Targeted HPTLC Profile, Quantification of Flavonoids and Phenolic Acids, and Antimicrobial Activity of Dodonaea angustifolia (L.f.) Leaves and Flowers
Abstract
:1. Introduction
2. Results
2.1. HPTLC Analysis
2.2. Antimicrobial Activities
3. Discussion
4. Materials and Methods
4.1. Chemicals, Reagents, Materials, and Equipment
4.2. Plant Material Collection and Pre-Treatment
4.3. Ultrasonic-Assisted Extraction (UAE)
4.4. HPTLC Analysis
4.4.1. Preparation of Standard Solutions
4.4.2. Chromatography Plate Layout
4.4.3. Chromatographic Conditions
4.4.4. Calibration Curve for Standards
4.4.5. HPTLC Analysis of Plant Extract
4.4.6. Validation of the Method
4.5. Antimicrobial and Antifungal Activities
4.5.1. Antimicrobial Efficacy Test
4.5.2. Bacterial Strains and Local Strains of Fungal Species
4.5.3. Confirmation of Test Organism
4.5.4. Inoculum Preparation
4.5.5. Antimicrobial Test
4.5.6. Antimicrobial Agar Well Diffusion Assay
4.5.7. Minimum Inhibition Concentration (MIC): Microdilution Method
4.5.8. Preparation of Inoculum
4.5.9. Colony Suspension Method
4.5.10. Viable Counts
4.5.11. Inoculation
4.5.12. Minimum Bactericidal Concentration (MBC) Determination
4.6. Statistical Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Sample Availability
References
- Orwa, C.; Mutua, A.; Kindt, R.; Jamnadass, R.; Anthony, S. Dodonaea angustifolia L. f. In Agroforestree Database: A Tree Reference and Selection Guide Version 4.0; World Agroforestry Centre: Nairobi, Kenya, 2009. [Google Scholar]
- Hedberg, I.; Hedberg, O.; Gebre Egziabher, T.B.; Edwards, S. Flora of Ethiopia and Eritrea. Vol. 3, Pittosporaceae to Araliaceae; Hedberg, I., Kelbessa, E., Edwards, S., Demissew, S., Persson, E., Eds.; The National Herbarium, Biology Department, Science Faculty, Addis Ababa University, Eth: Addis Ababa, Ethiopia, 1998. [Google Scholar]
- Beshah, F.; Hunde, Y.; Getachew, M.; Bachheti, R.K.; Husen, A.; Bachheti, A. Ethnopharmacological, Phytochemistry and Other Potential Applications of Dodonaea Genus: A Comprehensive Review. Curr. Res. Biotechnol. 2020, 2, 103–119. [Google Scholar] [CrossRef]
- Dagne, E. Natural Database for Africa (NDA), Verion 2.0; Online Database: Addis Ababa, Ethiopia, 2011; Available online: http://alnapnetwork.com/NDA.aspx (accessed on 10 January 2023).
- Naidoo, R.; Patel, M.; Gulube, Z.; Fenyvesi, I. Inhibitory Activity of Dodonaea viscosa Var. Angustifolia Extract against Streptococcus Mutans and Its Biofilm. J. Ethnopharmacol. 2012, 144, 171–174. [Google Scholar] [CrossRef] [PubMed]
- Meenu, J.; Sunil, S.; Manoj, K. Evaluation of Antihyperglycemic Activity of Dodonaea viscosa Leaves in Normal and STZ-Diabetic Rats. Int. J. Pharm. Pharm. Sci. 2011, 3, 69–74. [Google Scholar]
- Rani, M.S.; Pippalla, R.S.; Mohan, K. Dodonaea viscosa Linn.: An Overview. J. Pharm. Res. Health Care 2009, 1, 97–112. [Google Scholar]
- Ramaya, R.; Sivasakthi, R.; Senthilkumar, C.; Anudeepa, J. Preliminary Phytochemical and Antifertility Studies on Dodonea Viscose. Asian J. Res. Pharm. Sci. 2011, 1, 77–79. [Google Scholar]
