DABCO-Catalyzed Mono-/Diallylation of N-Unsubstituted Isatin N,N′-Cyclic Azomethine Imine 1,3-Dipoles with Morita-Baylis-Hillman Carbonates
Abstract
:1. Introduction
2. Results and Discussion
3. Materials and Methods
3.1. General Methods
3.2. Preparation of Intermediates
3.3. General Procedure for Condition Optimization
3.4. General Procedure for Typical Procedure for Monoallylation
3.5. General Procedure for Typical Procedure for Dialkylation
3.6. Deriverziation of 3a
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Sample Availability
References
- Eicher, T.; Hauptmann, S. The Chemistry of Heterocycles, 2nd ed.; Wiley-VCH: Weinheim, German, 2003. [Google Scholar]
- Varvounis, G.; Fiamegos, Y.; Pilidis, G. Pyrazol-3-ones part 1: Synthesis and applications. Adv. Heterocycl. Chem. 2001, 80, 75–165. [Google Scholar]
- Elguero, J. Pyrazoles: Comprehensive Heterocyclic Chemistry, 2nd ed.; Katritzky, A.R., Rees, C.W., Scriven, E.F.V., Eds.; Elsevier: Oxford, UK, 1996; Volume 3, pp. 1–75. [Google Scholar]
- Zhao, Z.; Dai, X.; Li, C.; Wang, X.; Tian, J.; Feng, Y.; Xie, J.; Ma, C.; Nie, Z.; Fan, P.; et al. Pyrazolone structural motif in medicinal chemistry: Retrospect and prospect. Eur. J. Med. Chem. 2020, 186, 111893. [Google Scholar] [CrossRef]
- Lapchak, P.A. A critical assessment of edaravone acute ischemic stroke efficacy trials: Is edaravone an effective neuroprotective therapy? Expert Opin. Pharmacother. 2010, 11, 1753–1763. [Google Scholar] [CrossRef] [PubMed]
- Meiattini, F.; Prencipe, L.; Bardelli, F.; Giannini, G.; Tarli, P. The 4-hydroxybenzoate/4-aminophenazone chromogenic system used in the enzymic determination of serum cholesterol. Clin. Chem. 1978, 24, 2161–2165. [Google Scholar] [CrossRef] [PubMed]
- Bussel, J.B.; Cheng, G.; Saleh, M.N.; Psaila, B.; Kovaleva, L.; Meddeb, B.; Kloczko, J.; Hassani, H.; Mayer, B.; Stone, N.L.; et al. Eltrombopag for the treatment of chronic idiopathic thrombocytopenic purpura. N. Engl. J. Med. 2007, 357, 2237–2247. [Google Scholar] [CrossRef]
- Freitag, F.G.; Cady, R.; DiSerio, F.; Elkind, A.; Gallagher, R.M.; Goldstein, J.; Klapper, J.A.; Rapoport, A.M.; Sadowsky, C.; Saper, J.R.; et al. Comparative study of a combination of isometheptene mucate, dichloralphenazone with acetaminophen and sumatriptan succinate in the treatment of migraine. Headache 2001, 41, 391–398. [Google Scholar] [CrossRef]
- Pecenco GL, A.A.; Bacciardi, M. Sulphenazone in pediatric practice. Case studies. Minerva Pediatr. 1982, 34, 39–43. [Google Scholar]
- Dounay, A.B.; Overman, L.E. The asymmetric intramolecular Heck reaction in natural product total synthesis. Chem. Rev. 2003, 103, 2945–2963. [Google Scholar] [CrossRef]
- Marti, C.; Carreira, E.M. Construction of Spiro[pyrrolidine-3, 3′-oxindoles]-recent applications to the synthesis of oxindole alkaloids. Eur. J. Org. Chem. 2003, 12, 2209–2219. [Google Scholar] [CrossRef]
