Pirfenidone Protects from UVB-Induced Photodamage in Hairless Mice
Abstract
:1. Introduction
2. Results
2.1. PFD Prevents Photodamage in Hairless Mice Exposed to UVB Radiation
2.2. PFD Was Effective to Prevent Photodamage-Induced Epidermal and Dermal Skin Changes in Hairless Mice Exposed to UVB Radiation
2.3. PFD Regulates the Expression of PCNA and NF-κB Proteins in Mouse Skin with Photodamage
2.4. PFD Was Effective in Counteracting the Severity Index of UVB-Induced Skin Photodamage in Mice
2.5. PFD Effects on Gene Expression of Inflammatory and Extracellular Matrix Molecules inthe Mouse Skin Exposed to UVB Radiation
2.6. PFD was Effective to Regulate the Expression of Dermis Extracellular Matrix Genes
3. Discussion
4. Materials and Methods
4.1. Mice
4.2. UVB Photodamage Induction and Topical Therapy
4.3. Histological Analysis
4.4. Evaluation of the Severity of Photodamage
4.5. Immunohistochemistry
4.6. Real Time Quantitative Polymerase Chain Reaction (PCR) Analysis
4.7. Statistics
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Sample Availability
References
- Kosmadaki, M.; Gilchrest, B. The role of telomeres in skin aging/photoaging. Micron 2004, 35, 155–159. [Google Scholar] [CrossRef] [PubMed]
- D’Orazio, J.; Jarrett, S.; Amaro-Ortiz, A.; Scott, T. UV Radiation and the Skin. Int. J. Mol. Sci. 2013, 14, 12222–12248. [Google Scholar] [CrossRef] [Green Version]
- Green, A.; Williams, G.; Nèale, R.; Hart, V.; Leslie, D.; Parsons, P.; Marks, G.C.; Gaffney, P.; Battistutta, D.; Frost, C.; et al. Daily sunscreen application and betacarotene supplementation in prevention of basal-cell and squamous-cell carcinomas of the skin: A randomised controlled trial. Lancet 1999, 354, 723–729. [Google Scholar] [CrossRef] [PubMed]
- Lautenschlager, S.; Wulf, H.C.; Pittelkow, M.R. Photoprotection. Lancet 2007, 370, 528–537. [Google Scholar] [CrossRef] [PubMed]
- Tanaka, K.; Hasegawa, J.; Asamitsu, K.; Okamoto, T. Prevention of the Ultraviolet B-Mediated Skin Photoaging by a Nuclear Factor κB Inhibitor, Parthenolide. Experiment 2005, 315, 624–630. [Google Scholar] [CrossRef] [Green Version]
- Rabe, J.H.; Mamelak, A.J.; McElgunn, P.J.; Morison, W.L.; Sauder, D.N. Photoaging: Mechanisms and repair. J. Am. Acad. Dermatol. 2006, 55, 1–19. [Google Scholar] [CrossRef] [PubMed]
- Talwar, H.S.; Griffiths, C.E.; Fisher, G.J.; Hamilton, T.A.; Voorhees, J.J. Reduced Type I and Type III Procollagens in Photodamaged Adult Human Skin. J. Investig. Dermatol. 1995, 105, 285–290. [Google Scholar] [CrossRef] [Green Version]
- Bissett, D.; Hannonand, D.; Orr, T. AN ANIMAL MODEL OF SOLAR-AGED SKIN: HISTOLOGICAL, PHYSICAL, and VISIBLE CHANGES IN UV-IRRADIATED HAIRLESS MOUSE SKIN. Photochem. Photobiol. 1987, 46, 367–378. [Google Scholar] [CrossRef]
- Fisher, G.J.; Datta, S.C.; Talwar, H.S.; Wang, Z.-Q.; Varani, J.; Kang, S.; Voorhees, J.J. Molecular basis of sun-induced premature skin ageing and retinoid antagonism. Nature 1996, 379, 335–339. [Google Scholar] [CrossRef]
- Fisher, J.J.V.G.J.; Voorhees, J.J. Molecular Mechanisms of Photoaging and its Prevention by Retinoic Acid: Ultraviolet Irradiation Induces MAP Kinase Signal Transduction Cascades that Induce Ap-1-Regulated Matrix Metalloproteinases that Degrade Human Skin In Vivo. J. Investig. Dermatol. Symp. Proc. 1998, 3, 61–68. [Google Scholar] [CrossRef] [Green Version]
