101 MHz, DMSO-d6) δ 195.7, 137.1, 136.3, 132.7, 131.6, 131.6, 129.9, 128.4, 127.5.
- 2-chloro-1-phenylethanone (4k) [69]: White solid (70 mg, 90%); 1H NMR (400 MHz, DMSO-d6) δ 7.96 (d, J = 7.6 Hz, 2H), 7.62 (t, J = 7.6 Hz, 2H), 7.50 (t, J = 7.6 Hz, 2H), 4.72 (s, 2H); 13C NMR (101 MHz, DMSO-d6) δ 191.0, 134.2, 134.0, 128.9, 128.5, 46.0.
- 2-bromo-1-phenylethanone (4l) [69]: Grayish white solid (88 mg, 88%); 1H NMR (400 MHz, DMSO-d6) δ 7.98 (d, J = 8.4 Hz, 2H), 7.62 (t, J = 7.6 Hz, 1H), 7.50 (t, J = 7.6 Hz, 2H), 4.46 (s, 2H); 13C NMR (101 MHz, DMSO-d6) δ 191.3, 133.9, 133.9, 128.9, 128.8, 30.9.
- 3-chloro-1-phenylpropan-1-one (4m) [70]: Grayish white solid (70 mg, 83%); 1H NMR (400 MHz, DMSO-d6) δ 7.95 (d, J = 7.6 Hz, 2H), 7.59 (t, J = 7.6 Hz, 1H), 7.47 (t, J = 7.6 Hz, 2H), 3.92 (t, J = 6.8 Hz, 2H), 3.45 (t, J = 6.8 Hz, 2H); 13C NMR (101 MHz, DMSO-d6) δ 196.6, 136.3, 133.5, 128.7, 128.0, 41.2, 38.6.
- benzoyl cyanide (4n) [71]: Colorless liquid (60 mg, 92%); 1H NMR (400 MHz, DMSO-d6) δ 8.14 (d, J = 7.6 Hz, 2H), 7.79 (t, J = 7.6 Hz, 1H), 7.61 (t, J = 7.6 Hz, 2H); 13C NMR (101 MHz, DMSO-d6) δ 167.8, 136.8, 133.3, 130.4, 129.5, 112.7.
- 9H-fluoren-9-one (4o) [66]: White solid (82 mg, 91%); 1H NMR (400 MHz, DMSO-d6) δ 7.65 (d, J = 7.6 Hz, 2H), 7.52–7.46 (m, 4H), 7.31–7.27 (m, 2H); 13C NMR (101 MHz, DMSO-d6) δ 193.9, 144.4, 134.7, 134.1, 129.0, 124.3, 120.3.
- 9H-xanthen-9-one (4p) [72]: Grayish white solid (88 mg, 90%); 1H NMR (400 MHz, DMSO-d6) δ 8.35 (dd, J = 8.0, 1.6 Hz, 2H), 7.73 (td, J = 7.6, 1.6 Hz, 2H), 7.49 (d, J = 8.0 Hz, 2H), 7.40–7.36 (m, 2H); 13C NMR (101 MHz, DMSO-d6) δ 177.2, 156.1, 134.8, 126.7, 123.9, 121.8, 118.0.
- 9H-thioxanthen-9-one (4q) [73]: Light yellow solid (93 mg, 88%); 1H NMR (400 MHz, DMSO-d6) δ 8.62 (dd, J = 8.0, 1.2 Hz, 2H), 7.65–7.57 (m, 4H), 7.51–7.47 (m, 2H); 13C NMR (101 MHz, DMSO-d6) δ 180.0, 137.3, 132.3, 129.9, 129.2, 126.3, 126.0.
- methyl 2-(1-(4-acetylbenzoyl)-5-methoxy-2-methyl-1H-indol-3-yl)acetate (4r) [44]: Grayish white solid (148 mg, 78%); 1H NMR (400 MHz, DMSO-d6) δ 8.06 (d, J = 8.4 Hz, 2H), 7.79 (d, J = 8.4 Hz, 2H), 6.96 (d, J = 2.4 Hz, 1H), 6.85 (d, J = 9.2 Hz, 1H), 6.65 (dd, J = 9.2, 2.4 Hz, 1H), 3.83 (s, 3H), 3.71 (s, 3H), 3.67 (s, 2H), 2.68 (s, 3H), 2.36 (s, 3H); 13C NMR (101 MHz, DMSO-d6) δ 197.3, 171.3, 168.5, 156.2, 139.8, 139.6, 135.9, 130.8, 130.7, 129.7, 128.6, 115.1, 112.9, 111.7, 101.4, 55.7, 52.2, 30.1, 26.9, 13.5.
