Chemical Composition, Antioxidant and Antibacterial Activities and Acute Toxicity of Cedrus atlantica, Chenopodium ambrosioides and Eucalyptus camaldulensis Essential Oils
Abstract
:1. Introduction
2. Results and Discussion
2.1. Yield and Chemical Composition
2.2. Antioxidant Activity
2.3. Antibacterial Activity
3. Materials and Methods
3.1. Plant Material
3.2. Extraction of Essential Oils
3.3. Chemical Characterization of Essential Oils
3.4. Antioxidant Activity
3.5. Evaluation of Antibacterial Activity
3.5.1. Disk Diffusion Assay
3.5.2. Microdilution in Agar Medium
3.6. Acute Toxicity Study
3.7. Statistical Analysis
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Sample Availability
References
- Drioiche, A.; Amine, S.; boutahiri, S.; Saidi, S.; Ailli, A.; Rhafouri, R.; Mahjoubi, M.; El Hilali, F.; Mouradi, A.; Eto, B.; et al. Antioxidant and Antimicrobial Activity of Essential Oils and Phenolic Extracts from the Aerial Parts of Ruta montana L. of the Middle Atlas Mountains-Morocco. J. Essent. Oil Bear. Plants 2020, 23, 902–917. [Google Scholar] [CrossRef]
- Diallo, K.; Medina, F.; Belkacem, A.; Jaafar, D.; Badr, C.; Raffetin, A. Impact of a cross-sectional infectious disease team intervention in maxillofacial surgery. Médecine Et Mal. Infect. 2020, 50, S48–S49. [Google Scholar] [CrossRef]
- Ainane, A.; Mohamed Abdoul-Latif, F.; Jalludin, M.; Boujaber, N.; Oumaskour, K.; Benaziz, M.; Ainane, T. Chemical Composition and Antimicrobial Activity of The Essential Oil of Pistacia lentiscus L. PhOL-Pharmacol. OnLine 2021, 2, 518–526. [Google Scholar]
- Boutkhil, S.; El Idrissi, M.; Amechrouq, A.; Chbicheb, A.; Chakir, S.; EL Badaoui, K. Chemical composition and antimicrobial activity of crude, aqueous, ethanol extracts and essential oils of Dysphania ambrosioides (L.) Mosyakin & Clemants. Acta Bot. Gall. 2009, 156, 201–209. [Google Scholar] [CrossRef]
- Hmamou, A.; Eloutassi, N.; Alshaww, S.Z.; Al kamaly, O.; Kara, M.; Bendaoud, A.; El-Assri, E.-M.; Tlemcani, S.; El Khomsi, M.; Lahkimi, A. Total Phenolic Content and Antioxidant and Antimicrobial Activities of Papaver rhoeas L. Organ Extracts Growing in Taounate Region, Morocco. Molecules 2022, 27, 854. [Google Scholar] [CrossRef] [PubMed]
- Aljanaby, A.A.J. Antibacterial activity of an aqueous extracts of Alkanna tinctoria roots against drug resistant aerobic pathogenic bacteria isolated from patients with burns infections. Russ. Open Med. J. 2018, 7, e0104. [Google Scholar] [CrossRef] [Green Version]
- Cock, I.E.; Selesho, M.I.; van Vuuren, S.F. A review of the traditional use of southern African medicinal plants for the treatment of selected parasite infections affecting humans. J. Ethnopharmacol. 2018, 220, 250–264. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bouzidi, L.E.; Larhsini, M.; Markouk, M.; Abbad, A.; Hassani, L.; Bekkouche, K. Antioxidant and Antimicrobial Activities of Withania frutescens. Nat. Prod. Commun. 2011, 6, 1934578X1100601009. [Google Scholar] [CrossRef] [Green Version]
- Bencheqroun, H.K.; Ghanmi, M.; Satrani, B.; Aafi, A. Antimicrobial activity of essential oils of Artemisia mesatlantica, endemic plant of Morocco. Bull. De La Société R. Des Sci. De Liège 2012, 81, 18. (In French) [Google Scholar]
- El idrissi, M.; Elhourri, M.; Amechrouq, A.; Lemrhari, A.; Belmalha, S.; Echchgadda, G. Caractérisation chimique des huiles essentielles de Chenopodium ambrosioïdes (L.) (Chenopodiaceae) de quatre regions du Maroc [Chemical characterization of essential oils from Chenopodium ambrosioides (L.) (Chenopodiaceae) from four regions of Morocco]. J. Mater. Environ. Sci 2016, 7, 4087–4095. [Google Scholar]
- Chiasson, H.; Bostanian, N.J.; Vincent, C. Acaricidal Properties of a Chenopodium-Based Botanical. J. Econ. Entomol. 2004, 97, 1373–1377. [Google Scholar] [CrossRef] [PubMed]