- Yirga, G. Assessment of Indigenous Knowledge of Medicinal Plants in Central Zone of Tigray, Northern Ethiopia. Afr. J. Plant Sci. 2010, 4, 6–11. [Google Scholar]
- Mengiste, B.; Makonnen, E.; Urga, K. In Vivo Antimalarial Activity of Dodonaea angustifolia Seed Extracts against Plasmodium Berghei in Mice Model. Momona Ethiop. J. Sci. 2012, 4, 47–63. [Google Scholar] [CrossRef] [Green Version]
- Pirzada, A.J.; Shaikh, W.; Usmanghani, K.; Mohiuddin, E. Antifungal Activity of Dodonaea viscosa Jacq Extract on Pathogenic Fungi Isolated from Superficial Skin Infection. Pak. J. Pharm. Sci. 2010, 23, 337–340. [Google Scholar]
- Prakash, N.K.U.; Selvi, C.R.; Sasikala, V.; Dhanalakshmi, S.; Prakash, S.B.U. Phytochemistry and Bio-Efficacy of a Weed, Dodonaea viscosa. Int. J. Pharm. Pharm. Sci. 2012, 4, 509–512. [Google Scholar]
- Khurram, M.; Khan, M.A.; Hameed, A.; Abbas, N.; Qayum, A.; Inayat, H. Antibacterial Activities of Dodonaea viscosa Using Contact Bioautography Technique. Molecules 2009, 14, 1332–1341. [Google Scholar] [CrossRef] [Green Version]
- Rajamanickam, V.; Rajasekaran, A.; Anandarajagopal, K.; Sridharan, D.; Selvakumar, K.; Rathinaraj, B.S. Anti-Diarrheal Activity of Dodonaea viscosa Root Extracts. Int. J. Pharma Bio Sci. 2010, 1, 182–185. [Google Scholar]
- Akhtar, M.S.; Ahmed, M.; Gulzar, K.; Adnan, H. Hypoglycemic Activity of Dodonaea viscosa Leaves in Normal and Alloxan-Induced Diabetic Rabbits. Diabetol. Croat. 2011, 40, 71–79. [Google Scholar]
- Veerapur, V.P.; Prabhakar, K.R.; Thippeswamy, B.S.; Bansal, P.; Srinivasan, K.K.; Unnikrishnan, M.K. Antidiabetic Effect of Dodonaea viscosa (L). Lacq. Aerial Parts in High Fructose-Fed Insulin Resistant Rats: A Mechanism Based Study. Indian J. Exp. Biol. 2010, 48, 800–810. [Google Scholar] [PubMed]
- Muthukumran, P.; Hazeena Begumand, V.; Kalaiarasan, P. Anti-Diabetic Activity of Dodonaea viscosa (L) Leaf Extracts. Int. J. PharmTech Res. 2011, 3, 136–139. [Google Scholar]
- Getie, M.; Rietz, R.; Hohne, C.; Huschka, C.; Schmidtke, M.; Abate, A. Evaluation of the Anti-Microbial and Anti-Inflammatory Activities of the Medicinal Plants Dodonaea viscosa, Rumex nervosus and Rumex abyssinicus. Fitoterapia 2003, 74, 139–143. [Google Scholar] [CrossRef]
- Khalil, N.M.; Sperotto, J.S.; Manfron, M.P. Antiinflammatory Activity and Acute Toxicity of Dodonaea viscosa. Fitoterapia 2006, 77, 478–480. [Google Scholar] [CrossRef] [PubMed]
- Teffo, L.S.; Aderogba, M.A.; Eloff, J.N. Antibacterial and Antioxidant Activities of Four Kaempferol Methyl Ethers Isolated from Dodonaea viscosa Jacq. Var. Angustifolia Leaf Extracts. S. Afr. J. Bot. 2010, 76, 25–29. [Google Scholar] [CrossRef] [Green Version]
- Riaz, T.; Abbasi, M.A.; Aziz-Ur-Rehman; Shahzadi, T.; Ajaib, M.; Khan, K.M. Phytochemical Screening, Free Radical Scavenging, Antioxidant Activity and Phenolic Content of Dodonaea viscosa Jacq. J. Serb. Chem. Soc. 2012, 77, 423–435. [Google Scholar] [CrossRef]
- Amabeoku, G.J.; Eagles, P.; Scott, G.; Mayeng, I.; Springfield, E. Analgesic and Antipyretic Effects of Dodonaea angustifolia and Salvia Africana-Lutea. J. Ethnopharmacol. 2001, 75, 117–124. [Google Scholar] [CrossRef]