- Galliford, C.V.; Scheidt, K.A. Pyrrolidinyl-spirooxindole natural products as inspirations for the development of potential therapeutic agents. Angew. Chem. Int. Ed. 2007, 46, 8748–8758. [Google Scholar] [CrossRef]
- Yousef-tabar-Miri, L.; Hosseinjani-Pirdehi, H.; Akrami, A.; Hallajian, S. Recent investigations in the synthesis of spirooxindole derivatives by Iranian researchers. J. Iran. Chem. Soc. 2020, 17, 2179–2231. [Google Scholar] [CrossRef]
- Koguchi, Y.; Kohno, J.; Nishio, M.; Takahashi, K.; Okuda, T.; Ohnuki, T.; Komatsubara, S. TMC-95A, B, C, and D, novel proteasome inhibitors produced by Apiospora montagnei Sacc. TC 1093 taxonomy, production, isolation, and biological activities. J. Antibiotics. 2000, 53, 105–109. [Google Scholar]
- Tokunaga, T.; Hume, W.E.; Nagamine, J.; Kawamura, T.; Taiji, M.; Nagata, R. Structure–activity relationships of the oxindole growth hormone secretagogues. Bioorg. Med. Chem. Lett. 2005, 15, 1789–1792. [Google Scholar] [CrossRef] [PubMed]
- Fer-nandes, P.D.; Zardo, R.S.; Figueiredo, G.S.M.; Silva, B.V.; Pinto, A.C. Anti-inflammatory properties of convolutamydine A and two structural analogues. Life Sci. 2014, 116, 16–24. [Google Scholar] [CrossRef] [PubMed]
- Kaur, J.; Chimni, S.S.; Mahajan, S.; Kumar, A. Stereoselective synthesis of 3-amino-2-oxindoles from isatin imines: New scaffolds for bioactivity evaluation. RSC Adv. 2015, 5, 52481–52496. [Google Scholar] [CrossRef]
- Pellissier, H. Synthesis of chiral 3-substituted 3-amino-2-oxindoles through enantioselective catalytic nucleophilic additions to isatin imines. Beilstein J. Org. Chem. 2018, 14, 1349–1369. [Google Scholar] [CrossRef]
- Kaur, J.; Chimni, S.S. Catalytic synthesis of 3-aminooxindoles via addition to isatin imine: An update. Org. Biomol. Chem. 2018, 16, 3328–3347. [Google Scholar] [CrossRef]
- Hu, S.; Zhang, J.; Jin, Q. DMAP-catalyzed alkylation of isatin N,N′-cyclic azomethine imine 1,3-dipoles with Morita-Baylis-Hillman carbonates. New J. Chem. 2018, 42, 7025–7029. [Google Scholar] [CrossRef]
- Wang, X.; Yang, P.; Zhang, Y.; Tang, C.-Z.; Tian, F.; Peng, L.; Wang, L.-X. Isatin N,N′-cyclic azomethine imine 1,3-dipole and abnormal [3+2]-cycloaddition with maleimide in the presence of 1,4-diazabicyclo[2.2.2]octane. Org. Lett. 2017, 19, 646–649. [Google Scholar] [CrossRef]
- Wang, X.; Wu, L.; Yang, P.; Song, X.-J.; Ren, H.-X.; Peng, L.; Wang, L.-X. Isatin N,N′-cyclic azomethine imine 1,3-dipole and base catalyzed Michael addition with β-nitrostyrene via C3 umpolung of oxindole. Org. Lett. 2017, 19, 3051–3054. [Google Scholar] [CrossRef]
- Jin, Q.; Zhang, J.; Jiang, C.; Zhang, D.; Gao, M.; Hu, S. Self [3 + 4] cycloadditions of isatin N,N′-cyclic azomethine imine 1,3-dipole with N-(o-chloromethyl)aryl amides. J. Org. Chem. 2018, 83, 8410–8416. [Google Scholar] [CrossRef] [PubMed]
