Cannabis Extraction Technologies: Impact of Research and Value Addition in Latin America
Abstract
:1. Introduction
2. Data Collection
3. Cannabis Extract: Varieties and Phytochemical Composition
3.1. Cannabis Phytochemical Composition
3.1.1. Cannabinoids
3.1.2. Terpenes
3.1.3. Phenolic Compounds
4. Current Status of Cannabis Extraction Techniques
4.1. Current Conventional and Emerging Technologies for Cannabinoid Extraction Processing
4.1.1. Butane Hash Oil Extraction (BHO)
4.1.2. Soxhlet Extraction (SE)
4.1.3. Cold Press Extraction (CPE)
4.1.4. Supercritical CO2 Extraction (SC-CO2)
4.1.5. Microwave-Assisted Extraction (MAE)
4.1.6. Ultrasound-Assisted Extraction (UAE)
4.1.7. Pressurized Liquid Extraction (PLE, ASE, HSPE)
4.1.8. Deep Eutectic Solvent Extraction (DESs)
4.1.9. Emerging Extraction Technologies
4.2. Purification Step
5. Current Research on Extraction Processing in Latin America
Country | Biomass Form | Target Compound | Extraction Technology | Conditions | References |
---|---|---|---|---|---|
Brazil | Seeds | Fatty acids Tocopherols β−Carotene | Pressurized n-propane | Temperature: 40, 50, and 60 °C Pressure: 6, 8, and 10 MPa | [115] |
General biomass: forensic samples | THC/CBD | Solvent extraction: Dynamic maceration methanol, and diethyl ether | Heating | [116] | |
Hybrid flowers (2 varieties) | Cannabinoids | Green solvent extraction: supercritical carbon dioxide (SC-CO2) | Temperature: 50, 60, 70 60 °C Pressure: 200, 300 bar Co-solvent: 0, 10% EtOH | [50] | |
Standard | CBD | Supercritical carbon dioxide (SC-CO2) | Temperature: 315, 326, 334 K Pressure: 11.3–19.4 MPa | [117] | |
Colombia | Cannabis with fully ripe inflorescence | THC | Supercritical fluid extraction (SFE) using CO2–ethanol | Pressure: 15–33 MPa Temperature: 40–80 °C Co-solvent: (0–5%) EtOH | [118] |
General biomass (flowers, leaves, stems, and other parts) | Cannabinoids (CBD, CBDA, CBC, CBG, THC) | Soxhlet extraction compared to semi-continuous lixiviation process | Soxhlet extraction: 2 h, solvent/biomass ratio of 6:1 Single-stage extractions: ethanol (40 g and 2 g of biomass) Temperature: 40 and 19 °C | [104] | |
Stems and leaves | Phenolic-rich extracts | Ethanol solvent extraction | EtOH 96% | [105] | |
Uruguay | Female inflorescences | THC/CBD Cannabinoids | Solvent extraction (short maceration) and supercritical fluid extraction (SC-CO2) | Temperature: 60, 70 °C Pressure: 200, 300 bar Co-solvent: 0, 10% EtOH | [106] |
Flowers | CBD/THC | Green solvent extraction: supercritical carbon dioxide (SC-CO2) | Temperature: 50 and 70 °C Pressure: 22 and 40 MPa | [69] | |
Argentina | Cannabis sativa extracts | Terpenoids, CBD/THC | Soxhlet and maceration extraction | Temperature: 40 and 70 °C to dryness under reduced pressure | [119] |
Cannabis sativa extracts | THCA, THC | Supercritical carbon dioxide (SC-CO2) | Pressure: 17, 24, and 34 MPa Temperature: 328 K | [41] | |
Mexico | Reviews | [107,109] |
6. Future of Commercialization and Perspective on the Value-Added Chain in Latin America
7. Conclusions and Future Perspectives
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
References
- Hurgobin, B.; Tamiru-Oli, M.; Welling, M.T.; Doblin, M.S.; Bacic, A.; Whelan, J.; Lewsey, M.G. Recent Advances in Cannabis Sativa Genomics Research. New Phytol. 2021, 230, 73–89. [Google Scholar] [CrossRef] [PubMed]
- Micalizzi, G.; Vento, F.; Alibrando, F.; Donnarumma, D.; Dugo, P.; Mondello, L. Cannabis sativa L.: A Comprehensive Review on the Analytical Methodologies for Cannabinoids and Terpenes Characterization. J. Chromatogr. A 2021, 1637, 461864. [Google Scholar] [CrossRef]
- Lumír, L.; Ondřej, O.; Hanuš, H.; Meyer, S.M.; Muñoz, E.; Muñoz, M.; Taglialatela-Scafati, O.; Appendino, G. Phytocannabinoids: A Unified Critical Inventory. Nat. Prod. Rep. 2016, 33, 1347–1448. [Google Scholar] [CrossRef] [Green Version]
- Wu, J. Cannabis, Cannabinoid Receptors, and Endocannabinoid System: Yesterday, Today, and Tomorrow. Acta Pharmacol. Sin. 2019, 40, 297–299. [Google Scholar] [CrossRef] [PubMed]
- Kis, B.; Ifrim, F.C.; Buda, V.; Avram, S.; Pavel, I.Z.; Antal, D.; Paunescu, V.; Dehelean, C.A.; Ardelean, F.; Diaconeasa, Z.; et al. Cannabidiol—From Plant to Human Body: A Promising Bioactive Molecule with Multi-Target Effects in Cancer. Int. J. Mol. Sci. 2019, 20, 5905. [Google Scholar] [CrossRef] [Green Version]
- FDA and Cannabis: Research and Drug Approval Process | FDA. Available online: https://www.fda.gov/news-events/public-health-focus/fda-and-cannabis-research-and-drug-approval-process (accessed on 15 March 2021).