- Dra Beatriz, E.J.C.; MSc. Edisson, D.R.; MSc. Wilman, D. Bioactividad del aceite esencial de Chenopodium ambrosioides colombiano (Bioactivity of essential oil from Colombian Chenopodium ambrosioides). Rev. Cuba. De Plantas Med. 2012, 17, 11. [Google Scholar]
- Owolabi, M.S.; Lajide, L.; Oladimeji, M.O.; Setzer, W.N.; Palazzo, M.C.; Olowu, R.A.; Ogundajo, A. Volatile Constituents and Antibacterial Screening of the Essential Oil of Chenopodium ambrosioides L. Growing in Nigeria. Nat. Prod. Commun. 2009, 4, 1934578X0900400724. [Google Scholar] [CrossRef] [Green Version]
- Kumar, R.; Mishra, A.; Dubey, N.; Tripathi, Y. Evaluation of Chenopodium ambrosioides oil as a potential source of antifungal, antiaflatoxigenic and antioxidant activity. Int. J. Food Microbiol. 2007, 115, 159–164. [Google Scholar] [CrossRef] [PubMed]
- França, F.; Lago, E.L.; Marsden, P.D. Plants used in the treatment of leishmanial ulcers due to Leishmania (Viannia) braziliensis in an endemic area of Bahia, Brazil. Rev. Soc. Bras. Med. Trop. 1996, 29, 229–232. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- MacDonald, D.; VanCrey, K.; Harrison, P.; Rangachari, P.K.; Rosenfeld, J.; Warren, C.; Sorger, G. Ascaridole-less infusions of Chenopodium ambrosioides contain a nematocide(s) that is(are) not toxic to mammalian smooth muscle. J. Ethnopharmacol. 2004, 92, 215–221. [Google Scholar] [CrossRef] [PubMed]
- Nuñez-Estevez, B.; Finimundy, T.C.; Carpena, M.; Barral-Martinez, M.; Calhelha, R.; Pires, T.C.S.P.; Otero, P.; Garcia-Perez, P.; Simal-Gandara, J.; Ferreira, I.C.F.R.; et al. Bioactive Compound Profiling and Nutritional Composition of Three Species from the Amaranthaceae Family. Chem. Proc. 2021, 5, 20. [Google Scholar] [CrossRef]
- Gakuubi, M.M.; Maina, A.W.; Wagacha, J.M. Antifungal Activity of Essential Oil of Eucalyptus camaldulensis Dehnh. against Selected Fusarium spp. Int. J. Microbiol. 2017, 2017, 8761610. [Google Scholar] [CrossRef] [Green Version]
- Ameur, E.; Sarra, M.; Yosra, D.; Mariem, K.; Nabil, A.; Lynen, F.; Larbi, K.M. Chemical composition of essential oils of eight Tunisian Eucalyptus species and their antibacterial activity against strains responsible for otitis. BMC Complement. Med. Ther. 2021, 21, 209. [Google Scholar] [CrossRef]
- Tolba, H. Extraction des Huiles Essentielles des Plantes de la Flore Algérienne, Etude des Effets Thérapeutiquess en vue D’une Application Pharmaceutique, Univérsité des Sciences et de la Technologie Houari Boumediène (Extraction of Essential Oils from Plants of the Algerian Flora, Study of the Therapeutic Effects in View of a Pharmaceutical Application, Houari Boumediène University of Science and Technology). Ph.D. Thesis, University of Science and Technology Houari Boumediene (USTHB), Bab Ezzouar, Algeria, 2017. [Google Scholar]
- Traore, N.; Sidibe, L.; Bouare, S.; Harama, D.; Somboro, A.; Fofana, B.; Diallo, D.; Figueredo, G.; Chalchat, J. Activités antimicrobiennes des huiles essentielles de Eucalyptus citriodora Hook et Eucalyptus houseana W.Fitzg. ex Maiden (Antimicrobial activities of essential oils of Eucalyptus citriodora Hook and Eucalyptus houseana W.Fitzg. ex Maiden). Int. J. Bio. Chem. Sci 2013, 7, 800–804. [Google Scholar] [CrossRef] [Green Version]
- Huang, H.-C.; Ho, Y.-C.; Lim, J.-M.; Chang, T.-Y.; Ho, C.-L.; Chang, T.-M. Investigation of the Anti-Melanogenic and Antioxidant Characteristics of Eucalyptus camaldulensis Flower Essential Oil and Determination of Its Chemical Composition. Int. J. Mol. Sci. 2015, 16, 10470–10490. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kheder, D.A.; Al-Habib, O.A.M.; Gilardoni, G.; Vidari, G. Components of Volatile Fractions from Eucalyptus camaldulensis Leaves from Iraqi–Kurdistan and Their Potent Spasmolytic Effects. Molecules 2020, 25, 804. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jaouadi, I.; Cherrad, S.; Tiskar, M.; Tabyaoui, M.; Ghanmi, M.; Satrani, B.; Chaouch, A. Wood tar essential oil from Cedrus Atlantica of Morocco (Middle atlas) as a green corrosion inhibitor for mild steel in 1 M hydrochloric acid solution. Int. J. Corros. Scale Inhib. 2020, 9, 265–283. [Google Scholar] [CrossRef]