- Fisher, G.J.; Kang, S.; Varani, J.; Bata-Csorgo, Z.; Wan, Y.; Datta, S.; Voorhees, J.J. Mechanisms of Photoaging and Chronological Skin Aging. Arch. Dermatol. 2002, 138, 1462–1470. [Google Scholar] [CrossRef]
- Pittelkow, M.R.; Coffey, R.J.; Moses, H.L. Keratinocytes Produce and Are Regulated by Transforming Growth Factors. Ann. New York Acad. Sci. 1988, 548, 211–224. [Google Scholar] [CrossRef] [PubMed]
- Li, A.G.; Lu, S.-L.; Han, G.; Hoot, K.E.; Wang, X.-J. Role of TGFβ in skin inflammation and carcinogenesis. Mol. Carcinog. 2006, 45, 389–396. [Google Scholar] [CrossRef]
- Gallagher, C.; Canfield, P.; Greenoak, G.; Reeve, V.E. Characterization and Histogenesis of Tumors in the Hairless Mouse Produced by Low-Dosage Incremental Ultraviolet Radiation. J. Investig. Dermatol. 1984, 83, 169–174. [Google Scholar] [CrossRef] [Green Version]
- Wan, Y.S.; Wang, Z.Q.; Shao, Y.; Voorhees, J.J.; Fisher, G.J. Ultraviolet irradiation activates PI 3-kinase/AKT survival pathway via EGF receptors in human skin in vivo. Int. J. Oncol. 2001, 18, 461–466. [Google Scholar] [CrossRef]
- Rijken, F.; Kiekens, R.; Bruijnzeel, P. Skin-infiltrating neutrophils following exposure to solar-simulated radiation could play an important role in photoageing of human skin. Br. J. Dermatol. 2005, 152, 321–328. [Google Scholar] [CrossRef]
- Baldwin, H.E.; Nighland, M.; Kendall, C.; Mays, D.A.; Grossman, R.; Newburger, J. 40 years of topical tretinoin use in review. J. Drugs Dermatol. 2013, 12, 638–642. [Google Scholar]
- Draelos, Z.D.; Peterson, R.S. A Double-Blind, Comparative Clinical Study of Newly Formulated Retinol Serums vs Tretinoin Cream in Escalating Doses: A Method for Rapid Retinization With Minimized Irritation. J. Drugs Dermatol. 2020, 19, 625–631. [Google Scholar] [CrossRef]
- Leyden, J.J.; Grossman, R.; Nighland, M. Cumulative irritation potential of topical retinoid formulations. J. Drugs Dermatol. 2008, 7, s14-8. [Google Scholar] [PubMed]
- Chaqour, B.; Seité, S.; Coutant, K.; Fourtanier, A.; Borel, J.-P.; Bellon, G. Chronic UVB- and all-trans retinoic-acid-induced qualitative and quantitative changes in hairless mouse skin. J. Photochem. Photobiol. B: Biol. 1995, 28, 125–135. [Google Scholar] [CrossRef] [PubMed]
- Schwartz, E.; Sapadin, A.N.; Kligman, L.H. Ultraviolet B radiation increases steady-state mRNA levels for cytokines and integrins in hairless mouse skin: Modulation by topical tretinoin. Arch. Dermatol. Res. 1998, 290, 137–144. [Google Scholar] [CrossRef]
- Bagatin, E.; Gonçalves, H.D.S.; Sato, M.; Almeida, L.M.C.; Miot, H.A. Comparable efficacy of adapalene 0.3% gel and tretinoin 0.05% cream as treatment for cutaneous photoaging. Eur. J. Dermatol. 2018, 28, 343–350. [Google Scholar] [CrossRef] [PubMed]
- Schwartz, E.; Kligman, L.H. Topical Tretinoin Increases the Tropoelastin and Fibronectin Content of Photoaged Hairless Mouse Skin. J. Investig. Dermatol. 1995, 104, 518–522. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Griffiths, C.; Finkel, L.; Tkanfaglia, M.; Hamilton, T.; Voorhees, J. An in vivo experimental model for effects of topical retinoic acid in human skin. Br. J. Dermatol. 1993, 129, 389–394. [Google Scholar] [CrossRef] [Green Version]
- National Toxicology Program. Photocarcinogenesis study of retinoic acid and retinyl palmitate [CAS Nos. 302-79-4 (All-trans-retinoic acid) and 79-81-2 (All-trans-retinyl palmitate)] in SKH-1 mice (Simulated Solar Light and Topical Application Study). Natl. Toxicol. Program Tech. Rep. Ser. 2012, 568, 1–352. [Google Scholar]