- isopropyl 2-(4-(4-acetylbenzoyl)phenoxy)-2-methylpropanoate (4s) [44]: White solid (153 mg, 83%); 1H NMR (400 MHz, DMSO-d6) δ 8.04 (d, J = 8.0 Hz, 2H), 7.80 (d, J = 8.0 Hz, 2H), 7.75 (d, J = 8.0 Hz, 2H), 6.86 (d, J = 8.4 Hz, 2H), 5.11–5.05 (m, 1H), 2.66 (s, 3H), 1.66 (s, 6H), 1.20 (d, J = 6.0 Hz, 6H); 13C NMR (101 MHz, DMSO-d6) δ 197.6, 194.7, 173.0, 160.0, 142.0, 139.2, 132.1, 129.9, 129.7, 128.1, 117.2, 79.4, 69.4, 26.8, 25.3, 21.5, 1.0.
- benzohydrazide (5a) [49]: Grayish white solid (55 mg, 81%); 1H NMR (400 MHz, DMSO-d6) δ 9.79 (s, 1H), 7.83 (d, J = 7.2 Hz, 2H), 7.52–7.42 (m, 3H), 4.51 (s, 2H); 13C NMR (101 MHz, DMSO-d6) δ 166.5, 133.8, 131.6, 128.8, 127.5.
- phenyl benzoate (5b) [50]: Colorless liquid (77 mg, 78%); 1H NMR (400 MHz, DMSO-d6) δ 8.23 (d, J = 7.2 Hz, 2H), 7.65 (t, J = 7.2 Hz, 1H), 7.53 (t, J = 7.6 Hz, 2H), 7.45 (t, J = 8.0 Hz, 2H), 7.31–7.23 (m, 3H); 13C NMR (101 MHz, DMSO-d6) δ 165.2, 150.9, 133.5, 130.1, 129.5, 129.5, 128.5, 125.9, 121.7.
- acetophenone oxime (5c) [51]: White solid (51 mg, 75%); 1H NMR (400 MHz, DMSO-d6) δ 10.30 (s, 1H), 6.74–6.72 (m, 2H), 6.48–6.43 (m, 3H), 1.24 (s, 3H); 13C NMR (101 MHz, DMSO-d6) δ 153.4, 137.5, 129.1, 128.9, 126.1, 12.1.
- (E)-chalcone (5d) [52]: Light yellow solid (80 mg, 77%); 1H NMR (400 MHz, DMSO-d6) δ 8.03 (d, J = 7.2 Hz, 2H), 7.82 (d, J = 16.0 Hz, 1H), 7.66–7.49 (m, 6H), 7.46–7.41 (m, 3H); 13C NMR (101 MHz, DMSO-d6) δ 190.5, 144.8, 138.2, 134.8, 132.8, 130.5, 128.9, 128.6, 128.5, 128.4, 122.1.
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Sample Availability
References
- Cherepakhin, V.; Williams, T.J. Direct Oxidation of Primary Alcohols to Carboxylic Acids. Synthesis 2021, 53, 1023–1034. [Google Scholar]
- Rafiee, M.; Konz, Z.M.; Graaf, M.D.; Koolman, H.F.; Stahl, S.S. Electrochemical oxidation of alcohols and aldehydes to carboxylic acids catalyzed by 4-acetamido-TEMPO: An alternative to “Anelli” and “Pinnick” oxidations. ACS Catal. 2018, 8, 6738–6744. [Google Scholar] [CrossRef]
- Zhu, X.; Zhang, W.; Lin, Q.; Ye, M.; Xue, L.; Liu, J.; Wang, Y.; Cheng, H. Direct microdroplet synthesis of carboxylic acids from alcohols by preparative paper spray ionization without phase transfer catalysts. ACS Sustain. Chem. Eng. 2019, 7, 6486–6491. [Google Scholar] [CrossRef]
- Rafiee, M.; Alherech, M.; Karlen, S.D.; Stahl, S.S. Electrochemical aminoxyl-mediated oxidation of primary alcohols in lignin to carboxylic acids: Polymer modification and depolymerization. J. Am. Chem. Soc. 2019, 141, 15266–15276. [Google Scholar] [CrossRef] [PubMed]
- Yin, S.; Zheng, Q.; Chen, J.; Tu, T. Acceptorless dehydrogenation of primary alcohols to carboxylic acids by self-supported NHC-Ru single-site catalysts. J. Catal. 2022, 408, 165–172. [Google Scholar] [CrossRef]
- Zhang, Y.; Wang, Y.; Qian, Q.; Li, Y.; Bediako, B.B.A.; Zhang, J.; Yang, J.; Li, Z.; Han, B. Synthesis of carboxylic acids via the hydrocarboxylation of alcohols with CO2 and H2. Green Chem. 2022, 24, 1973–1977. [Google Scholar] [CrossRef]