- Debazac, E.F. Manuel des Conifères (Conifer Handbook); École Nationale des Eaux et Forêts: Nancy, France, 1964. [Google Scholar]
- Fidah, A.; Salhi, N.; Rahouti, M.; Kabouchi, B.; Ziani, M.; Aberchane, M.; Famiri, A. Natural durability of Cedrus atlantica wood related to the bioactivity of its essential oil against wood decaying fungi. Maderas Cienc. Tecnol. 2016, 18, 567–576. [Google Scholar] [CrossRef] [Green Version]
- Fidah, A. Etude de la Durabilite Naturelle des Bois de Cedrus Atlantica (Manetti) et de Tetraclinis Articulata (Vahl) Masters et Evaluation de la Bioactivite de Leurs Huiles Essentielles Sur Les Champignons Basidiomycetes Lignivores (Study of the Natural Durability of Cedrus atlantica (Manetti) and Tetraclinis articulata (Vahl) Masters Woods and Evaluation of the Bioactivity of their Essential Oils on Basidiomycetes Lignivores). Univérsité Mohammed V Rabat, Rabat, 2016. Available online: https://thesesenafrique.imist.ma/bitstream/handle/123456789/1805/THESE_FIDAH.pdf?sequence=1 (accessed on 28 January 2022).
- Ez Zoubi, Y.; El-Akhal, F.; Farah, A.; Khalid Taghzouti, K.; Lalami El Ouali, A. Chemical composition and larvicidal activity of Moroccan Atlas Cedar (Cedrus atlantica Manetti) against Culex pipiens (Diptera: Culicidae). J. Appl. Pharm. Sci. 2017, 7, 30–34. [Google Scholar] [CrossRef] [Green Version]
- Cheddadi, R.; Fady, B.; François, L.; Hajar, L.; Suc, J.-P.; Huang, K.; Demarteau, M.; Vendramin, G.G.; Ortu, E. Putative glacial refugia of Cedrus atlantica deduced from Quaternary pollen records and modern genetic diversity. J. Biogeogr. 2009, 36, 1361–1371. [Google Scholar] [CrossRef]
- Laaribya, S.; Alaoui, A. Modélisation par l’entropie maximale de l’habitat potentiel du cèdre de l’atlas au Maroc (Cedrus atlantica Manetti) (Maximum entropy modelling of the potential habitat of the Atlas cedar in Morocco (Cedrus atlantica Manetti)). Rev. Nat. Et Technol. 2021, 13, 120–128. [Google Scholar]
- Skanderi, I.; Chouitah, O. Chemical Characterization and Antioxidant Activity of Cedrus atlantica Manetti Tar (Atlas Cedar Tar). Fr.-Ukr. J. Chem. 2020, 8, 244–255. [Google Scholar] [CrossRef]
- Zrira, S.; Ghanmi, M. Chemical Composition and Antibacterial Activity of the Essential of Cedrus atlantica (Cedarwood oil). J. Essent. Oil Bear. Plants 2016, 19, 1267–1272. [Google Scholar] [CrossRef]
- Adams, R.P. Cedar wood oil-analyses and properties. Mod. Methods Plant Anal. 1991, 12, 16. [Google Scholar]
- El-Baha, A.M.; El-Sherbiny, A.A.; Salem, M.Z.M.; Sharrawy, N.M.M.; Mohamed, N.H. Toxicity of essential oils extracted from Corymbia citriodora and Eucalyptus camaldulensis leaves against Meloidogyne incognita under laboratory conditions. Pak. J. Nematol 2017, 35, 93–104. [Google Scholar] [CrossRef]
- Hammer, K.A.; Carson, C.F.; Riley, T.V. Antimicrobial activity of essential oils and other plant extracts. J. Appl. Microbiol. 1999, 86, 985–990. [Google Scholar] [CrossRef] [Green Version]
- Hmiri, S.; Rahouti, M.; Habib, Z.; Satrani, B.; Ghanmi, M.; El Ajjouri, M. évaluation Du Potentiel Antifongique Des Huiles Essentielles de Mentha pulegium et d’Eucalyptus camaldulensis Dans La Lutte Biologique Contre Les Champignons Responsables de La Détérioration Des Pommes En Conservation. Bulletin de la Société Royale des Sciences de Liège. Bull. De La Société R. Des Sci. De Liège 2011, 80, 824–836. Available online: https://popups.uliege.be/0037-9565/index.php?id=3375 (accessed on 1 January 2023).