- Moghaddam, F.M.; Eslami, M.; Siahpoosh, A.; Golfam, H. A diastereoselective construction of functionalized dihydro-pyridazine based spirooxindole scaffold via C-3 umpolung of isatin N,N′-cyclic azomethine imine. New J. Chem. 2019, 43, 10318–10323. [Google Scholar] [CrossRef]
- Wang, Q.-H.; Zhu, Z.-X.; Huang, T.; Wu, M.-S. Base catalyzed unexpected rearrangement of isatin-derived N,N′-cyclic azomethine imines and Michael addition to hindered vinylidene bisphosphonates: Access to 3,3-disubstituted oxindole-fused pyrazolidin-3-one derivatives containing bisphosphonates. Tetrahedron 2019, 75, 416–421. [Google Scholar] [CrossRef]
- Meerakrishna, R.S.; Suresh, S.S.; Athira, M.; Choutipalli, V.S.K.; Shanmugam, P. Diverse reactivity of isatin based N,N′-cyclic azomethine imine dipoles with arynes: Synthesis of 1′-methyl-2′-oxospiro [indene-1,3′-indolines] and 3-aryl-3-pyrazol-2-oxindoles. New. J. Chem. 2020, 44, 11593–11601. [Google Scholar] [CrossRef]
- Jin, Q.; Zhang, D.; Zhang, J. A [3+2] cycloaddition/C-arylation of isatin N,N′-cyclic azomethine imine 1,3-dipole with arynes. RSC Adv. 2020, 10, 30620–30623. [Google Scholar] [CrossRef]
- Shi, Y.; Wang, G.; Chen, Z.; Wu, M.; Wang, J.; Trigoura, L.; Guo, H.; Xing, Y.; Sun, S. Synthesis of spiro(indoline-3,1-pyrazolo[1,2-a ]pyrazoles) by 1,3-dipolar cycloadditions of isatin N,N′-cyclic azomethine imines with alkynes. J. Heterocycl. Chem. 2020, 57, 2044–2047. [Google Scholar] [CrossRef]
- Song, X.J.; Ren, H.X.; Xiang, M.; Li, C.Y.; Tian, F.; Wang, L.X. Base catalyzed abnormal [3+2]-cycloaddition between isatin N,N′-cyclic azomethine imine 1,3-dipole and 3-methyleneoxindole for the one-step construction of tetracyclic bispirooxindoles. J. Org. Chem. 2020, 85, 3921–3928. [Google Scholar] [CrossRef]
- Fang, Q.-Y.; Jin, H.-S.; Wang, R.-B.; Zhao, L.-M. A role for isatin azomethine imines as a dipolarphile in cycloaddition reactions. Org. Lett. 2020, 22, 7358–7362. [Google Scholar] [CrossRef]
- Kartikey, K.D.D.; Reddy, M.S.; Chowhan, L.R. Isatin N,N′-cyclic azomethine imine 1, 3-dipole mediated regio and diastereoselective synthesis of isoxazole-containing spirooxindoles by an abnormal [3+2] cycloaddition. Tetrahedron Lett. 2020, 61, 152664. [Google Scholar] [CrossRef]
- Wang, Z.-Y.; Yang, T.; Chen, R.; Ma, X.; Liu, H.; Wang, K.-K. 1,3-dipolar cycloaddition of isatin N,N′-cyclic azomethine imines with α,β-unsaturated aldehydes catalyzed by DBU in water. RSC Adv. 2020, 10, 24288–24292. [Google Scholar] [CrossRef]
- Song, X.J.; Ren, H.X.; Xiang, M.; Li, C.Y.; Zou, Y.; Li, X.; Huang, Z.C.; Tian, F.; Wang, L.X. Organocatalytic enantioselective Michael addition between 3-(3-hydroxy-1H-pyrazol-1-yl)oxindole and β-nitrostyrene for the preparation of chiral disubstituted oxindoles. J. Org. Chem. 2020, 85, 9290–9300. [Google Scholar] [CrossRef] [PubMed]