- Thottathil, J.K.; Moniot, J.L.; Mueller, R.H.; Wong, M.K.; Kissick, T.P. Conversion of L-pyroglutamic acid to 4-alkyl-substituted L-prolines. The synthesis of trans-4-cyclohexyl-L-proline. J. Org. Chem. 1986, 51, 3140–3143. [Google Scholar] [CrossRef]
- Mahmood, A.; Robinson, G.E.; Powell, L. An improved oxidation of an alcohol using aqueous permanganate and phase-transfer catalyst. Org. Process Res. Dev. 1999, 3, 363–364. [Google Scholar] [CrossRef]
- Alduhaish, O.; Adil, S.F.; Assal, M.E.; Shaik, M.R.; Kuniyil, M.; Manqari, K.M.; Sekou, D.; Khan, M.; Khan, A.; Dewidar, A.Z.J.P. Synthesis and characterization of CoxOy–MnCO3 and CoxOy–Mn2O3 catalysts: A comparative catalytic assessment towards the aerial oxidation of various kinds of alcohols. Processes 2020, 8, 910. [Google Scholar] [CrossRef]
- Mazitschek, R.; Mülbaier, M.; Giannis, A. IBX-Mediated Oxidation of Primary Alcohols and Aldehydes To Form Carboxylic Acids. Angew. Chem. Int. Ed. 2002, 41, 4059–4061. [Google Scholar] [CrossRef]
- Gioia, M.L.J.M. Synthesis and preliminary evaluation of the anti-cancer activity on A549 lung cancer cells of a series of unsaturated disulfides. MedChemComm 2019, 10, 116–119. [Google Scholar]
- Lee, T.V. Oxidation Adjacent to Oxygen of Alcohols by Activated DMSO Methods. Compr. Org. Synth. 1991, 7, 291–303. [Google Scholar]
- Zhao, M.; Zhang, X.-W.; Wu, C.-D. Structural transformation of porous polyoxometalate frameworks and highly efficient biomimetic aerobic oxidation of aliphatic alcohols. ACS Catal. 2017, 7, 6573–6580. [Google Scholar] [CrossRef]
- Anderson, R.; Gri Ff In, K.; Johnston, P.; Alsters, P. Selective Oxidation of Alcohols to Carbonyl Compounds and Carboxylic Acids with Platinum Group Metal Catalysts. Adv. Syn. Catal. 2003, 345, 517–523. [Google Scholar] [CrossRef]
- Donze, C.; Korovchenko, P.; Gallezot, P.; Besson, M. Aerobic selective oxidation of (hetero) aromatic primary alcohols to aldehydes or carboxylic acids over carbon supported platinum. Appl. Catal. B-Environ. 2007, 70, 621–629. [Google Scholar] [CrossRef]
- Dai, Z.; Qin, L.; Jiang, H.; Qi, L.; Hua, L.; Jing, Z.; Peng, T. Ni(II)–N′NN′ pincer complexes catalyzed dehydrogenation of primary alcohols to carboxylic acids and H2 accompanied by alcohol etherification. Catal. Sci. Technol. 2017, 7, 2506–2511. [Google Scholar] [CrossRef]
- Könning, D.; Olbrisch, T.; Sypaseuth, F.D.; Tzschucke, C.C.; Christmann, M. Oxidation of allylic and benzylic alcohols to aldehydes and carboxylic acids. Chem. Commun. 2014, 50, 5014–5016. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fraga-Dubreuil, J.; Garcia-Verdugo, E.; Hamley, P.A.; Vaquero, E.M.; Dudd, L.M.; Pearson, I.; Housley, D.; Partenheimer, W.; Thomas, W.B.; Whiston, K. Catalytic selective partial oxidations using O2 in supercritical water: The continuous synthesis of carboxylic acids. Green Chem. 2007, 9, 1238–1245. [Google Scholar] [CrossRef]
- Han, L.; Xing, P.; Jiang, B. Selective aerobic oxidation of alcohols to aldehydes, carboxylic acids, and imines catalyzed by a Ag-NHC complex. Org. Lett. 2014, 16, 3428–3431. [Google Scholar] [CrossRef] [PubMed]