- PDQ Integrative. Alternative, and Complementary Therapies Editorial Board. Cannabis and Cannabinoids (PDQ®): Health Professional Version. In Cancer Information Summaries; National Cancer Institute: Frederick, MD, USA, 2002. [Google Scholar]
- Elsaid, S.; Kloiber, S.; le Foll, B. Effects of Cannabidiol (CBD) in Neuropsychiatric Disorders: A Review of Pre-Clinical and Clinical Findings. Prog. Mol. Biol. Transl. Sci. 2019, 167, 25–75. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Liu, H.Y.; Li, S.H.; Ma, W.; Wu, D.T.; Li, H.B.; Xiao, A.P.; Liu, L.L.; Zhu, F.; Gan, R.Y. Cannabis sativa Bioactive Compounds and Their Extraction, Separation, Purification, and Identification Technologies: An Updated Review. TrAC Trends Anal. Chem. 2022, 149, 116554. [Google Scholar] [CrossRef]
- Chen, C.; Pan, Z. Cannabidiol and Terpenes from Hemp–Ingredients for Future Foods and Processing Technologies. J. Future Foods 2021, 1, 113–127. [Google Scholar] [CrossRef]
- Understanding the Cannabis Laws in Latin America | Sounds and Colours. Available online: https://soundsandcolours.com/subjects/travel/understanding-the-cannabis-laws-in-latin-america-64296/ (accessed on 30 January 2023).
- Cannabis Policy: Status and Recent Developments. Available online: https://www.emcdda.europa.eu/publications/topic-overviews/cannabis-policy/html_en (accessed on 30 January 2023).
- Global Cannabis Report. 2019 Industry Outlook. Available online: https://ml.globenewswire.com/Resource/Download/b3594bc2-048e-4a1c-98bf-469320daa663 (accessed on 8 March 2023).
- Henry, P.; Khatodia, S.; Kapoor, K.; Gonzales, B.; Middleton, A.; Hong, K.; Hilyard, A.; Johnson, S.; Allen, D.; Chester, Z.; et al. A Single Nucleotide Polymorphism Assay Sheds Light on the Extent and Distribution of Genetic Diversity, Population Structure and Functional Basis of Key Traits in Cultivated North American Cannabis. J. Cannabis Res. 2020, 2, 26. [Google Scholar] [CrossRef]
- Rupasinghe, H.P.V.; Davis, A.; Kumar, S.K.; Murray, B.; Zheljazkov, V.D. Industrial Hemp (Cannabis sativa Subsp. Sativa) as an Emerging Source for Value-Added Functional Food Ingredients and Nutraceuticals. Molecules 2020, 25, 4078. [Google Scholar] [CrossRef]
- Andre, C.M.; Hausman, J.-F.; Guerriero, G. Cannabis Sativa: The Plant of the Thousand and One Molecules. Front. Plant Sci. 2016, 7, 19. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kleinhenz, M.D.; Magnin, G.; Lin, Z.; Griffin, J.; Kleinhenz, K.E.; Montgomery, S.; Curtis, A.; Martin, M.; Coetzee, J.F. Plasma Concentrations of Eleven Cannabinoids in Cattle Following Oral Administration of Industrial Hemp (Cannabis sativa). Sci. Rep. 2020, 10, 12753. [Google Scholar] [CrossRef] [PubMed]
- Khan, B.A.; Wang, J.; Warner, P.; Wang, H. Antibacterial Properties of Hemp Hurd Powder against E. coli. J. Appl. Polym. Sci. 2015, 132, 1–6. [Google Scholar] [CrossRef]
- Turner, C.E.; Elsohly, M.A.; Boeren, E.G. Constituents of Cannabis sativa L. XVII. A Review of the Natural Constituents. J. Nat. Prod. 1980, 43, 169–234. [Google Scholar] [CrossRef]
- ElSohly, M.A.; Slade, D. Chemical Constituents of Marijuana: The Complex Mixture of Natural Cannabinoids. Life Sci. 2005, 78, 539–548. [Google Scholar] [CrossRef] [PubMed]
- Chandra, S.; Lata, H.; Khan, I.A.; ElSohly, M.A. Cannabis sativa L.: Botany and Horticulture. In Cannabis sativa L.-Botany and Biotechnology; Chandra, S., Lata, H., ElSohly, M.A., Eds.; Springer International Publishing: Cham, Switzerland, 2017; pp. 79–100. [Google Scholar] [CrossRef]
- Tanney, C.A.S.; Backer, R.; Geitmann, A.; Smith, D.L. Cannabis Glandular Trichomes: A Cellular Metabolite Factory. Front. Plant Sci. 2021, 12, 721986. [Google Scholar] [CrossRef] [PubMed]
- Desaulniers Brousseau, V.; Wu, B.-S.; MacPherson, S.; Morello, V.; Lefsrud, M. Cannabinoids and Terpenes: How Production of Photo-Protectants Can Be Manipulated to Enhance Cannabis sativa L. Phytochemistry. Front. Plant Sci. 2021, 12, 1035. [Google Scholar] [CrossRef]
- Livingston, S.J.; Quilichini, T.D.; Booth, J.K.; Wong, D.C.J.; Rensing, K.H.; Laflamme-Yonkman, J.; Castellarin, S.D.; Bohlmann, J.; Page, J.E.; Samuels, A.L. Cannabis Glandular Trichomes Alter Morphology and Metabolite Content during Flower Maturation. Plant J. 2020, 101, 37–56. [Google Scholar] [CrossRef] [PubMed]
- Pate, D. Chemical Ecology of Cannabis. J. Internat. Hemp Assoc. 1994, 22, 32–37. [Google Scholar]
- Hilderbrand, R.L. Hemp & Cannabidiol: What Is a Medicine? Mo. Med. 2018, 115, 306–309. [Google Scholar]