- Zou, Y.; Huang, Z.-C.; Xiang, M.; Li, C.-Y.; Li, X.; Tian, F.; Wang, L.-X. Spiro scaffold chiral organocatalyst of 3,2′-pyrrolidinyl spiro-oxindole amine and its catalytic evaluation in the enantioselective aldol condensation between 3-(3-hydroxy-1H-pyrazol-1-yl)-oxindole and paraformaldehyde. J. Org. Chem. 2021, 86, 17371–17379. [Google Scholar] [CrossRef] [PubMed]
- Gu, B.; Wu, S.; Xu, H. Organocatalytic asymmetric [3+3] annulation of isatin N,N′-cyclic azomethine imines with enals: Efficient approach to functionalized spiro N-heterocyclic oxindoles. Chin. Chem. Lett. 2021, 32, 672–675. [Google Scholar] [CrossRef]
- Borah, B.; Chowhan, R.L. Recent updates on the stereoselective synthesis of structurally functionalized spiro-oxindoles mediated by isatin N,N′-cyclic azomethine imine 1, 3-dipoles. Tetrahedron Lett. 2022, 104, 154014. [Google Scholar] [CrossRef]
- Rios, R. Organocatalytic enantioselective methodologies using Morita–Baylis–Hillman carbonates and acetates. Catal. Sci. Technol. 2012, 2, 267–278. [Google Scholar] [CrossRef]
- Xie, P.; Huang, Y. Morita–Baylis–Hillman adduct derivatives (MBHADs): Versatile reactivity in Lewis base-promoted annulation. Org. Biomol. Chem. 2015, 13, 8578–8595. [Google Scholar] [CrossRef]
- Zhong, N.-J.; Wang, Y.-Z.; Cheng, L.; Wang, D.; Liu, L. Recent advances in the annulation of Morita–Baylis–Hillman adducts. Org. Biomol. Chem. 2018, 16, 5214–5227. [Google Scholar] [CrossRef]
- Chen, Z.C.; Chen, Z.; Du, W.; Chen, Y.C. Transformations of modified Morita–Baylis–Hillman adducts from isatins catalyzed by Lewis bases. Chem. Rec. 2019, 20, 541–555. [Google Scholar] [CrossRef]
- Suresh, A.; Lal, S.; Namboothiri, I.N.N. Regio-and stereoselective synthesis of functionalized and fused heterocycles from Morita–Baylis–Hillman adducts of dicyclopentadienone. Org. Biomol. Chem. 2022, 20, 2271–2281. [Google Scholar] [CrossRef]
- Pareek, A.; Sivanandan, S.T.; Bhagat, S.; Namboothiri, I.N.N. [3+2]-Annulation of oxindolinyl-malononitriles with Morita–Baylis–Hillman acetates of nitroalkenes for the regio- and diastereoselective synthesis of spirocyclopentane-indolinones. Tetrahedron 2022, 108, 132650. [Google Scholar] [CrossRef]
- Ma, J.; Gao, B.; Song, G.; Zhang, R.; Wang, Q.; Ye, Z.; Chen, W.-W.; Zhao, B. Asymmetric α-Allylation of Glycinate with Switched Chemoselectivity Enabled by Customized Bifunctional Pyridoxal Catalysts. Angew. Chem. Int. Ed. 2022, 61, e202200850. [Google Scholar]
- Lin, J.; Zhu, Y.; Cai, W.; Huang, Y. Phosphine-mediated sequential [2+4]/[2+3] annulation to construct pyrroloquinolines. Org. Lett. 2022, 24, 1593–1597. [Google Scholar] [CrossRef] [PubMed]
- He, S.; Wang, J.; Zheng, J.; Luo, Q.-Q.; Leng, H.; Zheng, S.; Peng, C.; Han, B.; Zhan, G. Organocatalytic (5+1) benzannulation of Morita–Baylis–Hillman carbonates: Synthesis of multisubstituted 4-benzylidene pyrazolones. New J. Chem. 2022, 46, 11617–11622. [Google Scholar] [CrossRef]