- Ahmed, M.S.; Mannel, D.S.; Root, T.W.; Stahl, S.S. Aerobic oxidation of diverse primary alcohols to carboxylic acids with a heterogeneous Pd–Bi–Te/C (PBT/C) catalyst. Org. Process Res. Dev. 2017, 21, 1388–1393. [Google Scholar] [CrossRef]
- Higashimoto, S.; Kitao, N.; Yoshida, N.; Sakura, T.; Azuma, M.; Ohue, H.; Sakata, Y. Selective photocatalytic oxidation of benzyl alcohol and its derivatives into corresponding aldehydes by molecular oxygen on titanium dioxide under visible light irradiation. J. Catal. 2009, 266, 279–285. [Google Scholar] [CrossRef]
- Ye, X.; Li, Y.; Luo, P.; He, B.; Cao, X.; Lu, T. Iron sites on defective BiOBr nanosheets: Tailoring the molecular oxygen activation for enhanced photocatalytic organic synthesis. Nano Res. 2022, 15, 1509–1516. [Google Scholar] [CrossRef]
- Xiao, X.; Jiang, J.; Zhang, L. Selective oxidation of benzyl alcohol into benzaldehyde over semiconductors under visible light: The case of Bi12O17Cl2 nanobelts. Appl. Catal. B-Environ. 2013, 142, 487–493. [Google Scholar] [CrossRef]
- Su, F.; Mathew, S.C.; Lipner, G.; Fu, X.; Antonietti, M.; Blechert, S.; Wang, X. mpg-C3N4-catalyzed selective oxidation of alcohols using O2 and visible light. J. Am. Chem. Soc. 2010, 132, 16299–16301. [Google Scholar] [CrossRef]
- Wang, J.; Liu, C.; Yuan, J.; Lei, A. Transition-metal-free aerobic oxidation of primary alcohols to carboxylic acids. New J. Chem. 2013, 37, 1700–1703. [Google Scholar] [CrossRef]
- Kim, S.; Lee, H.E.; Suh, J.M.; Mi, H.L.; Min, K. Sequential Connection of Mutually Exclusive Catalytic Reactions by a Method Controlling the Presence of an MOF Catalyst: One-Pot Oxidation of Alcohols to Carboxylic Acids. Inorg. Chem. 2020, 59, 17573–17582. [Google Scholar] [CrossRef] [PubMed]
- Jiang, X.; Zhang, J.; Ma, S. Iron Catalysis for Room-Temperature Aerobic Oxidation of Alcohols to Carboxylic Acids. J. Am. Chem. Soc. 2016, 138, 8344–8347. [Google Scholar] [CrossRef]
- Kobayashi, M.S. Remarkable Effect of Bimetallic Nanocluster Catalysts for Aerobic Oxidation of Alcohols: Combining Metals Changes the Activities and the Reaction Pathways to Aldehydes/Carboxylic Acids or Esters. J. Am. Chem. Soc. 2010, 132, 15096–15098. [Google Scholar]
- Liu, K.-J.; Jiang, S.; Lu, L.-H.; Tang, L.-L.; Tang, S.-S.; Tang, H.-S.; Tang, Z.; He, W.-M.; Xu, X. Bis (methoxypropyl) ether-promoted oxidation of aromatic alcohols into aromatic carboxylic acids and aromatic ketones with O2 under metal-and base-free conditions. Green Chem. 2018, 20, 3038–3043. [Google Scholar] [CrossRef]
- Hirashima, S.-I.; Itoh, A. Aerobic oxidation of alcohols under visible light irradiation of fluorescent lamp. Green Chem. 2007, 9, 318–320. [Google Scholar] [CrossRef]
- Shimada, Y.; Hattori, K.; Tada, N.; Miura, T.; Itoh, A. Facile aerobic photooxidation of alcohols using 2-chloroanthraquinone under visible light irradiation. Synthesis 2013, 45, 2684–2688. [Google Scholar] [CrossRef]
- Hirashima, S.-I.; Hashimoto, S.; Masaki, Y.; Itoh, A. Aerobic photo-oxidation of alcohols in the presence of a catalytic inorganic bromo source. Tetrahedron 2006, 62, 7887–7891. [Google Scholar] [CrossRef]