- Zhang, L.; Liao, H.; Zhu, H.; Yu, M.; Lei, C.; Hou, A. Antiviral Clerodane Diterpenoids from Dodonaea viscosa. Tetrahedron 2016, 72, 8036–8041. [Google Scholar] [CrossRef]
- de Oliveira, S.Q.; de Almeida, M.T.R.; Maraslis, F.; Silva, I.T.; Sincero, T.C.M.; Palermo, J.A.; Cabrera, G.M.; Caro, M.S.B.; Simões, C.M.O.; Schenkel, E.P. Isolation of Three New Ent -Labdane Diterpenes from Dodonaea viscosa Jacquin (Sapindaceae): Preliminary Evaluation of Antiherpes Activity. Phytochem. Lett. 2012, 5, 500–505. [Google Scholar] [CrossRef]
- Ramya, R.; Anudeepa, J. Wound Healing Activity of Dodonea Viscosa Linn Ointment in Rats. Int. J. Res. Pharm. Chem. 2011, 1, 481–483. [Google Scholar]
- Barkatullah; Hussain, F.; Ibrar, M. Allelopathic Potential of Dodonaea viscosa (L.) Jacq. Pak. J. Bot. 2010, 42, 2383–2390. [Google Scholar]
- Rowshan, V.; Farhadi, F.; Najafian, S. The Essential Oil of Dodonaea viscosa Leaves Is Allelopathic to Rosemary (Rosmarinus officinalis L.). Ind. Crop. Prod. 2014, 56, 241–245. [Google Scholar] [CrossRef]
- Melaku, Y. Bioassay Directed Chemical Study of Antimalarial Substances from Clerodendrum myricoides and Dodonaea angustifolia and Comparative Chemical Studies of Moringa stenopetala and Moringa oleifera; Addis Ababa Univerisity: Ababa, Ethiopia, 2015. [Google Scholar]
- Al-jobori, K.M.M.; Ali, S.A. Effect of Dodonaea viscosa Jacq. Residues on Growth and Yield of Mungbean (Vigna mungo L. Hepper). Afr. J. Biotechnol. 2014, 13, 2407–2413. [Google Scholar] [CrossRef] [Green Version]
- Al-Asmari, A.K.; Alotaibi, K.E.; Al-Omani, S.; Athar, M.T. An Updated Phyto-Pharmacological Review on Medicinal Plant of Saudi Arabia- Dodonaea Viscoa Linn. Am. J. Res. Commun. 2013, 1, 519–531. [Google Scholar]
- Khokhlova, K.; Vyshnevska, L.; Zdoryk, O.; Filatova, O. Application of Approach for Development of Hptlc Identification and Quantification Methods for Determination of Phenolic Compounds and Terpenoids of Several Thymus l. Species. Sci. Pharm. Sci. 2021, 32, 29–36. [Google Scholar] [CrossRef]
- Patel, N.G.; Patel, K.G.; Patel, K.V.; Gandhi, T.R. Validated HPTLC Method for Quantification of Luteolin and Apigenin in Premna Mucronata Roxb., Verbenaceae. Adv. Pharmacol. Sci. 2015, 2015, 682365. [Google Scholar] [CrossRef] [Green Version]
- Saxena, M.; Saxena, J.; Pradhan, A. Falvonoids and Phenolic Acids as Antioxidants in Plants and Human Health. Int. J. Pharm. Sci. Rev. Res. 2012, 16, 130–134. [Google Scholar]
- Tessema, F.B.; Gonfa, Y.H.; Asfaw, T.B.; Tadesse, M.G.; Bachheti, R.K. Antioxidant Activity of Flavonoids and Phenolic Acids from Dodonaea angustifolia Flower: HPLC Profile and PASS Prediction. 2023. preprint. [CrossRef]
- Kaurinovic, B.; Vastag, D. Flavonoids and Phenolic Acids as Potential Natural Antioxidants. In Antioxidants; IntechOpen: London, UK, 2019. [Google Scholar]
- Kumar, S.; Pandey, A. Chemistry and Biological Activities of Flavonoids: An Overview. Sci. World J. 2013, 2013, 162750. [Google Scholar] [CrossRef] [Green Version]