- Dabaria, K.K.; Bai, R.; Jat, P.K.; Badsara, S.S. Atom-economical, catalyst-free hydrosulfonation of densely functionalized alkenes: Access to oxindole-containing sulfones. New J. Chem. 2022, 46, 12905–12909. [Google Scholar] [CrossRef]
- He, X.-H.; Fu, X.-J.; Zhan, G.; Zhang, N.; Li, X.; Zhu, H.-P.; Peng, C.; He, G.; Han, B. Organocatalytic asymmetric synthesis of multifunctionalized α-carboline-spirooxindole hybrids that suppressed proliferation in colorectal cancer cells. Org. Chem. Front. 2022, 9, 1048–1055. [Google Scholar] [CrossRef]
- Ni, N.; Chen, J.; Ding, S.; Cheng, D.; Li, X.; Xu, X. Synthesis of Acrylonitrile Derivatives via Visible Light-induced Coupling Reaction of Morita-Baylis-Hillman Adducts with Tertiary Amines and α-Trimethylsilyl Amines. Asian J. Org. Chem. 2022, 11, e202100747. [Google Scholar] [CrossRef]
- Cho, C.-W.; Kong, J.-R.; Krische, M.J. Phosphine-catalyzed regiospecific allylic amination and dynamic kinetic resolution of Morita− Baylis− Hillman acetates. Org. Lett. 2004, 6, 1337–1339. [Google Scholar] [CrossRef]
- Du, Y.; Han, X.; Lu, X. Alkaloids-catalyzed regio-and enantioselective allylic nucleophilic substitution of tert-butyl carbonate of the Morita–Baylis–Hillman products. Tetrahedron Lett. 2004, 45, 4967–4971. [Google Scholar] [CrossRef]
- Zhang, T.-Z.; Dai, L.-X.; Hou, X.-L. Enantioselective allylic substitution of Morita–Baylis–Hillman adducts catalyzed by planar chiral [2.2] paracyclophane monophosphines. Tetrahedron Asymm. 2007, 18, 1990–1994. [Google Scholar] [CrossRef]
- Zhang, S.-J.; Cui, H.-L.; Jiang, K.; Li, R.; Ding, Z.-Y.; Chen, Y.-C. Enantioselective allylic amination of Morita–Baylis–Hillman carbonates catalysed by modified cinchona alkaloids. Eur. J. Org. Chem. 2009, 2009, 5804–5809. [Google Scholar] [CrossRef]
- Zhao, M.-X.; Chen, M.-X.; Tang, W.-H.; Wei, D.-K.; Dai, T.-L.; Shi, M. Cinchona alkaloid catalyzed regio- and enantioselective allylic amination of Morita–Baylis–Hillman carbonates with isatins. Eur. J. Org. Chem. 2012, 2012, 3598–3606. [Google Scholar] [CrossRef]
- Zhu, L.; Hu, H.; Qi, L.; Zheng, Y.; Zhong, W. Enantioselective allylic substitution of Morita–Baylis–Hillman adducts catalyzed by chiral bifunctional ferrocenylphosphines. Eur. J. Org. Chem. 2016, 2016, 2139–2144. [Google Scholar] [CrossRef]
- Zi, Y.; Lange, M.; Schultz, C.; Vilotijevic, I. Latent nucleophiles in Lewis base catalyzed enantioselective N-allylations of N-Heterocycles. Angew. Chem. Int. Ed. 2019, 58, 10727–10731. [Google Scholar] [CrossRef] [PubMed]
- Sun, F.; Yin, T.; Feng, A.; Hu, Y.; Yu, C.; Li, T.; Yao, C. Base-promoted regiodivergent allylation of N-acylhydrazones with Morita–Baylis–Hillman carbonates by tuning the catalyst. Org. Biomol. Chem. 2019, 17, 5283–5293. [Google Scholar] [CrossRef] [PubMed]
- Reddy, C.R.; Mohammed, S.Z.; Kumaraswamy, P.; Kajare, R.C.; Patil, A.D.; Ganga, V.S.R.; Ramaraju, A.; Sridhar, B. A strategy for the synthesis of bicyclic fused cyclopentenones from MBH-carbonates of propiolaldehydes. Synthesis 2022, 54, 3623–3630. [Google Scholar] [CrossRef]