- Macías-Barragán, J.; Sandoval-Rodríguez, A.; Navarro-Partida, J.; Armendáriz-Borunda, J. The multifaceted role of pirfenidone and its novel targets. Fibrogenesis Tissue Repair 2010, 3, 16. [Google Scholar] [CrossRef] [Green Version]
- Tzouvelekis, A.; Wolters, P.J. Pirfenidone in the kaleidoscope: Reflecting mechanisms through different angles. Eur. Respir. J. 2018, 52, 1802046. [Google Scholar] [CrossRef] [Green Version]
- Raghu, G.; Johnson, W.C.; Lockhart, D.; Mageto, Y. Treatment of Idiopathic Pulmonary Fibrosis with a New Antifibrotic Agent, Pirfenidone. Am. J. Respir. Crit. Care Med. 1999, 159, 1061–1069. [Google Scholar] [CrossRef] [Green Version]
- Armendariz-Borunda, J.; Islas-Carbajal, M.C.; Meza-Garcia, E.; Rincon, A.R.; Lucano, S.; Sandoval, A.S.; Salazar, A.; Berumen, J.; Alvarez, A.; Covarrubias, A.; et al. A pilot study in patients with established advanced liver fibrosis using pirfenidone. Gut 2006, 55, 1663–1665. [Google Scholar] [CrossRef] [Green Version]
- Poo, J.L.; Torre, A.; Aguilar-Ramírez, J.R.; Cruz, M.; Mejía-Cuán, L.; Cerda, E.; Velázquez, A.; Patiño, A.; Ramírez-Castillo, C.; Cisneros, L.; et al. Benefits of prolonged-release pirfenidone plus standard of care treatment in patients with advanced liver fibrosis: PROMETEO study. Hepatol. Int. 2020, 14, 817–827. [Google Scholar] [CrossRef]
- Armendariz-Borunda, J.; Lyra-Gonzalez, I.; Medina-Preciado, D.; Gonzalez-García, I.; Martinez-Fong, D.; Miranda, R.A.; Magaña-Castro, R.; Peña-Santoyo, P.; Garcia-Rocha, S.; Bautista, C.A.; et al. A Controlled Clinical Trial With Pirfenidone in the Treatment of Pathological Skin Scarring Caused by Burns in Pediatric Patients. Ann. Plast. Surg. 2012, 68, 22–28. [Google Scholar] [CrossRef] [PubMed]
- Gasca-Lozano, L.E.; Lucano-Landeros, S.; Ruiz-Mercado, H.; Salazar-Montes, A.; Sandoval-Rodriguez, A.; Garcia-Bañuelos, J.; Santos, A.; Davila-Rodriguez, J.R.; Navarro-Partida, J.; Bojórquez-Sepúlveda, H.; et al. Pirfenidone Accelerates Wound Healing in Chronic Diabetic Foot Ulcers: A Randomized, Double-Blind Controlled Trial. J. Diabetes Res. 2017, 2017, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Rodríguez-Castellanos, M.; Tlacuilo-Parra, A.; Sánchez-Enríquez, S.; Vélez-Gómez, E.; Guevara-Gutiérrez, E. Pirfenidone gel in patients with localized scleroderma: A phase II study. Thromb. Haemost. 2014, 16, 1–8. [Google Scholar] [CrossRef] [Green Version]
- La Mora, D.A.L.-D.; Sanchez-Roque, C.; Montoya-Buelna, M.; Sanchez-Enriquez, S.; Lucano-Landeros, S.; Macias-Barragan, J.; Armendariz-Borunda, J. Role and New Insights of Pirfenidone in Fibrotic Diseases. Int. J. Med Sci. 2015, 12, 840–847. [Google Scholar] [CrossRef] [Green Version]
- Rogers, H.W.; Weinstock, M.A.; Feldman, S.R.; Coldiron, B.M. Incidence Estimate of Nonmelanoma Skin Cancer (Keratinocyte Carcinomas) in the US Population, 2012. JAMA Dermatol. 2015, 151, 1081–1086. [Google Scholar] [CrossRef]
- Bhawan, J. Short- and long-term histologic effects of topical tretinoin on photodamaged skin. Int. J. Dermatol. 1998, 37, 286–292. [Google Scholar] [CrossRef]
- Schaefer, C.J.; Ruhrmund, D.W.; Pan, L.; Seiwert, S.D.; Kossen, K. Antifibrotic activities of pirfenidone in animal models. Eur. Respir. Rev. 2011, 20, 85–97. [Google Scholar] [CrossRef] [Green Version]