- Sugai, T.; Itoh, A. Aerobic oxidation under visible light irradiation of a fluorescent lamp with a combination of carbon tetrabromide and triphenyl phosphine. Tetrahedron Lett. 2007, 48, 9096–9099. [Google Scholar] [CrossRef]
- Xiao, C.; Zhang, L.; Hao, H.; Wang, W. High selective oxidation of benzyl alcohol to benzylaldehyde and benzoic acid with surface oxygen vacancies on W18O49/holey ultrathin g-C3N4 nanosheets. ACS Sustain. Chem. Eng. 2019, 7, 7268–7276. [Google Scholar] [CrossRef]
- Zhou, L.; Chen, M.; Wang, Y.; Su, Y.; Yang, X.; Chen, C.; Xu, J. Au/mesoporous-TiO2 as catalyst for the oxidation of alcohols to carboxylic acids with molecular oxygen in water. Appl. Catal. A-Gen. 2014, 475, 347–354. [Google Scholar] [CrossRef]
- Schilling, W.; Riemer, D.; Zhang, Y.; Hatami, N.; Das, S. Metal-free catalyst for visible-light-induced oxidation of unactivated alcohols using air/oxygen as an oxidant. ACS Catal. 2018, 8, 5425–5430. [Google Scholar] [CrossRef]
- Meng, C.; Yang, K.; Fu, X.; Yuan, R. Photocatalytic oxidation of benzyl alcohol by homogeneous CuCl2/solvent: A model system to explore the role of molecular oxygen. ACS Catal. 2015, 5, 3760–3766. [Google Scholar] [CrossRef]
- Qiu, C.; Wang, S.; Zuo, J.; Zhang, B.J.C. Photocatalytic CO2 reduction coupled with alcohol oxidation over porous carbon nitride. Catalysts 2022, 12, 672. [Google Scholar] [CrossRef]
- Chandra, S.; Jagdale, P.; Medha, I.; Tiwari, A.K.; Bartoli, M.; Nino, A.D.; Olivito, F.J.T. Biochar-Supported TiO2-Based Nanocomposites for the Photocatalytic Degradation of Sulfamethoxazole in Water—A Review. Toxics 2021, 9, 313. [Google Scholar] [CrossRef]
- Xu, J.; Yue, X.; He, L.; Shen, J.; Ouyang, Y.; Liang, C.; Li, W. Photoinduced protocol for aerobic oxidation of aldehydes to carboxylic acids under mild conditions. ACS Sustain. Chem. Eng. 2022, 10, 14119–14125. [Google Scholar] [CrossRef]
- Shi, H.; Li, J.; Wang, T.; Rudolph, M.; Hashmi, A.S.K. Catalyst-and additive-free sunlight-induced autoxidation of aldehydes to carboxylic acids. Green Chem. 2022, 24, 5835–5841. [Google Scholar] [CrossRef]
- Liu, K.-J.; Deng, J.-H.; Yang, J.; Gong, S.-F.; Lin, Y.-W.; He, J.-Y.; Cao, Z.; He, W.-M. Selective oxidation of (hetero) sulfides with molecular oxygen under clean conditions. Green Chem. 2020, 22, 433–438. [Google Scholar] [CrossRef]
- Liu, K.-J.; Wang, Z.; Lu, L.-H.; Chen, J.-Y.; Zeng, F.; Lin, Y.-W.; Cao, Z.; Yu, X.; He, W.-M. Synergistic cooperative effect of CF3SO2Na and bis (2-butoxyethyl) ether towards selective oxygenation of sulfides with molecular oxygen under visible-light irradiation. Green Chem. 2021, 23, 496–500. [Google Scholar] [CrossRef]
- Liu, K.-J.; Duan, Z.-H.; Zeng, X.-L.; Sun, M.; Tang, Z.; Jiang, S.; Cao, Z.; He, W.-M. Clean Oxidation of (Hetero) benzylic Csp3–H Bonds with Molecular Oxygen. ACS Sustain. Chem. Eng. 2019, 7, 10293–10298. [Google Scholar] [CrossRef]
- Liu, K.-J.; Zeng, T.-Y.; Zeng, J.-L.; Gong, S.-F.; He, J.-Y.; Lin, Y.-W.; Tan, J.-X.; Cao, Z.; He, W.-M. Solvent-dependent selective oxidation of 5-hydroxymethylfurfural to 2, 5-furandicarboxylic acid under neat conditions. Chin. Chem. Lett. 2019, 30, 2304–2308. [Google Scholar] [CrossRef]