- Wang, S.; Gao, Y.; Song, S.; Li, X.; Zhang, Z.; Xiang, J.B.; Zheng, L. Lewis base catalyzed allylation reaction of N-aryl amides with Morita–Baylis–Hillman carbonates. Tetrahedron 2022, 120, 132903. [Google Scholar] [CrossRef]
- Chen, Z.; Yue, G.; Lu, C.; Yang, G. Synthesis of a library of indolizines using poly (ethylene glycol) as soluble support. Synlett 2004, 2004, 1231–1234. [Google Scholar] [CrossRef]
- Yue, G.; Wan, Y.; Song, S.; Yang, G.; Chen, Z. Synthesis of a library of benzoindolizines using poly (ethylene glycol) as soluble support. Bioorg. Med. Chem. Lett. 2005, 15, 453–458. [Google Scholar] [CrossRef]
- Yue, G.; Chen, Z.; Yang, G. Synthesis of a library of 1,2,3,7-tetrasubstituted indolizines using poly(ethylene glycol) as soluble support. J. Heterocycl. Chem. 2006, 43, 781–786. [Google Scholar] [CrossRef]
- Yue, G.-Z.; Huang, Q.-M.; Zou, P. Recent development in the synthesis of indolizines. Chin. J. Org. Chem. 2007, 27, 1060–1068. (In Chinese) [Google Scholar]
- Yue, G.; Wu, Y.; Dou, Z.; Chen, H.; Yin, Z.; Song, X.; He, C.; Wang, X.; Feng, J.; Zhang, Z.; et al. Synthesis of spiropyrrolidine oxindoles via Ag-catalyzed stereo- and regioselective 1,3-diploar cycloaddition of indole-based azomethine ylides with chalcones. New J. Chem. 2018, 42, 20024–20031. [Google Scholar] [CrossRef]
- Yue, G.; Dou, Z.; Zhou, Z.; Zhang, L.; Feng, J.; Chen, H.; Yin, Z.; Song, X.; Liang, X.; Wang, X.; et al. Rapid abnormal [3+2]-cycloaddition of isatin N,N′-cyclic azomethine imine 1,3-dipoles with chalcones. New J. Chem. 2020, 44, 8813–8817. [Google Scholar] [CrossRef]
- Yue, G.; Liu, B. Research progress on [3+n] (n≥3) cycloaddition of 1,3-diploes. Chin. J. Org. Chem. 2020, 40, 3132–3153. (In Chinese) [Google Scholar] [CrossRef]
- Yue, G.; Li, S.; Jiang, D.; Ding, G.; Feng, J.; Chen, H.; Yang, C.; Yin, Z.; Song, X.; Liang, X.; et al. Syntheses of 3,3-disubstituted dihydrobenzofurans, indolines, indolinones and isochromanes by palladium-catalyzed tandem reaction using Pd(PPh3)2Cl2/(±)-BINAP as a catalytic system. Catalysts 2020, 10, 1084. [Google Scholar] [CrossRef]
- Yue, G.; Jiang, D.; Dou, Z.; Li, S.; Feng, J.; Zhang, L.; Chen, H.; Yang, C.; Yin, Z.; Song, X.; et al. Rapid umpolung Michael addition of isatin N,N′-cyclic azomethine imine 1,3-dipoles with chalcones. New J. Chem. 2021, 45, 11712–11718. [Google Scholar] [CrossRef]
- Yang, G.; Li, S.; Wang, Q.; Chen, H.; Yang, C.; Yin, Z.; Song, X.; Zhang, L.; Lu, C.; Yue, G. K2CO3-promoted formal [3+3]-cycloaddition of N-unsubstituted isatin N,N′-cyclic azomethine imine 1,3-dipoles with Knoevenagel adducts. Molecules 2023, 28, 1034. [Google Scholar] [CrossRef]
- CCDC 2108657 Contain the Supplementary Crystallographic Data for Compound 3′i. Available online: www:Ccdc.cam.ac.uk/data_request/cif (accessed on 15 August 2021).