- Boonmuen, N.; Gong, P.; Ali, Z.; Chittiboyina, A.G.; Doerge, D.R.; Helferich, W.G.; Carlson, K.E.; Piyachaturawat, P.; Katzenellenbogen, J.A.; Benita, S. Licorice Root Components in Dietary Supplements Are Selective Estrogen Receptor Modulators with a Spectrum of Estrogenic and Anti-Estrogenic Activities. Steroids 2015, 105, 42–49. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chewchinda, S.; Kongkiatpaiboon, S. A Validated HPTLC Method for Quantitative Analysis of Morin in Maclura cochinchinensis Heartwood. Chin. Herb. Med. 2020, 12, 200–203. [Google Scholar] [CrossRef] [PubMed]
- Paul, A.; Rajiung, M.; Zaman, K.; Chaudhary, S.K.; Shakya, A. Quantification of the Bioactive Marker Resveratrol in Morus Alba Linn. Fruits by High–Performance Thin–Layer Chromatography. J. Planar Chromatogr.-Mod. TLC 2020, 33, 481–487. [Google Scholar] [CrossRef]
- Kaltbach, P.; Ballert, S.; Kabrodt, K.; Schellenberg, I. New HPTLC Methods for Analysis of Major Bioactive Compounds in Mate (Ilex paraguariensis) Tea. J. Food Compos. Anal. 2020, 92, 103568. [Google Scholar] [CrossRef]
- Anode, S.O.; Abraha, T.; Araya, S. Phytochemical Analysis of Dodonaea angustifolia Plant Extracts. Int. J. Herb. Med. 2018, 6, 37–42. [Google Scholar]
- Tiwari, C.S.; Husain, N. Biological Activities and Role of Flavonoids in Human Health—A Review. Indian J. Sci. Res. 2017, 12, 193–196. [Google Scholar]
- Deepika; Maurya, P.K. Health Benefits of Quercetin in Age-Related Diseases. Molecules 2022, 27, 2498. [Google Scholar] [CrossRef]
- Yao, L.H.; Jiang, Y.M.; Shi, J.; Tomás-Barberán, F.A.; Datta, N.; Singanusong, R.; Chen, S.S. Flavonoids in Food and Their Health Benefits. Plant Foods Hum. Nutr. 2004, 59, 113–122. [Google Scholar] [CrossRef]
- Jan, R.; Khan, M.; Asaf, S.; Lubna; Asif, S.; Kim, K.-M. Bioactivity and Therapeutic Potential of Kaempferol and Quercetin: New Insights for Plant and Human Health. Plants 2022, 11, 2623. [Google Scholar] [CrossRef]
- Kumar, N.; Goel, N. Phenolic Acids: Natural Versatile Molecules with Promising Therapeutic Applications. Biotechnol. Rep. 2019, 24, e00370. [Google Scholar] [CrossRef]
- Bento-Silva, A.; Koistinen, V.M.; Mena, P.; Bronze, M.R.; Hanhineva, K.; Sahlstrøm, S.; Kitrytė, V.; Moco, S.; Aura, A.M. Factors Affecting Intake, Metabolism and Health Benefits of Phenolic Acids: Do We Understand Individual Variability? Eur. J. Nutr. 2020, 59, 1275–1293. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Khatri, S.; Paramanya, A.; Ali, A. Phenolic Acids and Their Health-Promoting Activity. Plant Hum. Health 2019, 2, 661–680. [Google Scholar] [CrossRef]
- Shanaida, M.; Jasicka-Misiak, I.; Makowicz, E.; Stanek, N.; Shanaida, V.; Wieczorek, P.P. Development of High-Performance Thin Layer Chromatography Method for Identification of Phenolic Compounds and Quantification of Rosmarinic Acid Content in Some Species of the Lamiaceae Family. J. Pharm. Bioallied Sci. 2020, 12, 139–145. [Google Scholar] [CrossRef] [PubMed]
- Alam, P.; Alam, P.; Sharaf-Eldin, M.A.; Alqarni, M.H. Simultaneous Identification of Rutin, Chlorogenic Acid and Gallic Acid in Moringa Oleifera by Densitometric High-Performance Thin-Layer Chromatography Method. J. Planar Chromatogr.-Mod. TLC 2020, 33, 27–32. [Google Scholar] [CrossRef]