- Brenneisen, R. Chemistry and Analysis of Phytocannabinoids and Other Cannabis Constituents. In Marijuana and the Cannabinoids; Humana Press: Totowa, NJ, USA, 2007; pp. 17–49. [Google Scholar] [CrossRef]
- Sawtelle, L.; Holle, L.M. Use of Cannabis and Cannabinoids in Patients With Cancer. Ann. Pharmacother. 2021, 55, 870–890. [Google Scholar] [CrossRef]
- Booth, J.K.; Bohlmann, J. Terpenes in Cannabis sativa–From Plant Genome to Humans. Plant Sci. 2019, 284, 67–72. [Google Scholar] [CrossRef]
- Hazekamp, A.; Fischedick, J.T. Cannabis-From Cultivar to Chemovar. Drug Test. Anal. 2012, 4, 660–667. [Google Scholar] [CrossRef]
- Artz, I.C.; Hollman, P.C. Polyphenols and Disease Risk in Epidemiologic Studies. Am. J. Clin. Nutr. 2005, 81, 317S2013325S. [Google Scholar] [CrossRef] [Green Version]
- Radwan, M.M.; Chandra, S.; Gul, S.; ElSohly, M.A. Cannabinoids, Phenolics, Terpenes and Alkaloids of Cannabis. Molecules 2021, 26, 2774. [Google Scholar] [CrossRef]
- Flores-Sanchez, I.J.; Verpoorte, R. Secondary Metabolism in Cannabis. Phytochem. Rev. 2008, 7, 615–639. [Google Scholar] [CrossRef]
- Radwan, M.; Ross, S.; Slade, D.; Ahmed, S.; Zulfiqar, F.; ElSohly, M. Isolation and Characterization of New Cannabis Constituents from a High Potency Variety. Planta Med. 2008, 74, 267–272. [Google Scholar] [CrossRef] [Green Version]
- Bautista, J.L.; Yu, S.; Tian, L. Flavonoids in Cannabis Sativa: Biosynthesis, Bioactivities, and Biotechnology. ACS Omega 2021, 6, 5119–5123. [Google Scholar] [CrossRef] [PubMed]
- di Giacomo, V.; Recinella, L.; Chiavaroli, A.; Orlando, G.; Cataldi, A.; Rapino, M.; Di Valerio, V.; Politi, M.; Antolini, M.D.; Acquaviva, A.; et al. Metabolomic Profile and Antioxidant/Anti-Inflammatory Effects of Industrial Hemp Water Extract in Fibroblasts, Keratinocytes and Isolated Mouse Skin Specimens. Antioxidants 2021, 10, 44. [Google Scholar] [CrossRef] [PubMed]
- Pollastro, F.; Minassi, A.; Fresu, L.G. Cannabis Phenolics and Their Bioactivities. Curr. Med. Chem. 2018, 25, 1160–1185. [Google Scholar] [CrossRef] [PubMed]
- Al Ubeed, H.M.S.; Bhuyan, D.J.; Alsherbiny, M.A.; Basu, A.; Vuong, Q.V. A Comprehensive Review on the Techniques for Extraction of Bioactive Compounds from Medicinal Cannabis. Molecules 2022, 27, 604. [Google Scholar] [CrossRef] [PubMed]
- Giroud, C.; de Cesare, M.; Berthet, A.; Varlet, V.; Concha-Lozano, N.; Favrat, B. E-Cigarettes: A Review of New Trends in Cannabis Use. Int. J. Environ. Res. Public Health 2015, 12, 9988–10008. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Flockhart, I.; Gary, W.; Dring, S.; Archer, L. Method of Preparing Cannabidiol from Plant Material. U.S. Patent US20060167283A1, 23 September 2003. [Google Scholar]
- Rovetto, L.J.; Aieta, N.V. Supercritical Carbon Dioxide Extraction of Cannabinoids from Cannabis sativa L. J. Supercrit. Fluids 2017, 129, 16–27. [Google Scholar] [CrossRef]
- Drinić, Z.; Vladić, J.; Koren, A.; Zeremski, T.; Stojanov, N.; Kiprovski, B.; Vidović, S. Microwave-assisted Extraction of Cannabinoids and Antioxidants from Cannabis sativa Aerial Parts and Process Modeling. J. Chem. Technol. Biotechnol. 2020, 95, 831–839. [Google Scholar] [CrossRef]
- Karğılı, U.; Aytaç, E. Supercritical Fluid Extraction of Cannabinoids (THC and CBD) from Four Different Strains of Cannabis Grown in Different Regions. J. Supercrit. Fluids 2021, 179, 105410. [Google Scholar] [CrossRef]
- Qamar, S.; Torres, Y.J.M.; Parekh, H.S.; Robert Falconer, J. Extraction of Medicinal Cannabinoids through Supercritical Carbon Dioxide Technologies: A Review. J. Chromatogr. B 2021, 1167, 122581. [Google Scholar] [CrossRef]
- Kornpointer, C.; Martinez, A.S.; Schnürch, M.; Halbwirth, H.; Schröder, K. Combined Ionic Liquid and Supercritical Carbon Dioxide Based Dynamic Extraction of Six Cannabinoids from Cannabis sativa L. Green Chem. 2021, 23, 10079–10089. [Google Scholar] [CrossRef] [PubMed]
- Serna-Loaiza, S.; Adamcyk, J.; Beisl, S.; Kornpointner, C.; Halbwirth, H.; Friedl, A. Pressurized Liquid Extraction of Cannabinoids from Hemp Processing Residues: Evaluation of the Influencing Variables. Processes 2020, 8, 1334. [Google Scholar] [CrossRef]
- Agarwal, C.; Máthé, K.; Hofmann, T.; Csóka, L. Ultrasound-Assisted Extraction of Cannabinoids from Cannabis sativa L. Optimized by Response Surface Methodology. J. Food Sci. 2018, 83, 700–710. [Google Scholar] [CrossRef]
- Leiman, K.; Colomo, L.; Armenta, S.; de la Guardia, M.; Esteve-Turrillas, F.A. Fast Extraction of Cannabinoids in Marijuana Samples by Using Hard-Cap Espresso Machines. Talanta 2018, 190, 321–326. [Google Scholar] [CrossRef]