- Derwich, E.; Benziane, Z.; Boukir, A. Chemical Composition and In Vitro Antibacterial Activity of the Essential Oil of Cedrus atlantica. Int. J. Agric. Biol. 2010, 12, 6. [Google Scholar]
- Boudarene, L.; Rahim, L.; Baaliouamer, A.; Meklati, B.Y. Analysis of Algerian Essential Oils from Twigs, Needles and Wood of Cedrus atlantica G.Manetti by GC/MS. J. Essent. Oil Res. 2004, 16, 531–534. [Google Scholar] [CrossRef]
- Sara, B.; Baali, N.; Hamza, F.; Chawki, B.; Akkal, S.; Sabrina, B. Chemical composition and antioxidant potential of branch, needle, cone oils of Cedrus atlantica, antioxidant properties from aures region (Algeria). IJBPAS 2021, 10, 3670–3680. [Google Scholar] [CrossRef]
- Alitonou, G.A.; Sessou, P.; Tchobo, F.P.; Avlessi, F.; Yehouenou, B.; Menut, C.; Sohounhloue, D.C.K. Chemical composition and biological activities of essential oils of Chenopodium ambrosioides L. collected in two areas of Benin. Int. J. Biosci. 2012, 2, 58–66. [Google Scholar]
- Muhayimana, A.; Chalchat, J.-C.; Garry, R.-P. Hemical Composition of Essential Oils of Chenopodium ambrosioides L. from Rwanda. J. Essent. Oil Res. 1998, 10, 690–692. [Google Scholar] [CrossRef]
- Owokotomo, I.A. Chemical Analysis and Antioxidant Studies of the Essential Oil of Chenopodium ambrosioides (L.). Growing Wild in South-West Nigeria. Niger. Res. J. Chem. Sci. 2022, 10, 9. [Google Scholar]
- Chekem, M.S.G.; Lunga, P.K.; Tamokou, J.D.D.; Kuiate, J.R.; Tane, P.; Vilarem, G.; Cerny, M. Antifungal Properties of Chenopodium ambrosioides Essential Oil Against Candida Species. Pharmaceuticals 2010, 3, 2900–2909. [Google Scholar] [CrossRef]
- Abbaci, H.; Nabti, E.; Al-Bekairi, A.M.; Hagras, S.A.A.; Salem-Bekhit, M.M.; Adjaoud, A.; Alzahrani, H.A.; Bensidhoum, L.; Alenazy, R.; Piras, A.; et al. Comparative Bioactivity Evaluation of Chemically Characterized Essential Oils Obtained from Different Aerial Parts of Eucalyptus gunnii Hook. f. (Myrtaceae). Molecules 2023, 28, 2638. [Google Scholar] [CrossRef]
- Chaves, T.P.; Pinheiro, R.E.E.; Melo, E.S.; Soares, M.J.d.S.; Souza, J.S.N.; de Andrade, T.B.; de Lemos, T.L.G.; Coutinho, H.D.M. Essential oil of Eucalyptus camaldulensis Dehn potentiates β-lactam activity against Staphylococcus aureus and Escherichia coli resistant strains. Ind. Crops Prod. 2018, 112, 70–74. [Google Scholar] [CrossRef]
- Elgat, W.A.A.A.; Kordy, A.M.; Böhm, M.; Černý, R.; Abdel-Megeed, A.; Salem, M.Z.M. Eucalyptus camaldulensis, Citrus aurantium, and Citrus sinensis Essential Oils as Antifungal Activity against Aspergillus flavus, Aspergillus niger, Aspergillus terreus, and Fusarium culmorum. Processes 2020, 8, 1003. [Google Scholar] [CrossRef]
- Ainane, A.; Benhima, R.; Khammour, F.; Abba, E.H.; Cherroud, S.; Ainane, T. Composition chimique et activité insecticide de cinq huiles essentielles: Cedrus atlantica, Citrus limonum, Eucalyptus globules, Rosmarinus officinalis et Syzygium aromaticum. In Proceedings of the Colloque National BIOSUNE’1, Khenifra, Morocco, 19 April 2018; pp. 67–79. [Google Scholar]
- Hsu, K.-P.; Yang, M.-L.; Wei, L.Y.; Ho, H.-T.; Ho, C.-L. Chemical Composition and In Vitro Anti-Wood-Decay Fungal Activities of Dysphania ambrosioides Leaf Essential Oil from Taiwan. Nat. Prod. Commun. 2022, 17, 1934578X221099971. [Google Scholar] [CrossRef]
- Laghmouchi, Y.; Belmehdi, O.; Senhaji, N.S.; Abrini, J. Chemical composition and antibacterial activity of Origanum compactum Benth. essential oils from different areas at northern Morocco. S. Afr. J. Bot. 2018, 115, 120–125. [Google Scholar] [CrossRef]
- Btissam, R.; Amina, A.; Mohamed, N.H. In vitro study of anti-glycation and radical scavenging activities of the essential oils of three plants from Morocco: Origanum compactum, Rosmarinus officinalis and Pelargonium asperum. Phcog. J. 2015, 7, 124–135. [Google Scholar] [CrossRef]