- Filimonov, D.A.; Lagunin, A.A.; Gloriozova, T.A.; Rudik, A.V.; Druzhilovskii, D.S.; Pogodin, P.V.; Poroikov, V.V. Prediction of the Biological Activity Spectra of Organic Compounds Using the Pass Online Web Resource. Chem. Heterocycl. Compd. 2014, 50, 444–457. [Google Scholar] [CrossRef]
- Mizzi, L.; Chatzitzika, C.; Gatt, R.; Valdramidis, V. HPLC Analysis of Phenolic Compounds and Flavonoids with Overlapping Peaks. Food Technol. Biotechnol. 2020, 58, 12–19. [Google Scholar] [CrossRef]
- Tapas, A.; Sakarkar, D.; Kakde, R. Flavonoids as Nutraceuticals: A Review. Trop. J. Pharm. Res. 2008, 7, 1089–1099. [Google Scholar] [CrossRef] [Green Version]
- Morsy, M.; El-Sheikh, A. Prevention of Gastric Ulcers. In Peptic Ulcer Disease; Chai, J., Ed.; InTech: London, UK, 2011; ISBN 978-953-307-976-9. [Google Scholar]
- Nascimento, G.G.F.; Locatelli, J.; Freitas, P.C.; Silva, G.L.; Nielsen, D.U.D.B.; Wahlqvist, B.A.; Nielsen, D.U.D.B.; Daasbjerg, K.; Skrydstrup, T.; Reixach, E.; et al. Antibacterial Activity of Plant Extracts and Phytochemicals on Antibiotic-Resistant Bacteria. Braz. J. Microbiol. 2000, 31, 247–256. [Google Scholar] [CrossRef]
- Anderson, A.C.; Jonas, D.; Huber, I.; Karygianni, L.; Wölber, J.; Hellwig, E.; Arweiler, N.; Vach, K.; Wittmer, A.; Al-Ahmad, A. Enterococcus Faecalis from Food, Clinical Specimens, and Oral Sites: Prevalence of Virulence Factors in Association with Biofilm Formation. Front. Microbiol. 2016, 6, 1534. [Google Scholar] [CrossRef] [Green Version]
- Batt, C.A. Listeria Monocytogenes. In Encyclopedia of Food Microbiology; Elsevier: Amsterdam, The Netherlands, 2014; Volume 2, pp. 490–493. ISBN 9780123847331. [Google Scholar]
- Chang, P.-K.; Horn, B.; Abe, K.; Gomi, K. Aspergillus. In Encyclopedia of Food Microbiology; Batt, C., Patel, P., Eds.; Academic Press: Cambridge, MA, USA, 2014; Volume 1, pp. 77–82. ISBN 9780123847300/31. [Google Scholar]
- Nicolás-Vázquez, I.; Méndez-Albores, A.; Moreno-Martínez, E.; Miranda, R.; Castro, M. Role of Lactone Ring in Structural, Electronic, and Reactivity Properties of Aflatoxin B1: A Theoretical Study. Arch. Environ. Contam. Toxicol. 2010, 59, 393–406. [Google Scholar] [CrossRef]
- Lulekal, E.; Rondevaldova, J.; Bernaskova, E.; Cepkova, J.; Asfaw, Z.; Kelbessa, E.; Kokoska, L.; Van Damme, P. Antimicrobial Activity of Traditional Medicinal Plants from Ankober District, North Shewa Zone, Amhara Region, Ethiopia. Pharm. Biol. 2014, 52, 614–620. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Malik, M.N.; Haq, I.; Fatima, H.; Ahmad, M.; Naz, I.; Mirza, B.; Kanwal, N. Bioprospecting Dodonaea viscosa Jacq.: A Traditional Medicinal Plant for Antioxidant, Cytotoxic, Antidiabetic and Antimicrobial Potential. Arab. J. Chem. 2022, 15, 103688. [Google Scholar] [CrossRef]
- ICH Harmonised Tripartite Guideline Validation of Analytical Procedures: Text and Methodology Q2(R1). In Proceedings of the International Conference on Harmonization (ICH’05). 2005. Available online: https://database.ich.org/sites/default/files/Q2%28R1%29%20Guideline.pdf (accessed on 10 January 2023).