- Marzorati, S.; Friscione, D.; Picchi, E.; Verotta, L. Cannabidiol from Inflorescences of Cannabis sativa L.: Green Extraction and Purification Processes. Ind. Crops Prod. 2020, 155, 112816. [Google Scholar] [CrossRef]
- Grijó, D.R.; Vieitez Osorio, I.A.; Cardozo-Filho, L. Supercritical Extraction Strategies Using CO2 and Ethanol to Obtain Cannabinoid Compounds from Cannabis Hybrid Flowers. J. CO2 Util. 2018, 28, 174–180. [Google Scholar] [CrossRef]
- Cai, C.; Yu, W.; Wang, C.; Liu, L.; Li, F.; Tan, Z. Green Extraction of Cannabidiol from Industrial Hemp (Cannabis sativa L.) Using Deep Eutectic Solvents Coupled with Further Enrichment and Recovery by Macroporous Resin. J. Mol. Liq. 2019, 287, 110957. [Google Scholar] [CrossRef]
- Dach, J.; Moore, E.A.; Kander, J. Cannabis Extracts in Medicine: The Promise of Benefits in Seizure Disorders, Cancer, and Other Conditions, 1st ed.; McFarland & Company, Inc.: Jefferson, NC, USA, 2015. [Google Scholar]
- Loflin, M.; Earleywine, M. A New Method of Cannabis Ingestion: The Dangers of Dabs? Addict. Behav. 2014, 39, 1430–1433. [Google Scholar] [CrossRef]
- Bell, C.; Slim, J.; Flaten, H.K.; Lindberg, G.; Arek, W.; Monte, A.A. Butane Hash Oil Burns Associated with Marijuana Liberalization in Colorado. J. Med. Toxicol. 2015, 11, 422–425. [Google Scholar] [CrossRef] [Green Version]
- Al-Zouabi, I.; Stogner, J.M.; Miller, B.L.; Lane, E.S. Butane Hash Oil and Dabbing: Insights into Use, Amateur Production Techniques, and Potential Harm Mitigation. Subst. Abuse Rehabil. 2018, 9, 91–101. [Google Scholar] [CrossRef] [Green Version]
- Miller, B.L.; Stogner, J.M.; Miller, J.M. Exploring Butane Hash Oil Use: A Research Note. J. Psychoact. Drugs 2016, 48, 44–49. [Google Scholar] [CrossRef] [PubMed]
- Anderson, R.P.; Zechar, K. Lung Injury from Inhaling Butane Hash Oil Mimics Pneumonia. Respir. Med. Case Rep. 2019, 26, 171–173. [Google Scholar] [CrossRef] [PubMed]
- Luque de Castro, M.D.; Priego-Capote, F. Soxhlet Extraction: Past and Present Panacea. J. Chromatogr. A 2010, 1217, 2383–2389. [Google Scholar] [CrossRef]
- Lewis-Bakker, M.M.; Yang, Y.; Vyawahare, R.; Kotra, L.P. Extractions of Medical Cannabis Cultivars and the Role of Decarboxylation in Optimal Receptor Responses. Cannabis Cannabinoid Res. 2019, 4, 183–194. [Google Scholar] [CrossRef] [Green Version]
- Oomah, B.D.; Busson, M.; Godfrey, D.V.; Drover, J.C.G. Characteristics of Hemp (Cannabis sativa L.) Seed Oil. Food Chem. 2002, 76, 33–43. [Google Scholar] [CrossRef]
- Savoire, R.; Lanoisellé, J.L.; Vorobiev, E. Mechanical Continuous Oil Expression from Oilseeds: A Review. Food Bioproc. Tech. 2013, 6, 1–16. [Google Scholar] [CrossRef]
- Bogaert, L.; Mathieu, H.; Mhemdi, H.; Vorobiev, E. Characterization of Oilseeds Mechanical Expression in an Instrumented Pilot Screw Press. Ind. Crops Prod. 2018, 121, 106–113. [Google Scholar] [CrossRef]
- Reverchon, E.; De Marco, I. Supercritical Fluid Extraction and Fractionation of Natural Matter. J. Supercrit. Fluids 2006, 38, 146–166. [Google Scholar] [CrossRef]
- Moreno, T.; Montanes, F.; Tallon, S.J.; Fenton, T.; King, J.W. Extraction of Cannabinoids from Hemp (Cannabis sativa L.) Using High Pressure Solvents: An Overview of Different Processing Options. J. Supercrit. Fluids 2020, 161, 104850. [Google Scholar] [CrossRef]
- Gregory, L.H. Essential DIY Cannabis Concentrates: Readers Basic Guide to Original Methods for Marijuana Extracts, Oils and Concentrates; Independently Published, Ed.; 2020. Available online: https://oceanofpdf.com/authors/lisa-h-gregory-ph-d/pdf-epub-essential-diy-cannabis-concentrates-readers-basic-guide-to-original-methods-for-marijuana-extracts-oils-and-concentrates-download/ (accessed on 15 March 2021).
- Hedrick, J.L.; Mulcahey, L.J.; Taylor, L.T. Supercritical Fluid Extraction. Mikrochim. Acta 1992, 108, 115–132. [Google Scholar] [CrossRef]
- Aladić, K.; Jarni, K.; Barbir, T.; Vidović, S.; Vladić, J.; Bilić, M.; Jokić, S. Supercritical CO2 Extraction of Hemp (Cannabis sativa L.) Seed Oil. Ind. Crops Prod. 2015, 76, 472–478. [Google Scholar] [CrossRef]
- Benner, J.D.; McGiffin, D.B.; Douglas, L.M.; Delmarva Hemp LLC. Method for Solvent-Free Extraction and Concentration of Full Spectrum of Cannabinoids in a Carrier Oil. U.S. Patent 11,291,699, 5 April 2020. [Google Scholar]
- Ribeiro Grijó, D.; Vieitez Osorio, I.A.; Cardozo-Filho, L. Supercritical Extraction Strategies Using CO2 and Ethanol to Obtain Cannabinoid Compounds from Cannabis Hybrid Flowers. J. CO2 Util. 2019, 30, 241–248. [Google Scholar] [CrossRef]