- Sahin Basak, S.; Candan, F. Chemical composition and in vitro antioxidant and antidiabetic activities of Eucalyptus camaldulensis Dehnh. essential oil. JICS 2010, 7, 216–226. [Google Scholar] [CrossRef]
- Ghaffar, A.; Yameen, M.; Kiran, S.; Kamal, S.; Jalal, F.; Munir, B.; Saleem, S.; Rafiq, N.; Ahmad, A.; Saba, I.; et al. Chemical Composition and In-Vitro Evaluation of the Antimicrobial and Antioxidant Activities of Essential Oils Extracted from Seven Eucalyptus Species. Molecules 2015, 20, 20487–20498. [Google Scholar] [CrossRef] [Green Version]
- Shala, A.Y.; Gururani, M.A. Phytochemical Properties and Diverse Beneficial Roles of Eucalyptus globulus Labill.: A Review. Horticulturae 2021, 7, 450. [Google Scholar] [CrossRef]
- Sharma, A.D.; Farmaha, M.; Kaur, I.; Singh, N. Phytochemical analysis using GC-FID, FPLC fingerprinting, antioxidant, antimicrobial, anti- inflammatory activities analysis of traditionally used Eucalyptus globulus essential oil. Drug Anal. Res. 2021, 5, 26–38. [Google Scholar] [CrossRef]
- Kandsi, F.; Elbouzidi, A.; Lafdil, F.Z.; Meskali, N.; Azghar, A.; Addi, M.; Hano, C.; Maleb, A.; Gseyra, N. Antibacterial and Antioxidant Activity of Dysphania ambrosioides (L.) Mosyakin and Clemants Essential Oils: Experimental and Computational Approaches. Antibiotics 2022, 11, 482. [Google Scholar] [CrossRef] [PubMed]
- Wabo, H.; Sokmen, A.; Agyepong, N. Antimicrobial and antioxidant activities of the essential oil of Chaerophyllum libanoticum Boiss. et Kotschy. Food Chem. 2007, 105, 1512–1517. [Google Scholar]
- Mehani, M.; Segni, L. Antimicrobial Effect of Essential Oils of the Plant Eucalyptus camaldulensis on Some Pathogenic Bacteria. Int. J. Environ. Sci. Dev. 2012, 3, 86–88. [Google Scholar] [CrossRef] [Green Version]
- Aleksic Sabo, V.; Knezevic, P. Antimicrobial activity of Eucalyptus camaldulensis Dehn. plant extracts and essential oils: A review. Ind. Crops Prod. 2019, 132, 413–429. [Google Scholar] [CrossRef]
- Aberchane, M.; Satrani, B.; Fechtal, M.; Chaouch, A. Effet de l’infection du bois de Cèdre de l’Atlas par Trametes pini et Ungulina officinalis sur la composition chimique et l’activité antibactérienne et antifongique des huiles essentielles (Effect of infection of Atlas Cedar wood by Trametes pini and Ungulina officinalis on the chemical composition and antibacterial and antifungal activity of essential oils). Acta Bot. Gall. 2003, 150, 223–229. [Google Scholar] [CrossRef]
- Benouaklil, F.; Hamaidi-Chergui, F.; Hamaidi Mohand, S.; Saidi, F. Chemical Composition and Antimicrobial Properties of Algerian Cedrus atlanticam M. Essential Oils. Rev. Agrobiol. 2017, 7, 355–362. [Google Scholar]
- Harraz, F.M.; Hammoda, H.M.; El Ghazouly, M.G.; Farag, M.A.; El-Aswad, A.F.; Bassam, S.M. Chemical composition, antimicrobial and insecticidal activities of the essential oils of Conyza linifolia and Chenopodium ambrosioides. Nat. Prod. Res. 2015, 29, 879–882. [Google Scholar] [CrossRef]
- Ait Sidi Brahim, M.; Fadli, M.; Hassani, L.; Boulay, B.; Markouk, M.; Bekkouche, K.; Abbad, A.; Ait Ali, M.; Larhsini, M. Chenopodium ambrosioides var. ambrosioides used in Moroccan traditional medicine can enhance the antimicrobial activity of conventional antibiotics. Ind. Crops Prod. 2015, 71, 37–43. [Google Scholar] [CrossRef]
- Farah, A.; Satrani, B.; Fechtal, M.; Chaouch, A.; Talbi, M. Composition chimique et activités antibactérienne et antifongique des huiles essentielles extraites des feuilles d’ Eucalyptus camaldulensis et de son hybride naturel (clone 583) (Chemical composition and antibacterial and antifungal activities of essential oils extracted from the leaves of Eucalyptus camaldulensis and its natural hybrid (clone 583)). Acta Bot. Gall. 2001, 148, 183–190. [Google Scholar] [CrossRef] [Green Version]