- Kligman, L.H.; Duo, C.H.; Kligman, A.M. Topical Retinoic Acid Enhances the Repair of Ultraviolet Damaged Dermal Connective Tissue. Connect. Tissue Res. 1984, 12, 139–150. [Google Scholar] [CrossRef]
- Pillai, S.; Oresajo, C.; Hayward, J. Ultraviolet radiation and skin aging: Roles of reactive oxygen species, inflammation and protease activation, and strategies for prevention of inflammation-induced matrix degradation - a review. Int. J. Cosmet. Sci. 2005, 27, 17–34. [Google Scholar] [CrossRef] [PubMed]
- Kaarsen, L.L.; Poulsen, T.D.; de Olivarius, F.F.; Wulf, H.C. Mast cells and elastosis in ultraviolet-irradiated hairless mice. Photodermatol. Photoimmunol. Photomed. 1995, 11, 1–5. [Google Scholar] [CrossRef] [PubMed]
- Schwartz, E.; Cruickshank, F.A.; Mezick, J.A.; Kligman, L.H. Topical All-Trans Retinoic Acid Stimulates Collagen Synthesis In Vivo. J. Investig. Dermatol. 1990, 96, 975–978. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Callaghan, T.M.; Wilhelm, K.-P. A review of ageing and an examination of clinical methods in the assessment of ageing skin. Part 2: Clinical perspectives and clinical methods in the evaluation of ageing skin. Int. J. Cosmet. Sci. 2008, 30, 323–332. [Google Scholar] [CrossRef]
- Varani, J.; Spearman, D.; Perone, P.; Fligiel, S.E.; Datta, S.C.; Wang, Z.Q.; Shao, Y.; Kang, S.; Fisher, G.J.; Voorhees, J.J. Inhibition of Type I Procollagen Synthesis by Damaged Collagen in Photoaged Skin and by Collagenase-Degraded Collagen in Vitro. Am. J. Pathol. 2001, 158, 931–942. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dillon, J.; Gaillard, E.R.; Bilski, P.; Chignell, C.F.; Reszka, K.J. The Photochemistry of the Retinoids as Studied by Steady-State and Pulsed Methods. Photochem. Photobiol. 1996, 63, 680–685. [Google Scholar] [CrossRef] [PubMed]
- Salazar-Montes, A.; Ruiz-Corro, L.; Sandoval-Rodriguez, A.; Lopez-Reyes, A.; Armendariz-Borunda, J. Increased DNA binding activity of NF-kB, STAT-3, SMAD3 and AP-1 in acutely damaged liver. World J. Gastroenterol. 2006, 12, 5995–6001. [Google Scholar] [CrossRef]
- Essers, J.; Theil, A.F.; Baldeyron, C.; van Cappellen, W.A.; Houtsmuller, A.B.; Kanaar, R.; Vermeulen, W. Nuclear Dynamics of PCNA in DNA Replication and Repair. Mol. Cell. Biol. 2005, 25, 9350–9359. [Google Scholar] [CrossRef] [Green Version]
- Moore, J.O.; Wang, Y.; Stebbins, W.G.; Gao, D.; Zhou, X.; Phelps, R.; Lebwohl, M.; Wei, H. Photoprotective effect of isoflavone genistein on ultraviolet B-induced pyrimidine dimer formation and PCNA expression in human reconstituted skin and its implications in dermatology and prevention of cutaneous carcinogenesis. Carcinog. 2006, 27, 1627–1635. [Google Scholar] [CrossRef]
- Moore, J.O.; Palep, S.R.; Salado, R.N.; Gao, D.; Wang, Y.; Phelps, R.G.; Phelps, R.G.; Lebwohl, M.G.; Wei, H. Effects of ultraviolet B exposure on the expression of prolif-erating cell nuclear antigen in murine skin. Photochem Photobiol. 2004, 80, 587–595. [Google Scholar] [CrossRef]
- Weinstock, M.A.; Bingham, S.F.; DiGiovanna, J.J.; Rizzo, A.E.; Marcolivio, K.; Hall, R.; Eilers, D.; Naylor, M.; Kirsner, R.; Kalivas, J.; et al. Tretinoin and the Prevention of Keratinocyte Carcinoma (Basal and Squamous Cell Carcinoma of the Skin): A Veterans Affairs Randomized Chemoprevention Trial. J. Investig. Dermatol. 2012, 132, 1583–1590. [Google Scholar] [CrossRef] [Green Version]