- Ou, J.; He, S.; Wang, W.; Tan, H.; Liu, K. Highly efficient oxidative cleavage of olefins with O2 under catalyst-, initiator-and additive-free conditions. Org. Chem. Front. 2021, 8, 3102–3109. [Google Scholar] [CrossRef]
- Liu, K.-J.; Fu, Y.-L.; Xie, L.-Y.; Wu, C.; He, W.-B.; Peng, S.; Wang, Z.; Bao, W.-H.; Cao, Z.; Xu, X. Green and efficient: Oxidation of aldehydes to carboxylic acids and acid anhydrides with air. ACS Sustain. Chem. Eng. 2018, 6, 4916–4921. [Google Scholar] [CrossRef]
- Ou, J.; Tan, H.; He, S.; Wang, W.; Hu, B.; Yu, G.; Liu, K. 1, 2-Dibutoxyethane-Promoted Oxidative Cleavage of Olefins into Carboxylic Acids Using O2 Under Clean Conditions. J. Org. Chem. 2021, 86, 14974–14982. [Google Scholar] [CrossRef]
- Li, Z.; Liu, Y.; Bai, X.; Deng, Q.; Wang, J.; Zhang, G.; Xiao, C.; Mei, Y.; Wang, Y. SAR studies on 1, 2, 4-triazolo [3, 4-b][1,3,4] thiadiazoles as inhibitors of Mtb shikimate dehydrogenase for the development of novel antitubercular agents. RSC Adv. 2015, 5, 97089–97101. [Google Scholar] [CrossRef]
- Kwon, E.-M.; Kim, C.G.; Bak, J.S.; Jun, J.-G. Preparation of Benzoyloxy Benzophenone Derivatives and Their Inhibitory Effects of ICAM-1 Expression. Bull. Korean Chem. Soc. 2012, 33, 1939–1944. [Google Scholar] [CrossRef] [Green Version]
- Senadi, G.C.; Mutra, M.R.; Lu, T.-Y.; Wang, J.-J. Oximes as reusable templates for the synthesis of ureas and carbamates by an in situ generation of carbamoyl oximes. Green Chem. 2017, 19, 4272–4277. [Google Scholar] [CrossRef]
- Bashary, R.; Khatik, G.L. Design, and facile synthesis of 1, 3 diaryl-3-(arylamino) propan-1-one derivatives as the potential alpha-amylase inhibitors and antioxidants. Bioorg. Chem. 2019, 82, 156–162. [Google Scholar] [CrossRef] [PubMed]
- Nojima, K.; Isogami, C. Photolysis of aldrin in the presence of benzaldehyde in a solid-vapor-air system. Chem. Pharm. Bull. 1996, 44, 1580–1584. [Google Scholar] [CrossRef] [Green Version]
- Li, G.; Yan, Q.; Gong, X.; Dou, X.; Yang, D. Photocatalyst-Free Regioselective C–H Thiocyanation of 4-Anilinocoumarins under Visible Light. ACS Sustain. Chem. Eng. 2019, 7, 14009–14015. [Google Scholar] [CrossRef]
- Zhang, Y.; Teuscher, K.B.; Ji, H. Direct α-heteroarylation of amides (α to nitrogen) and ethers through a benzaldehyde-mediated photoredox reaction. Chem. Sci. 2016, 7, 2111–2118. [Google Scholar] [CrossRef] [Green Version]
- Xia, J.-B.; Zhu, C.; Chen, C. Visible light-promoted metal-free C–H activation: Diarylketone-catalyzed selective benzylic mono-and difluorination. J. Am. Chem. Soc. 2013, 135, 17494–17500. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yu, H.; Ru, S.; Dai, G.; Zhai, Y.; Lin, H.; Han, S.; Wei, Y. An Efficient Iron(III)-Catalyzed Aerobic Oxidation of Aldehydes in Water for the Green Preparation of Carboxylic Acids. Angew. Chem. Int. Ed. 2017, 56, 3867–3871. [Google Scholar] [CrossRef] [PubMed]
- Villano, R.; Acocella, M.R.; Scettri, A. Fe3O4 nanoparticles/ethyl acetoacetate system for the efficient catalytic oxidation of aldehydes to carboxylic acids. Tetrahedron Lett. 2014, 55, 2442–2445. [Google Scholar] [CrossRef]