- Rochfort, S.; Isbel, A.; Ezernieks, V.; Elkins, A.; Vincent, D.; Deseo, M.A.; Spangenberg, G.C. Utilisation of Design of Experiments Approach to Optimise Supercritical Fluid Extraction of Medicinal Cannabis. Sci. Rep. 2020, 10, 9124. [Google Scholar] [CrossRef]
- De Vita, D.; Madia, V.N.; Tudino, V.; Saccoliti, F.; De Leo, A.; Messore, A.; Roscilli, P.; Botto, A.; Pindinello, I.; Santilli, G.; et al. Comparison of Different Methods for the Extraction of Cannabinoids from Cannabis. Nat. Prod. Res. 2020, 34, 2952–2958. [Google Scholar] [CrossRef] [PubMed]
- Letellier, M.; Budzinski, H. Microwave Assisted Extraction of Organic Compounds. Analusis 1999, 27, 259–270. [Google Scholar] [CrossRef]
- Bagade, S.B.; Patil, M. Recent Advances in Microwave Assisted Extraction of Bioactive Compounds from Complex Herbal Samples: A Review. Crit. Rev. Anal. Chem. 2021, 51, 138–149. [Google Scholar] [CrossRef] [PubMed]
- Chan, C.-H.; Yusoff, R.; Ngoh, G.-C.; Kung, F.W.-L. Microwave-Assisted Extractions of Active Ingredients from Plants. J. Chromatogr. A 2011, 1218, 6213–6225. [Google Scholar] [CrossRef]
- Gunjević, V.; Grillo, G.; Carnaroglio, D.; Binello, A.; Barge, A.; Cravotto, G. Selective Recovery of Terpenes, Polyphenols and Cannabinoids from Cannabis sativa L. Inflorescences under Microwaves. Ind. Crops Prod. 2021, 162, 113247. [Google Scholar] [CrossRef]
- Mazzara, E.; Carletti, R.; Petrelli, R.; Mustafa, A.M.; Caprioli, G.; Fiorini, D.; Scortichini, S.; Dall’Acqua, S.; Sut, S.; Nuñez, S.; et al. Green Extraction of Hemp (Cannabis sativa L.) Using Microwave Method for Recovery of Three Valuable Fractions (Essential Oil, Phenolic Compounds and Cannabinoids): A Central Composite Design Optimization Study. J. Sci. Food Agric. 2022, 102, 6220–6235. [Google Scholar] [CrossRef]
- Radoiu, M.; Kaur, H.; Bakowska-Barczak, A.; Splinter, S. Microwave-Assisted Industrial Scale Cannabis Extraction. Technologies 2020, 8, 45. [Google Scholar] [CrossRef]
- Tiwari, B.K. Ultrasound: A Clean, Green Extraction Technology. TrAC Trends Anal. Chem. 2015, 71, 100–109. [Google Scholar] [CrossRef]
- Albero, B.; Tadeo, J.L.; Pérez, R.A. Ultrasound-Assisted Extraction of Organic Contaminants. TrAC Trends Anal. Chem. 2019, 118, 739–750. [Google Scholar] [CrossRef]
- Omar, J.; Olivares, M.; Alzaga, M.; Etxebarria, N. Optimisation and Characterisation of Marihuana Extracts Obtained by Supercritical Fluid Extraction and Focused Ultrasound Extraction and Retention Time Locking GC-MS. J. Sep. Sci. 2013, 36, 1397–1404. [Google Scholar] [CrossRef]
- Rehman, M.U.; Abdullah; Khan, F.; Niaz, K. Introduction to Natural Products Analysis; Elsevier: Amsterdam, The Netherlands, 2020; Volume 1. [Google Scholar] [CrossRef]
- Olejar, K.J.; Hatfield, J.; Arellano, C.J.; Gurau, A.T.; Seifried, D.; Heuvel, B.V.; Kinney, C.A. Thermo-Chemical Conversion of Cannabis Biomass and Extraction by Pressurized Liquid Extraction for the Isolation of Cannabidiol. Ind. Crops Prod. 2021, 170, 113771. [Google Scholar] [CrossRef]
- Béri, J.; Nagy, S.; Kovács, Á.K.; Vági, E.; Székely, E. Pressurized Liquid Extraction of Hemp Residue and Purification of the Extract with Liquid-Liquid Extraction. Period. Polytech. Chem. Eng. 2022, 66, 82–90. [Google Scholar] [CrossRef]
- Křížek, T.; Bursová, M.; Horsley, R.; Kuchař, M.; Tůma, P.; Čabala, R.; Hložek, T. Menthol-Based Hydrophobic Deep Eutectic Solvents: Towards Greener and Efficient Extraction of Phytocannabinoids. J. Clean. Prod. 2018, 193, 391–396. [Google Scholar] [CrossRef]
- Rapinel, V.; Rombaut, N.; Rakotomanomana, N.; Vallageas, A.; Cravotto, G.; Chemat, F. An Original Approach for Lipophilic Natural Products Extraction: Use of Liquefied n-Butane as Alternative Solvent to n-Hexane. LWT-Food Sci. Technol. 2017, 85, 524–533. [Google Scholar] [CrossRef] [Green Version]
- Fiorito, S.; Epifano, F.; Palumbo, L.; Collevecchio, C.; Genovese, S. A Subcritical Butane-Based Extraction of Non-Psychoactive Cannabinoids from Hemp Inflorescences. Ind. Crops Prod. 2022, 183, 114955. [Google Scholar] [CrossRef]
- Haji-Moradkhani, A.; Rezaei, R.; Moghimi, M. Optimization of Pulsed Electric Field-assisted Oil Extraction from Cannabis Seeds. J. Food Process Eng. 2019, 42, e13028. [Google Scholar] [CrossRef]
- Boussetta, N.; Soichi, E.; Lanoisellé, J.-L.; Vorobiev, E. Valorization of Oilseed Residues: Extraction of Polyphenols from Flaxseed Hulls by Pulsed Electric Fields. Ind. Crops Prod. 2014, 52, 347–353. [Google Scholar] [CrossRef]