- Ez-Zriouli, R.; el yacoubi, H.; Mesfioui, A.; ElHessni, A.; ElGoumi, Y.; Rochdi, A. Assessment of bioactive compounds, antibacterial potential and acute toxicity of a volatile Origanum compactum essential oil, an endemic plant of northern Morocco. Arab. J. Med. Aromat. Plants 2021, 7, 422–437. [Google Scholar]
- Yousif, L.; Belmehdi, O.; Abdelhakim, B.; Skali Senhaji, N.; Abrini, J. Does the domestication of Origanum compactum (Benth) affect its chemical composition and antibacterial activity? Flavour Fragr. J. 2021, 36, 264–271. [Google Scholar] [CrossRef]
- Hernández, T.; Canales, M.; Avila, J.G.; García, A.M.; Martínez, A.; Caballero, J.; de Vivar, A.R.; Lira, R. Composition and antibacterial activity of essential oil of Lantana achyranthifolia Desf. (Verbenaceae). J. Ethnopharmacol. 2005, 96, 551–554. [Google Scholar] [CrossRef] [PubMed]
- Sonboli, A.; Babakhani, B.; Mehrabian, A.R. Antimicrobial Activity of Six Constituents of Essential Oil from Salvia. Z. Für Nat. 2005, 61, 160–164. [Google Scholar] [CrossRef] [PubMed]
- Lahlou, M. Methods to study the phytochemistry and bioactivity of essential oils. Phytother. Res. 2004, 18, 435–448. [Google Scholar] [CrossRef] [PubMed]
- Rabib, H.; Elagdi, C.; Hsaine, M.; Fougrach, H.; Koussa, T.; Badri, W. Antioxidant and Antibacterial Activities of the Essential Oil of Moroccan Tetraclinis articulata (Vahl) Masters. Biochem. Res. Int. 2020, 2020, 9638548. [Google Scholar] [CrossRef]
- Okoh, O.O.; Sadimenko, A.P.; Afolayan, A.J. Comparative evaluation of the antibacterial activities of the essential oils of Rosmarinus officinalis L. obtained by hydrodistillation and solvent free microwave extraction methods. Food Chem. 2010, 120, 308–312. [Google Scholar] [CrossRef]
- Ultee, A.; Bennik, M.H.J.; Moezelaar, R. The Phenolic Hydroxyl Group of Carvacrol Is Essential for Action against the Food-Borne Pathogen Bacillus cereus. Appl. Environ. Microbiol. 2002, 68, 1561–1568. [Google Scholar] [CrossRef] [Green Version]
- Chaudhary, A.; Sharma, P.; Nadda, G.; Tewary, D.K.; Singh, B. Chemical composition and larvicidal activities of the Himalayan cedar, Cedrus deodara essential oil and its fractions against the diamondback moth, Plutella xylostella. J. Insect Sci. 2011, 11, 157. [Google Scholar] [CrossRef] [Green Version]
- Burt, S. Essential oils: Their antibacterial properties and potential applications in foods—A review. Int. J. Food Microbiol. 2004, 94, 223–253. [Google Scholar] [CrossRef]
- Ouadja, B.; Katawa, G.; Toudji, G.A.; Layland, L.; Gbekley, E.H.; Ritter, M.; Anani, K.; Ameyapoh, Y.; Karou, S.D. Anti-inflammatory, antibacterial and antioxidant activities of Chenopodium ambrosioides L. (Chenopodiaceae) extracts. JABS 2021, 162, 16764–16794. [Google Scholar] [CrossRef]
- Al Kamaly, O.; Saleh, A.; Al Sfouk, A.; Alanazi, A.S.; Parvez, M.K.; Ousaaid, D.; Assouguem, A.; Mechchate, H.; Bouhrim, M. Cedrus atlantica (Endl.) Manetti ex Carrière Essential Oil Alleviates Pain and Inflammation with No Toxicity in Rodent. Processes 2022, 10, 581. [Google Scholar] [CrossRef]
- Monzote, L.; Stamberg, W.; Staniek, K.; Gille, L. Toxic effects of carvacrol, caryophyllene oxide, and ascaridole from essential oil of Chenopodium ambrosioides on mitochondria. Toxicol. Appl. Pharmacol. 2009, 240, 337–347. [Google Scholar] [CrossRef] [PubMed]
- Clevenger, J.F. Apparatus for the determination of volatile oil. J. Am. Pharm. Assoc. 1928, 17, 345–349. [Google Scholar] [CrossRef]
- Santos, A.S.; Alves, S.D.M.; Figueiredo, F.J.C.; Neto, O.G.D.R. Descrição de Sistema e de Métodos de Extração de Óleos Essenciais e Determinação de Umidade de Biomassa em Laboratório (Description of System and Methods for Essential Oil Extraction and Moisture Determination from Biomass in the Laboratory); Ministério da Agricultura, Pecuária e Abastecimento: Belo Horizonte, Brazil, 2004; pp. 1–6.