- Camilo, N.S.; Santos, H.; Zeoly, L.A.; Fernandes, F.S.; Rodrigues, M.T.; Silva, T.S.; Lima, S.R.; Serafim, J.C.; de Oliveira, A.S.B.; Carpanez, A.G.; et al. An improved protocol for the Morita–Baylis–Hillman Reaction allows unprecedented broad synthetic scope. Eur. J. Org. Chem. 2022, 2022, e202101448. [Google Scholar] [CrossRef]
- Basel, B.; Hassner, A. Di-tert-butyl dicarbonate and 4-(dimethylamino)pyridine revisited. Their reactions with amines and alcohols. J. Org. Chem. 2000, 65, 6368–6380. [Google Scholar]
Entry | Reaction Condition | Yield of 3a/4a (%) b |
1 | DMAP, DCM, rt, 45 min | 24/17 |
2 | DABCO, DCM, rt, 8 min | 76/trace |
3 | DABCO, CHCl3, rt, 1 h | 62/trace |
4 | DABCO, DCE, rt, 17 min | 54/trace |
5 | DABCO, DMSO, rt, 17 min | 45/6 |
6 | DABCO, DMF, rt, 2 h | 18/27 |
7 | DABCO, DMA, rt, 2 h | 10/16 |
8 | DABCO, EtOAc, rt, 5 min | 69/trace |
9 | DABCO, ACN, rt, 2 min | 54/trace |
10 | DABCO, dioxane, rt, 40 min | 27/trace |
11 | DABCO, Et2O, rt, 5 min | 40/trace |
12 | DABCO, DME, rt, 1.5 h | 21/trace |
13 | DABCO, THF, rt, 2 h | 38/11 |
14 | TEA, DCM, rt, 2 h | 9/11 |
15 | DIPEA, DCM, rt, 10 h | 3/0 |
16 | DBU, DCM, rt, 2 h | 21/0 |
17 | K2CO3, DCM, rt, 10 h | - c |
18 | Na2CO3, DCM, rt, 10 h | - c |
19 | Cs2CO3, DCM, rt, 10 h | - c |
20 | NaOH, DCM, rt, 10 h | 13/0 |
21 | KOH, DCM, rt, 10 h | 10/0 |
22 | NaH, DCM d, rt, 10 h | 7/0 |
23 | PPh3, DCM, rt, 2 h | 0/26 |
24 | 0.01 eq DABCO, DCM, rt, 30 min | 83/0 |
25 | 0.1 eq DABCO, DCM, rt, 2 h | 65/0 |
26 | 0.01 eq DABCO, 1 mL DCM, rt, 54 min | 67/0 |
27 | 0.01 eq DABCO, 4 mL DCM, rt, 48 min | 69/0 |
28 | 0.01 eq DABCO, 2.2 eq 2a, DCM, rt, 30 min | 91/0 |
29 | 0.01 eq DABCO, 3.3 eq 2a, DCM, rt, 24 min | 89/0 |
30 | 0.01 eq DABCO, 2.2 eq 2a, DCM, rt, 12 h | 53/12 |
31 | 0.01 eq DABCO, 3.3 eq 2a, DCM, rt, 12 h | 53/12 |
32 | DABCO, 2.2 eq 2a, DCM, rt, 8 h | 0/70 |
33 | 0.1 eq DABCO, 2.2 eq 2a, DCM, rt, 7 h | 0/77 |
34 | 0.2 eq DABCO, 2.2 eq 2a, DCM, rt, 6 h | 0/72 |
Entry | Compound | R | R1 | Yield (%) b |
1 | 3a | H | Et | 91 (84) c |
2 | 3b | 5-Me | Et | 78 |
3 | 3c | 5-OMe | Et | 85 |
4 | 3d | 5-F | Et | 49 |
5 | 3e | 5-Cl | Et | 50 |
6 | 3f | 6-Br | Et | 81 |
7 | 3g | 5-I | Et | 78 |
8 | 3h | 7-CF3 | Et | 58 |
9 | 3i | 5-NO2 | Et | - d |
10 | 3j | H | Me | 80 |
11 | 3k | H | n-Pr | 70 |
12 | 3l | H | n-Bu | 40 |
13 | 3m | H | t-Bu | 56 |
Entry | Compound | Ar | Yield (%) b |
1 | 6a | Ph | 42 |
2 | 6b | 2-MeC6H4 | - c |
3 | 6c | 3-MeC6H4 | 51 |