- Chen, K.; Craig, J.; Shumack, S. Oral retinoids for the prevention of skin cancers in solid organ transplant recipients: A systematic review of randomized controlled trials. Br. J. Dermatol. 2005, 152, 518–523. [Google Scholar] [CrossRef]
- Bhawan, J.; Olsen, E.; Lufrano, L.; Thorne, E.; Schwab, B.; Gilchrest, B. Histologic evaluation of the long term effects of tretinoin on photodamaged skin. J. Dermatol. Sci. 1996, 11, 177–182. [Google Scholar] [CrossRef] [PubMed]
- Chomczynski, P.; Sacchi, N. The single-step method of RNA isolation by acid guanidinium thiocyanate–phenol–chloroform extraction: Twenty-something years on. Nat. Protoc. 2006, 1, 581–585. [Google Scholar] [CrossRef] [PubMed]
Parameter | Grade (points) |
---|---|
Epidermal changes | |
Epidermal thickness * | µm |
Morphology of corneous layer * | (a) Parakeratosis (b) Hyperkeratosis |
Atypia of keratinocytes | (0) Absent (1) Mild (2) Moderate (3) Marked |
Spongiosis | (0) Absent (1) Mild (2) Marked |
Inflammatory changes | |
Severity of inflammatory infiltrate | (0) Absent (1) Mild (2) Moderate (3) Marked |
Site of inflammatory infiltrate * | (a) Perianexial (b) Perivascular (c) Diffuse (d) Mixed |
Type of inflammatory infiltrate * | (a) Acute (b) Chronic (c) Mixed |
Granulomes | (0) Absent (1) Present |
Dermal changes | |
Collagen fibers | Appearance (0) Normal (1) Increased (2) Compact and increased Distribution (0) Normal (1) Organized |
Elastic fibers | Appearance (0) Normal (1) Mild (2) Moderate (3) Marked Elastic fibers free zone (EFFZ) (0) Absent (1) Present |
Mast cells | Number for high power field (0) 0–13 cells (1) 14–26 cells (2) 27–39 cells (3) > 40 cells |
Grade of Photodamage | Points |
---|---|
Mild | 0–5 |
Moderate | 6–10 |
Severe | 11–15 |
Very severe | >15 |
Mouse Probe | Assay ID |
---|---|
Il1b | Mm00434228_m1 |
Il6 | Mm00446190_m1 |
Tnf | Mm00443258_m1 |
Nfkb1 | Mm00476361_m1 |
Col1a1 | Mm00801666_g1 |
Col3a1 | Mm01254476_m1 |
Tgfb1 | Mm01178820_m1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Martinez-Alvarado, Y.; Amezcua-Galvez, E.; Davila-Rodriguez, J.; Sandoval-Rodriguez, A.; Galicia-Moreno, M.; Almeida-López, M.; Lucano-Landeros, S.; Santos, A.; Monroy-Ramirez, H.C.; Armendariz-Borunda, J. Pirfenidone Protects from UVB-Induced Photodamage in Hairless Mice. Molecules 2023, 28, 2929. https://doi.org/10.3390/molecules28072929
Martinez-Alvarado Y, Amezcua-Galvez E, Davila-Rodriguez J, Sandoval-Rodriguez A, Galicia-Moreno M, Almeida-López M, Lucano-Landeros S, Santos A, Monroy-Ramirez HC, Armendariz-Borunda J. Pirfenidone Protects from UVB-Induced Photodamage in Hairless Mice. Molecules. 2023; 28(7):2929. https://doi.org/10.3390/molecules28072929
Chicago/Turabian StyleMartinez-Alvarado, Yocasta, Eduardo Amezcua-Galvez, Judith Davila-Rodriguez, Ana Sandoval-Rodriguez, Marina Galicia-Moreno, Mónica Almeida-López, Silvia Lucano-Landeros, Arturo Santos, Hugo Christian Monroy-Ramirez, and Juan Armendariz-Borunda. 2023. "Pirfenidone Protects from UVB-Induced Photodamage in Hairless Mice" Molecules 28, no. 7: 2929. https://doi.org/10.3390/molecules28072929
APA StyleMartinez-Alvarado, Y., Amezcua-Galvez, E., Davila-Rodriguez, J., Sandoval-Rodriguez, A., Galicia-Moreno, M., Almeida-López, M., Lucano-Landeros, S., Santos, A., Monroy-Ramirez, H. C., & Armendariz-Borunda, J. (2023). Pirfenidone Protects from UVB-Induced Photodamage in Hairless Mice. Molecules, 28(7), 2929. https://doi.org/10.3390/molecules28072929