- Kitrytė, V.; Bagdonaitė, D.; Rimantas Venskutonis, P. Biorefining of Industrial Hemp (Cannabis sativa L.) Threshing Residues into Cannabinoid and Antioxidant Fractions by Supercritical Carbon Dioxide, Pressurized Liquid and Enzyme-Assisted Extractions. Food Chem. 2018, 267, 420–429. [Google Scholar] [CrossRef]
- King, J.W. The Relationship between Cannabis/Hemp Use in Foods and Processing Methodology. Curr. Opin. Food Sci. 2019, 28, 32–40. [Google Scholar] [CrossRef]
- Rutz, A. CPC Distribution Chromatography of Cannabinoids. U.S. Patent 10,568,863B2, 26 February 2016. [Google Scholar]
- Ito, V.M.; Martins, P.F.; Batistella, C.B.; Maciel Filho, R.; Maciel, M.R.W. Natural Compounds Obtained through Centrifugal Molecular Distillation. Appl. Biochem. Biotechnol. 2006, 129–132, 716–726. [Google Scholar] [CrossRef]
- Lim, X.Y.; Tan, T.Y.C.; Rosli, S.H.M.; Saat, M.N.F.; Ali, S.S.; Mohamed, A.F.S. Cannabis sativa Subsp. Sativa’s Pharmacological Properties and Health Effects: A Scoping Review of Current Evidence. PLoS ONE 2021, 16, e0245471. [Google Scholar] [CrossRef] [PubMed]
- Mezza, G.N.; Borgarello, A.V.; Grosso, N.R.; Fernandez, H.; Pramparo, M.C.; Gayol, M.F. Antioxidant Activity of Rosemary Essential Oil Fractions Obtained by Molecular Distillation and Their Effect on Oxidative Stability of Sunflower Oil. Food Chem. 2018, 242, 9–15. [Google Scholar] [CrossRef]
- Lin, S.W.; Yoo, C.K. Short-path Distillation of Palm Olein and Characterization of Products. Eur. J. Lipid Sci. Technol. 2009, 111, 142–147. [Google Scholar] [CrossRef]
- Wang, S.; Gu, Y.; Liu, Q.; Yao, Y.; Guo, Z.; Luo, Z.; Cen, K. Separation of Bio-Oil by Molecular Distillation. Fuel Process. Technol. 2009, 90, 738–745. [Google Scholar] [CrossRef]
- Tovar, L.P.; Pinto, G.M.F.; Wolf-Maciel, M.R.; Batistella, C.B.; Maciel-Filho, R. Short-Path-Distillation Process of Lemongrass Essential Oil: Physicochemical Characterization and Assessment Quality of the Distillate and the Residue Products. Ind. Eng. Chem. Res. 2011, 50, 8185–8194. [Google Scholar] [CrossRef]
- Batistella, C.B.; Maciel, M.R.W. Modeling, Simulation and Analysis of Molecular Distillators: Centrifugal and Falling Film. Comput. Chem. Eng. 1996, 20, S19–S24. [Google Scholar] [CrossRef]
- Cermak, S.C.; Isbell, T.A. Pilot-Plant Distillation of Meadowfoam Fatty Acids. Ind. Crops Prod. 2002, 15, 145–154. [Google Scholar] [CrossRef]
- Hacke, A.C.M.; Lima, D.; de Costa, F.; Deshmukh, K.; Li, N.; Chow, A.M.; Marques, J.A.; Pereira, R.P.; Kerman, K. Probing the Antioxidant Activity of Δ 9 -Tetrahydrocannabinol and Cannabidiol in Cannabis sativa Extracts. Analyst 2019, 144, 4952–4961. [Google Scholar] [CrossRef] [PubMed]
- Blake, A.; Nahtigal, I. The Evolving Landscape of Cannabis Edibles. Curr. Opin. Food Sci. 2019, 28, 25–31. [Google Scholar] [CrossRef]
- Rasera, G.B.; Ohara, A.; de Castro, R.J.S. Innovative and Emerging Applications of Cannabis in Food and Beverage Products: From an Illicit Drug to a Potential Ingredient for Health Promotion. Trends Food Sci. Technol. 2021, 115, 31–41. [Google Scholar] [CrossRef]
- Thomas, B.F.; ElSohly, M.A. Analytical Methods in Formulation Development and Manufacturing. In The Analytical Chemistry of Cannabis; Brian, T.F., Ed.; Elsevier Science & Technology Books: Oxford, UK, 2016; pp. 63–81. [Google Scholar] [CrossRef]
- Buitrago-Suescún, O.Y.; Santaella-Serrano, M.A. Semicontinuous Lixiviation Process for Compound Extraction from Cannabis sativa Grown in Colombia. Ing. Investig. 2021, 42, e91616. [Google Scholar] [CrossRef]
- Vega, G.A.; Dávila, J.A. Use of Non-Psychoactive Residual Biomass from Cannabis sativa L. for Obtaining Phenolic Rich-Extracts with Antioxidant Capacity. Nat. Prod. Res. 2022, 36, 4193–4199. [Google Scholar] [CrossRef]
- Fernández, S.; Carreras, T.; Castro, R.; Perelmuter, K.; Giorgi, V.; Vila, A.; Rosales, A.; Pazos, M.; Moyna, G.; Carrera, I.; et al. A Comparative Study of Supercritical Fluid and Ethanol Extracts of Cannabis Inflorescences: Chemical Profile and Biological Activity. J. Supercrit. Fluids 2021, 179, 105385. [Google Scholar] [CrossRef]
- Flores-Sanchez, I.J.; Ramos-Valdivia, A.C. A Review from Patents Inspired by the Genus Cannabis. Phytochem. Rev. 2017, 16, 639–675. [Google Scholar] [CrossRef]
- Vinasco-Barco, J.A. The Tetrahydroevolution of Cannabis. A Reference to Production, Refining and Current Presentation of Cannabis. Cult. Drog. 2020, 25, 61–89. [Google Scholar] [CrossRef]
- Lustenberger, S.; Boczkaj, G.; Castro-Muñoz, R. Cannabinoids: Challenges, Opportunities and Current Techniques towards Its Extraction and Purification for Edibles. Food Biosci. 2022, 49, 101835. [Google Scholar] [CrossRef]