4 | 6d | 4-MeC6H4 | 37 |
5 | 6e | 2-MeOC6H4 | 16 |
6 | 6f | 3-MeOC6H4 | 64 |
7 | 6g | 4-MeOC6H4 | - d |
8 | 6h | 2-FC6H4 | - c |
9 | 6i | 3-FC6H4 | 71 |
10 | 6j | 4-FC6H4 | - d |
11 | 6k | 2-ClC6H4 | - c |
12 | 6l | 3-ClC6H4 | 38 |
13 | 6m | 4-ClC6H4 | 43 |
14 | 6n | 2-BrC6H4 | - d |
15 | 6o | 3-BrC6H4 | 55 |
16 | 6p | 4-BrC6H4 | 45 |
17 | 6q | 2-NO2C6H4 | - d |
18 | 6r | 3-NO2C6H4 | 47 |
19 | 6s | 4-NO2C6H4 | 54 |
20 | 6t | 2-thiophenyl | - e |
Entry | Compound | R | R1 | Yield (%) b |
1 | 8a | Me | Et | trace |
2 | 8b | Et | Et | 48 |
3 | 8c | Bn | Et | 75(92) c |
4 | 8d | allyl | Et | 82 |
5 | 8e | propargyl | Et | 20 |
6 | 8f | n-Bu | Et | 72 |
7 | 8g | n-Bu | Me | 55 |
8 | 8h | n-C7H15 | Et | 82 |
9 | 8i | n-C7H15 | Me | 74 |
10 | 8j | n-C7H15 | n-Bu | 77 |
11 | 8k | n-C7H15 | t-Bu | 79 |
Entry | Compound | R | R1 | Yield (%) b |
1 | 4a | H | Me | 44 |
2 | 4b | 5-Me | Me | 41 |
3 | 4c | 5-Cl | Me | 37 |
4 | 4d | 5-I | Me | 49 |
5 | 4e | H | Et | 77 |
6 | 4f | 5-Me | Et | 50 |
7 | 4g | 5-F | Et | 63 |
8 | 4h | 5-Cl | Et | 54 |
9 | 4i | 6-Br | Et | 68 |
10 | 4j | 5-I | Et | 55 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, Q.; Li, S.; Yang, G.; Zou, X.; Yin, X.; Feng, J.; Chen, H.; Yang, C.; Zhang, L.; Lu, C.; et al. DABCO-Catalyzed Mono-/Diallylation of N-Unsubstituted Isatin N,N′-Cyclic Azomethine Imine 1,3-Dipoles with Morita-Baylis-Hillman Carbonates. Molecules 2023, 28, 3002. https://doi.org/10.3390/molecules28073002
Wang Q, Li S, Yang G, Zou X, Yin X, Feng J, Chen H, Yang C, Zhang L, Lu C, et al. DABCO-Catalyzed Mono-/Diallylation of N-Unsubstituted Isatin N,N′-Cyclic Azomethine Imine 1,3-Dipoles with Morita-Baylis-Hillman Carbonates. Molecules. 2023; 28(7):3002. https://doi.org/10.3390/molecules28073002
Chicago/Turabian StyleWang, Qiumi, Sicheng Li, Guosheng Yang, Xinyu Zou, Xi Yin, Juhua Feng, Huabao Chen, Chunping Yang, Li Zhang, Cuifen Lu, and et al. 2023. "DABCO-Catalyzed Mono-/Diallylation of N-Unsubstituted Isatin N,N′-Cyclic Azomethine Imine 1,3-Dipoles with Morita-Baylis-Hillman Carbonates" Molecules 28, no. 7: 3002. https://doi.org/10.3390/molecules28073002
APA StyleWang, Q., Li, S., Yang, G., Zou, X., Yin, X., Feng, J., Chen, H., Yang, C., Zhang, L., Lu, C., & Yue, G. (2023). DABCO-Catalyzed Mono-/Diallylation of N-Unsubstituted Isatin N,N′-Cyclic Azomethine Imine 1,3-Dipoles with Morita-Baylis-Hillman Carbonates. Molecules, 28(7), 3002. https://doi.org/10.3390/molecules28073002