- Roberta, R.; Pellegrini, N.; Proteggente, A.; Pannala, A.; Yang, M.; Rice-Evans, C. Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free. Radic. Biol. Med. 1999, 26, 1231–1237. [Google Scholar] [CrossRef]
- Fliou, J.; Riffi, O.; Amechrouq, A.; Elhourri, M.; Ghouati, Y. Comparative Study of the chemical Composition of the Essential Oil of Origanum Compactum from the Seven Regions of Morocco and Their Antimicrobial Activity. JMBFS 2020, 10, 42–48. [Google Scholar] [CrossRef]
- OECD. Guidance Document on Acute Oral Toxicity Testing; OECD Series on Testing and Assessment; OECD: Paris, France, 2001; ISBN 978-92-64-07841-3. [Google Scholar]
- El Jemli, M.; Kamal, R.; Marmouzi, I.; Doukkali, Z.; Bouidida, E.H.; Touati, D.; Nejjari, R.; El Guessabi, L.; Cherrah, Y.; Alaoui, K. Chemical composition, acute toxicity, antioxidant and anti-inflammatory activities of Moroccan Tetraclinis articulata L. J. Tradit. Complement. Med. 2017, 7, 281–287. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Compound | RI | C. ambrosioides | Area (%) E. camaldulensis | C. atlantica | |
---|---|---|---|---|---|
1 | α-pinène | 936 | 0.1 | 4.11 | 1.08 |
2 | β-myrcène | 991 | T | - | - |
3 | Myrcène | 993 | 0.1 | - | - |
4 | α-phellandrène | 999 | - | 2.53 | - |
5 | δ-3-carène | 1010 | T | - | - |
6 | 3-carène | 1011 | - | - | 1.42 |
7 | p-cymène | 1013 | 12.1 | 35.11 | 2.68 |
8 | α-terpinène | 1020 | 53.4 | - | - |
9 | 1.8 cinéol | 1021 | 0.5 | 1.44 | - |
10 | Limonène | 1031 | 0.6 | - | 6.12 |
11 | γ-terpinène | 1051 | 1.5 | 3.71 | - |
12 | δ-terpinène | 1054 | T | - | - |
13 | 2-methylprop-1-enyl-cyclohexa-1,5-dien | 1057 | - | 3.43 | - |
14 | α-terpinolène | 1088 | - | 0.91 | - |
15 | p-cymenène | 1090 | 0.1 | - | - |
16 | Linalool | 1099 | 1.2 | 0.96 | - |
17 | Terpinen-1-ol | 1134 | 0.7 | - | - |
18 | 3-methyl-2-(2-penthenyl)cyclopentanone | 1138 | - | 3.44 | - |
19 | α-terpineol | 1175 | - | 2.67 | - |
20 | Terpinène-4-ol | 1176 | T | - | - |
21 | α-campholen aldehyde | 1189 | - | 1.94 | - |
22 | p-cymen-9-ol | 1190 | 0.6 | - | - |
23 | L-linalool | 1198 | - | 11.51 | - |
24 | Ascaridole | 1226 | 17.7 | - | - |
25 | Piperitone | 1253 | - | 10.28 | - |
26 | Thymol | 1268 | 0.1 | - | - |
27 | Carvacrol | 1279 | 7.3 | - | - |
28 | Isoascaridole | 1300 | 2.1 | - | - |
29 | Isoledene | 1373 | - | - | 0.04 |
30 | Longifolène | 1387 | - | - | 3.17 |
31 | Isocaryophyllène | 1413 | - | - | 0.91 |
32 | Himachala-2,4-diène | 1424 | - | - | 0.1 |
33 | Humulène | 1437 | - | - | 1.2 |
34 | γ- himachalène | 1476 | - | - | 15.54 |
35 | Himachalène | 1499 | - | - | 1.16 |
36 | β-himachalène | 1514 | - | - | 54.21 |
37 | δ -cadinène | 1524 | - | - | 3.24 |
38 | Himachalène oxide | 1564 | - | - | 6.23 |
39 | Limonène Oxide | 1586 | 1.3 | - | - |
40 | Globulol | 1590 | - | 6.06 | - |
41 | ɣ-eudesmol | 1634 | - | 11.9 | - |
42 | β -sinensal | 1697 | - | - | 0.01 |
Total identified % | 99.4 | 100 | 97.11 |
EOs Samples | DPPH (mg BHTE of EO) | DPPH (mg AAE of EO) | DPPH (mg TE of EO) |
---|---|---|---|
Cedrus atlantica | 53.928 ± 0.01 | 17.713 ± 0.40 | 26.208 ± 0.12 |
Chenopodium ambrosioides | 72.783 ± 0.19 | 18.999 ± 0.27 | 30.816 ± 0.40 |
Eucalyptus camaldulensis | 99.252 ± 0.01 | 24.167 ± 0.76 | 40.406 ± 0.51 |
Source of Variation | DF | Sum of Squares | Mean Square | F Ratio | p-Value |