- Menezes, E.G.O.; de Souza e Silva, A.P.; de Sousa, K.R.P.; de Azevedo, F.; Morais, R.M.; de Carvalho Junior, R.N. Development of an Innovative Strategy Capable of Describing the Large-Scale Extraction of Tucumã-of-Pará Oil (Astrocaryum Vulgare Mart.) Using Supercritical CO2 as Solvent. J. Supercrit. Fluids 2023, 193, 105825. [Google Scholar] [CrossRef]
- Martínez-Padilla, L.P.; Hernández-Rojas, F.S.; Sosa-Herrera, M.G.; Juliano, P. Novel Application of Ultrasound and Microwave-Assisted Methods for Aqueous Extraction of Coconut Oil and Proteins. J. Food Sci. Technol. 2022, 59, 3857–3866. [Google Scholar] [CrossRef] [PubMed]
- Cruz Reina, L.J.; López, G.D.; Durán-Aranguren, D.D.; Quiroga, I.; Carazzone, C.; Sierra, R. Compressed Fluids and Soxhlet Extraction for the Valorization of Compounds from Colombian Cashew (Anacardium occidentale) Nut Shells Aimed at a Cosmetic Application. J. Supercrit. Fluids 2023, 192, 105808. [Google Scholar] [CrossRef]
- Feller, R.; Matos, Â.P.; Mazzutti, S.; Moecke, E.H.S.; Tres, M.V.; Derner, R.B.; Oliveira, J.V.; Junior, A.F. Polyunsaturated Ω-3 and Ω-6 Fatty Acids, Total Carotenoids and Antioxidant Activity of Three Marine Microalgae Extracts Obtained by Supercritical CO2 and Subcritical n-Butane. J. Supercrit. Fluids 2018, 133, 437–443. [Google Scholar] [CrossRef]
- Ampofo, J.; Ngadi, M. Ultrasound-Assisted Processing: Science, Technology and Challenges for the Plant-Based Protein Industry. Ultrason. Sonochem. 2022, 84, 105955. [Google Scholar] [CrossRef]
- Grijó, D.R.; Piva, G.K.; Osorio, I.V.; Cardozo-Filho, L. Hemp (Cannabis sativa L.) Seed Oil Extraction with Pressurized n-Propane and Supercritical Carbon Dioxide. J. Supercrit. Fluids 2019, 143, 268–274. [Google Scholar] [CrossRef]
- Milanez, P.R.; da Silva, F.M.R.; Scussel, R.; de Melo, M.E.; Martins, A.B.; Machado-de-Ávila, R.A.; Barlow, J.W.; Feuser, P.E.; Rigo, F.K.; de Aguiar Amaral, P. Cannabis Extracts and Their Cytotoxic Effects on Human Erythrocytes, Fibroblasts, and Murine Melanoma. Rev. Bras. Farmacogn. 2021, 31, 750–761. [Google Scholar] [CrossRef]
- Ribeiro Grijó, D.; Olivo, J.E.; Curty, O.; Lima, M. Analysis of the Different Solubility Data of Cannabidiol in Supercritical Carbon Dioxide Described in the Literature. Braz. J. Chem. Eng. 2022, 39, 225–234. [Google Scholar] [CrossRef]
- Gallo-Molina, A.C.; Castro-Vargas, H.I.; Garzón-Méndez, W.F.; Martínez Ramírez, J.A.; Rivera Monroy, Z.J.; King, J.W.; Parada-Alfonso, F. Extraction, Isolation and Purification of Tetrahydrocannabinol from the Cannabis sativa L. Plant Using Supercritical Fluid Extraction and Solid Phase Extraction. J. Supercrit. Fluids 2019, 146, 208–216. [Google Scholar] [CrossRef]
- Pegoraro, C.N.; Nutter, D.; Thevenon, M.; Ramirez, C.L. Chemical Profiles of Cannabis sativa Medicinal Oil Using Different Extraction and Concentration Methods. Nat. Prod. Res. 2021, 35, 2249–2252. [Google Scholar] [CrossRef]
- Bridgeman, M.B.; Abazia, D.T. Medicinal Cannabis: History, Pharmacology, And Implications for the Acute Care Setting. Pharm. Ther. 2017, 42, 180–188. [Google Scholar]
- Energias Market Research. Global Medical Marijuana Offering Business Opportunity in. Available online: https://www.globenewswire.com/news-release/2018/03/01/1402007/0/en/Global-Medical-Marijuana-Offering-Business-Opportunity-in-Medical-Industry-and-is-projected-to-Reach-USD-28-07-billion-by-2024-Energias-Market-Research-Pvt-Ltd.html (accessed on 30 November 2021).
- Wood, L. Global Medical Cannabis Market Forecast to 2028-Escalating Government Funding for Spreading Awareness and Exploring Medicinal Benefits of Cannabis-ResearchAndMarkets.com | Business Wire. Available online: https://www.businesswire.com/news/home/20210519005520/en/Global-Medical-Cannabis-Market-Forecast-to-2028---Escalating-Government-Funding-for-Spreading-Awareness-and-Exploring-Medicinal-Benefits-of-Cannabis---ResearchAndMarkets.com (accessed on 15 March 2023).
- Arcview Market Research; BDS Analytics. The Roadmap to a $57 Billion Worldwide Market EXECUTIVE SUMMARY. Available online: https://shop.bdsa.com/wp-content/uploads/2019/06/Roadmap-Exec-Summ.pdf (accessed on 28 November 2021).
- O’Grady, C. Cannabis Research Database Shows How U.S. Funding Focuses on Harms of the Drug. Science 2020, 27. [Google Scholar] [CrossRef]
- Grand View Research. Medical Marijuana Market Size & Share Report, 2030. Available online: https://www.grandviewresearch.com/industry-analysis/medical-marijuana-market (accessed on 15 March 2023).