- Ma, C.; Zhao, C.-Q.; Xu, X.-T.; Li, Z.-M.; Wang, X.-Y.; Zhang, K.; Mei, T.-S. Nickel-Catalyzed Carboxylation of Aryl and Heteroaryl Fluorosulfates Using Carbon Dioxide. Org. Lett. 2019, 21, 2464–2467. [Google Scholar] [CrossRef]
- Marcé, P.; Lynch, J.; Blacker, A.J.; Williams, J.M.J. Conversion of nitroalkanes into carboxylic acids via iodide catalysis in water. Chem. Commun. 2016, 52, 1013–1016. [Google Scholar] [CrossRef]
- Mishra, A.K.; Moorthy, J.N. Mechanochemical catalytic oxidations in the solid state with in situ-generated modified IBX from 3,5-di-tert-butyl-2-iodobenzoic acid (DTB-IA)/Oxone. Org. Chem. Front. 2017, 4, 343–349. [Google Scholar] [CrossRef]
- Yang, X.; Tang, S.; Lu, T.; Chen, C.; Zhou, L.; Su, Y.; Xu, J. Sulfonic Acid Resin–Catalyzed Oxidation of Aldehydes to Carboxylic Acids by Hydrogen Peroxide. Synth. Commun. 2013, 43, 979–985. [Google Scholar] [CrossRef]
- Hajimohammadi, M.; Azizi, N.; Tollabimazraeno, S.; Tuna, A.; Duchoslav, J.; Knör, G. Cobalt (II) Phthalocyanine Sulfonate Supported on Reduced Graphene Oxide (RGO) as a Recyclable Photocatalyst for the Oxidation of Aldehydes to Carboxylic Acids. Catal. Lett. 2021, 151, 36–44. [Google Scholar] [CrossRef]
- Yarhosseini, M.; Javanshir, S.; Dolatkhah, Z.; Dekamin, M.G. An improved solvent-free synthesis of flunixin and 2-(arylamino) nicotinic acid derivatives using boric acid as catalyst. Chem. Cent. J. 2017, 11, 124. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, F.; Wang, N.; Lu, L.; Zhu, G. Regioselective Hydration of Terminal Alkynes Catalyzed by a Neutral Gold(I) Complex [(IPr)AuCl] and One-Pot Synthesis of Optically Active Secondary Alcohols from Terminal Alkynes by the Combination of [(IPr)AuCl] and Cp*RhCl[(R,R)-TsDPEN]. J. Org. Chem. 2015, 80, 3538–3546. [Google Scholar] [CrossRef] [PubMed]
- Seth, S.; Jhulki, S.; Moorthy, J.N. Catalytic and Chemoselective Oxidation of Activated Alcohols and Direct Conversion of Diols to Lactones with In Situ-Generated Bis-IBX Catalyst. Eur. J. Org. Chem. 2013, 2013, 2445–2452. [Google Scholar] [CrossRef]
- Mondal, M.; Bora, U. Eco-friendly Suzuki–Miyaura coupling of arylboronic acids to aromatic ketones catalyzed by the oxime-palladacycle in biosolvent 2-MeTHF. New J. Chem. 2016, 40, 3119–3123. [Google Scholar] [CrossRef]
- Burange, A.S.; Kale, S.R.; Zboril, R.; Gawande, M.B.; Jayaram, R.V. Magnetically retrievable MFe2O4 spinel (M = Mn, Co, Cu, Ni, Zn) catalysts for oxidation of benzylic alcohols to carbonyls. RSC Adv. 2014, 4, 6597–6601. [Google Scholar] [CrossRef]
- Ye, M.; Wen, Y.; Li, H.; Fu, Y.; Wang, Q. Metal-free hydration of aromatic haloalkynes to α-halomethyl ketones. Tetrahedron Lett. 2016, 57, 4983–4986. [Google Scholar] [CrossRef]
- Dragutan, I.; Dragutan, V.; Demonceau, A. Targeted drugs by olefin metathesis: Piperidine-based iminosugars. RSC Adv. 2012, 2, 719–736. [Google Scholar] [CrossRef]