---|---|---|---|---|---|
Bacterial species | 5 | 3809.51 | 761.90 | 272.835 | <0.0001 * |
Substances | 11 | 9595.01 | 872.27 | 312.358 | <0.0001 * |
Bacterial species × substances | 55 | 5947.92 | 108.14 | 38.726 | <0.0001 * |
Model | 71 | 19,314.56 | 272.04 | 97.415 | <0.0001 * |
Error | 143 | 399.33 | 2.79 | ||
C. Total | 214 | 19,713.89 |
Souches Bactériennes | C. atlantica | E. camaldulensis | C. ambrosioides | |||
---|---|---|---|---|---|---|
CMI | CMB | CMI | CMB | CMI | CMB | |
Salmonella sp. | 1/1000 | 1/1000 | Nd | Nd | 1/500 | 1/500 |
S. aureus | 1/2000 | 1/2000 | Nd | Nd | 1/1000 | 1/500 |
E. coli | 1/1000 | 1/1000 | Nd | Nd | 1/1000 | 1/1000 |
K. pneumoniae | 1/2000 | 1/2000 | Nd | Nd | 1/500 | 1/500 |
Ps. aeruginosa | Nd | Nd | Nd | Nd | Nd | Nd |
Strypto sp. | 1/1000 | 1/500 | 1/250 | 1/250 | 1/1000 | 1/500 |
Essential Oils | Number of Rats Per Batch | Doses mg/Kg | Mortality | Signs of Toxicity | LD50 | Category GHS (mg/Kg) |
---|---|---|---|---|---|---|
Eucalyptus camaldulensis | 6 | 300 | 0 | − | 500 | 4 |
6 | 1000 | 1 | + | |||
6 | 2000 | 3 | + | |||
Cedrus atlantica | 6 | 300 | 0 | − | 500 | 4 |
6 | 1000 | 3 | + | |||
6 | 2000 | 3 | + | |||
Chenopodium ambrosioides | 6 | 300 | 1 | + | 500 | 4 |
6 | 1000 | 3 | + | |||
6 | 2000 | 3 | + |
Plants | Place of Harvest | Parts of the Plant Used |
---|---|---|
Cedrus atlantica | Azrou (Middle Eastern Atlas) | Branch and needle |
Chenopodium ambrosioides | Region of Safi (central Morocco) | Leaves, flowers, stems and seeds |
Eucalyptus camaldulensis | Maâmora Forest (north west) | Leaves and flowers |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ez-Zriouli, R.; ElYacoubi, H.; Imtara, H.; Mesfioui, A.; ElHessni, A.; Al Kamaly, O.; Zuhair Alshawwa, S.; Nasr, F.A.; Benziane Ouaritini, Z.; Rochdi, A. Chemical Composition, Antioxidant and Antibacterial Activities and Acute Toxicity of Cedrus atlantica, Chenopodium ambrosioides and Eucalyptus camaldulensis Essential Oils. Molecules 2023, 28, 2974. https://doi.org/10.3390/molecules28072974
Ez-Zriouli R, ElYacoubi H, Imtara H, Mesfioui A, ElHessni A, Al Kamaly O, Zuhair Alshawwa S, Nasr FA, Benziane Ouaritini Z, Rochdi A. Chemical Composition, Antioxidant and Antibacterial Activities and Acute Toxicity of Cedrus atlantica, Chenopodium ambrosioides and Eucalyptus camaldulensis Essential Oils. Molecules. 2023; 28(7):2974. https://doi.org/10.3390/molecules28072974
Chicago/Turabian StyleEz-Zriouli, Rabab, Houda ElYacoubi, Hamada Imtara, Abdelhalim Mesfioui, Aboubaker ElHessni, Omkulthom Al Kamaly, Samar Zuhair Alshawwa, Fahd A. Nasr, Zineb Benziane Ouaritini, and Atmane Rochdi. 2023. "Chemical Composition, Antioxidant and Antibacterial Activities and Acute Toxicity of Cedrus atlantica, Chenopodium ambrosioides and Eucalyptus camaldulensis Essential Oils" Molecules 28, no. 7: 2974. https://doi.org/10.3390/molecules28072974
APA StyleEz-Zriouli, R., ElYacoubi, H., Imtara, H., Mesfioui, A., ElHessni, A., Al Kamaly, O., Zuhair Alshawwa, S., Nasr, F. A., Benziane Ouaritini, Z., & Rochdi, A. (2023). Chemical Composition, Antioxidant and Antibacterial Activities and Acute Toxicity of Cedrus atlantica, Chenopodium ambrosioides and Eucalyptus camaldulensis Essential Oils. Molecules, 28(7), 2974. https://doi.org/10.3390/molecules28072974