Classification | Number of Carbons | Name | Part of the Plant Cannabis | Other Plants in Which It Is Found | Pharmacological Effects |
---|---|---|---|---|---|
Monoterpenes | 10 | D-Limonene | Cannabis flowers, roots, and leaves | Citrus | Anticancer, anxiolytic, and immunostimulatory |
β-Myrcene | Humulus lupulus | Anti-inflammatory, analgesic, and anxiolytic | |||
α- and β-Pinene | Acetylcholinesteral inhibitor; helps counteract THC-induced memory deficits | ||||
Terpinolene | |||||
Linalool | Lavandula angustifolia | Analgesic, anxiolytic, anti-inflammatory, and anticonvulsant | |||
Sesquiterpenes | 15 | β-Caryophyllene | Piper nigrum | Anti-inflammatory and gastric cytoprotective | |
α-Humulene | |||||
Triterpenes | 30 | Friedelin | Hemp roots | ||
Epifriedelanol | |||||
β-Amyrin | Hemp fibers | Antibacterial, antifungal, anticancer, and anti-inflammatory | |||
Cycloartenol | Hemp seed oil | ||||
β-Amyrin | |||||
Dammaradienol |
Plant Section | Technology | Equipment | Conditions | Scale | Recovery | References |
---|---|---|---|---|---|---|
Leaves and buds from different strains of Cannabis sativa L. | Supercritical fluid extraction (SFE) with CO2. | Waters Co. Bio-botanical extraction system | Pressure: 34 MPa Temperature: 328 K Co-solvent: ethanol Flow rate: 200 g/min | Pilot plant scale | THC: 69.41% | [41] |
Cannabis sativa L. cv. Helena: leaves, blossoms, small structural parts of the inflorescence, and bracts were dried and ground | Microwave-assisted extraction | Domestic microwave oven (NN-E201W, Panasonic). | Irradiation power: 580 W Extraction conditions: ethanol at a concentration of 47%, time of 10 min, and solid/liquid ratio of 5 | Laboratory | CBD: 1.1504 (mg/mL) THC: 0.0474 (mg/mL) | [42] |
Leaves from different strains of cannabis plants grown in different climatic regions | Supercritical fluid extraction (SFE) | SFE system (Applied Separations Speed SFE-2) equipped with a co-solvent pump (Applied Separation Series 1400) and a compressor (Atlas Copco GX-4FF) | Pressure: 33 MPa Temperature: 40 °C Co-solvent: 2.0 wt% ethanol CO2 supercritical flow: 10 g/min | Laboratory | Papatya strain (90.82% THC, 3.71 CBD) Elnur strain (58.22% THC, 3.29% CBD) Narli strain (7.70% CBD) | [43] |
Flower from Cannabis sativa | Supercritical carbon dioxide (SC-CO2) | Helix unit (Applied Separations) | Pressure: 250 bar Temperature: 47 °C Sc-CO2 density: 818 kg/m3 Co-solvent: ethanol (5% v/w) | Laboratory | CBD: 19.05% w/v THC: 13.73% w/v | [44] |
Industrial hemp from Cannabis sativa L. | Combined ionic supercritical carbon dioxide-based dynamic extraction | scCO2 device (Jasco Corporation, Tokyo, Japan), back-pressure regulator (BP-2080, Jasco Corporation), gas/liquid separator (HC-2086-01, Jasco Corporation) | Pressure: 20 MPa Temperature: 70 °C for 2 h CO2 flow rate: 5 mL/min Static extraction: 30 min Dynamic extraction: 120 min. 15 min at 70 °C pre-treatment of hemp with [C2mim][OAc] and [Ch][OAc], dilution of ionic liquid (IL) with water (1:3) | Laboratory | CBD: 15.4 (mg/g) THC: 0.498 (mg/g) CBG: 0.452 (mg/g) | [45] |
Hemp threshing residues from Cannabis sativa L.: KC Virtus and Finola varieties | Pressurized liquid extraction (PLE) | Büchi Speed Extractor E-196 | Pressure: 50 bar Number of cycles: 1 Temperature: 100 °C Time: 60 min | Laboratory | CBD: 19.8 mg/g (99.3%) | [46] |
Hemp from Cannabis sativa L. | Ultrasound-assisted extraction | Tesla 150 WS ultrasonicator fitted with 18 mm diameter titanium probe at 20 kHz | Solid–liquid ratio: 1:20 Solvent: 20% methanol Time: 15 min Frequency: 20 kHz Power output: 90 W | Laboratory | Not specified | [47] |
Hemp from Cannabis sativa L. | A hard-cap espresso machine | Nespresso Essenza Manual XN2003 Krups | Solid–liquid ratio: 1:500 Solvent: 2-propanol Time: 40 s | Laboratory | Different results: Buds: THC, 16–95 mg/g; CBD, 0.15–0.24 mg/g; CBN, 4.3–21.0 mg/g Leaves and stems: THC, 0.87–7.2 mg/g; CBD, <0.076 mg/g; CBN, 0.9–9.7 mg/g | [48] |
Dried inflorescences from Cannabis sativa L. hemp cultivar | Supercritical carbon dioxide extraction | Pilot unit SFT110XW System (Supercritical Fluid Technologies, Inc., Newark, NJ, USA) | Pressure: 380 bar Vessel temperature: 60 °C Restrictor temperature: 80 °C Solvent: CO2 Process: eight cycles of 10 min (maceration time) in static conditions and 10 min in dynamic conditions. Flow rate: 0.28 SCMH | Pilot plant scale | Extraction yield 13%. CBD 6.21 % w/w of dry mass; CBD 50.2 % w/w of extract | [49] |
Cannabis Hybrid Flowers: “Girl Scout Cookies” and “Durga Mata II” | Supercritical carbon dioxide extraction | CO2 cylinder (Air Liquide Brasil Ltda., São Paulo, Brazil, 95% purity), two syringe pumps (Teledyne Isco, Lincoln, Nebraska, Model 500D), two thermostatic baths (Quimis, Model Q214M2, and Tecnal, ModelTE-184), and one extractor with an internal volume of 170 mL | Pressure: 12.8–24.9 MPa Temperature: 50–70 °C Flow rate: 25 mL/min SCMH | Bench scale unit | Extraction yield 30%. THC 77–88% | [50] |
Industrial hemp Cannabis sativa L. | Ultrasonic-assisted extraction (UAE) with deep eutectic solvents (DESs) | KQ-5200DE ultrasonic cleaner (Kunshan Ultrasound Co., Ltd., Kunshan, China) | Solid–liquid ratio: 1:24 Solvent: 68% Choline chloride L (+)-Diethyl L-tartrate Time: 55 min Temperature: 48 °C | Laboratory | CBD 12.22 mg/g | [51] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Suárez-Jacobo, Á.; Díaz Pacheco, A.; Bonales-Alatorre, E.; Castillo-Herrera, G.A.; García-Fajardo, J.A. Cannabis Extraction Technologies: Impact of Research and Value Addition in Latin America. Molecules 2023, 28, 2895. https://doi.org/10.3390/molecules28072895
Suárez-Jacobo Á, Díaz Pacheco A, Bonales-Alatorre E, Castillo-Herrera GA, García-Fajardo JA. Cannabis Extraction Technologies: Impact of Research and Value Addition in Latin America. Molecules. 2023; 28(7):2895. https://doi.org/10.3390/molecules28072895
Chicago/Turabian StyleSuárez-Jacobo, Ángela, Adrián Díaz Pacheco, Edgar Bonales-Alatorre, Gustavo Adolfo Castillo-Herrera, and Jorge Alberto García-Fajardo. 2023. "Cannabis Extraction Technologies: Impact of Research and Value Addition in Latin America" Molecules 28, no. 7: 2895. https://doi.org/10.3390/molecules28072895
APA StyleSuárez-Jacobo, Á., Díaz Pacheco, A., Bonales-Alatorre, E., Castillo-Herrera, G. A., & García-Fajardo, J. A. (2023). Cannabis Extraction Technologies: Impact of Research and Value Addition in Latin America. Molecules, 28(7), 2895. https://doi.org/10.3390/molecules28072895