- Bergonzini, G.; Cassani, C.; Lorimer-Olsson, H.; Hörberg, J.; Wallentin, C.-J. Visible-Light-Mediated Photocatalytic Difunctionalization of Olefins by Radical Acylarylation and Tandem Acylation/Semipinacol Rearrangement. Chem. Eur. J. 2016, 22, 3292–3295. [Google Scholar] [CrossRef] [PubMed]
- Burange, A.S.; Kale, S.R.; Jayaram, R.V. Oxidation of alkyl aromatics to ketones by tert-butyl hydroperoxide on manganese dioxide catalyst. Tetrahedron Lett. 2012, 53, 2989–2992. [Google Scholar] [CrossRef]
- Yu, T.; Guo, M.; Wen, S.; Zhao, R.; Wang, J.; Sun, Y.; Liu, Q.; Zhou, H. Poly(ethylene glycol) dimethyl ether mediated oxidative scission of aromatic olefins to carbonyl compounds by molecular oxygen. RSC Adv. 2021, 11, 13848–13852. [Google Scholar] [CrossRef] [PubMed]
Entry | Light Source (nm) | Solvent b | Atmosphere | Yield c (%) |
---|---|---|---|---|
1 | 390–395 | MeCN | Oxygen | 63 |
2 | 390–395 | EtOH | Oxygen | 54 |
3 | 390–395 | 1,4-dioxane | Oxygen | 21 |
4 | 390–395 | DCE | Oxygen | 56 |
5 | 390–395 | DMF | Oxygen | 62 |
6 | 390–395 | DMSO | Oxygen | 63 |
7 | 390–395 | Acetone | Oxygen | 74 |
8 | 385–390 | Acetone | Oxygen | 75 |
9 | 380–385 | Acetone | Oxygen | 76 |
10 | 375–380 | Acetone | Oxygen | 80 |
11 | 370–375 | Acetone | Oxygen | 78 |
12 | 367–370 | Acetone | Oxygen | 98 |
13 | 365–367 | Acetone | Oxygen | 71 |
14 | 395–400 | Acetone | Oxygen | 64 |
15 | 400–405 | Acetone | Oxygen | 57 |
16 | 367–370 | Acetone | Air | 98 |
17 | 367–370 | Acetone | N2 | 0 |
18 | Acetone | air | 0 |
R | ||||
4-H | 3a | 95% | ||
4-Ph | 3b | 95% | ||
4-Me | 3c | 87% | ||
4-iPr | 3d | 90% | ||
4-tBu | 3e | 92% | ||
4-OCF3 | 3f | 91% | ||
4-F | 3g | 94% | ||
4-Cl | 3h | 93% | ||
4-Br | 3i | 95% | ||
4-CN | 3j | 75% | ||
4-CO2Me | 3k | 93% | ||
2-Cl | 3l | 94% | ||
2-Me | 3m | 86% | ||
3-Cl | 3n | 92% | ||
3-Me | 3o | 81% | ||
3,4-dl-Cl | 3p | 96% | ||
4-H | 4a | 91% | ||
4-Me | 4b | 82% | ||
4-F | 4c | 91% | ||
4-Cl | 4d | 96% | ||
4-Br | 4e | 97% | ||
4-H | 4f | 96% | ||
4-Me | 4g | 90% | ||
4-F | 4h | 93% | ||
4-Cl | 4i | 95% | ||
4-Br | 4j | 94% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xu, M.; Ou, J.; Luo, K.; Liang, R.; Liu, J.; Li, N.; Hu, B.; Liu, K. External Catalyst- and Additive-Free Photo-Oxidation of Aromatic Alcohols to Carboxylic Acids or Ketones Using Air/O2. Molecules 2023, 28, 3031. https://doi.org/10.3390/molecules28073031
Xu M, Ou J, Luo K, Liang R, Liu J, Li N, Hu B, Liu K. External Catalyst- and Additive-Free Photo-Oxidation of Aromatic Alcohols to Carboxylic Acids or Ketones Using Air/O2. Molecules. 2023; 28(7):3031. https://doi.org/10.3390/molecules28073031
Chicago/Turabian StyleXu, Meng, Jinhua Ou, Kejun Luo, Rongtao Liang, Jian Liu, Ni Li, Bonian Hu, and Kaijian Liu. 2023. "External Catalyst- and Additive-Free Photo-Oxidation of Aromatic Alcohols to Carboxylic Acids or Ketones Using Air/O2" Molecules 28, no. 7: 3031. https://doi.org/10.3390/molecules28073031
APA StyleXu, M., Ou, J., Luo, K., Liang, R., Liu, J., Li, N., Hu, B., & Liu, K. (2023). External Catalyst- and Additive-Free Photo-Oxidation of Aromatic Alcohols to Carboxylic Acids or Ketones Using Air/O2. Molecules, 28(7), 3031. https://doi.org/10.3390/molecules28073031