- Cheesbrough, M. District Laboratory Practice and in Tropical Countries, Part 2, 2nd ed.; Cambridge University Press: New York, NY, USA, 2006. [Google Scholar]
- CLSI. Performance Standards for Antimicrobial Susceptibility Testing: CLSI Supplement M100. Clinical and Laboratory Standards Institute, 30th ed.; CLSI: Wayne, PA, USA, 2020; ISBN 978-1-68440-067-6. [Google Scholar]
- Mishra, M.P.; Rath, S.; Swain, S.S.; Ghosh, G.; Das, D.; Padhy, R.N. In Vitro Antibacterial Activity of Crude Extracts of 9 Selected Medicinal Plants against UTI Causing MDR Bacteria. J. King Saud Univ.-Sci. 2017, 29, 84–95. [Google Scholar] [CrossRef] [Green Version]
- Deyno, S.; Mtewa, A.G.; Hope, D.; Bazira, J.; Makonnen, E.; Alele, P.E. Antibacterial Activities of Echinops Kebericho Mesfin Tuber Extracts and Isolation of the Most Active Compound, Dehydrocostus Lactone. Front. Pharmacol. 2021, 11, 608672. [Google Scholar] [CrossRef]
- EUCAST. Determination of Minimum Inhibitory Concentrations (MICs) of Antibacterial Agents by Broth Dilution; EUCAST: Växjö, Sweden, 2003; Volume 9. [Google Scholar]
Sample | DPPH Radical Scavenging Activity | Total Phenolic Content (TPC) (mg/100 g) | Total Flavonoid Content (TFC) (mg/100 g) | |
---|---|---|---|---|
IC50 | R2 | |||
DAL | 0.698 ± 0.002 | 0.995 ± 002 | 765.85 ± 16.95 | 700.66 ± 39.14 |
DAF | 0.689 ± 0.005 | 0.997 ± 001 | 502.71 ± 7.56 | 488.23 ± 23 |
Ascorbic Acid | 0.1237 ± 0.01 | 0.991 ± 0.02 | - | - |
Parameters | Chlorogenic Acid | Gallic Acid | Kaempferol | Myricetin | Quercetin | Rutin | Syringic Acid |
---|---|---|---|---|---|---|---|
Wavelength | 273 nm | 273 nm | 366 nm | 366 nm | 366 nm | 366 nm | 273 nm |
Rf | 0.35 | 0.62 | 0.49 | 0.63 | 0.48 | 0.075 | 0.70 |
R2 | 0.9977 ± 0.0006 | 0.9916 ± 0.0047 | 0.9965 ± 0.002 | 0.9862 ± 0.01 | 0.9845 ± 0.0048 | 0.9892 ± 0.0017 | 0.9912 ± 0.0044 |
Intercept | 0.0008 ± 0 | 0.001 ± 0.0005 | 0.0018 ± 0.0011 | 0.0017 ± 0.0014 | 0.0012 ± 0.0005 | 0.0011 ± 0.0009 | 0.0025 ± 0.0009 |
Slope | 0.0001 ± 0 | 0.0002 ± 0 | 0.0005 ± 0.0002 | 0.0006 ± 0.0003 | 0.0004 ± 0 | 0.0007 ± 0.0001 | 0.0003 ± 0.0001 |
LOD (µg/100 mL) | 0.0540 | 0.0656 | 0.0264 | 0.0357 | 0.1317 | 0.0658 | 0.0720 |
LOQ (µg/100 mL) | 0.1637 | 0.1987 | 0.0801 | 0.1083 | 0.3990 | 0.1992 | 0.2182 |
Range (ng/spot) | 1600–100 | 1600–100 | 1600–100 | 1600–100 | 1600–100 | 1600–100 | 1600–100 |
Sensitivity | 0.0001 | 0.0002 | 0.0005 | 0.0004 | 0.0003 | 0.0006 | 0.0003 |
Recovery (%) | 98.91 ± 5.02 | 99.08 ± 4.92 | |||||
CV % | 5.6341 | 10.69275 | 5.677567 | 11.96433 | 15.36685 | 8.75465 | 10.66925 |
Bioactive Compounds | DAL | DAF |
---|---|---|
Rutin | 72.05 ± 0.47 | 63.09 ± 2.71 |
Quercetin | 58.12 ± 0.62 | 51.38 ± 2.05 |
Kaempferol | ND | 24.06 ± 0.81 |
Myrcetin | 121.99 ± 0.76 | 98.78 ± 0.54 |
Chlorogenic acid | 188.49 ± 1.78 | 165.62 ± 1.33 |
Gallic acid | 32.26 ± 1.55 | 53.64 ± 1.21 |
Syringic acid | 123.84 ± 1.1 | 176.85 ± 3.24 |
S. No. | Activity | Standard Ascorbic Acid | Polyphenols | ||||||
---|---|---|---|---|---|---|---|---|---|
Quercetin | Rutin | Kaempferol | Myricetin | Gallic Acid | Gallic Acid | Chlorogenic Acid | |||
1 | Antibacterial | 0.377 | 0.387 | 0.677 | 0.395 | 0.421 | 0.418 | 0.395 | 0.537 |
2 | Antifungal | 0.332 | 0.490 | 0.784 | 0.495 | 0.508 | 0.398 | 0.366 | 0.638 |
No. | Test Microbial Organisms | 200 mg/mL | 500 mg/mL | 1000 mg/mL | |||
---|---|---|---|---|---|---|---|
DAL | DAF | DAL | DAF | DAL | DAF | ||
1 | Enterococcus faecalis (ATCC79112) | 9.0 | 8.0 | NA | NA | NA | NA |
2 | Escherichia coli (ATCC25972) | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
3 | Klebsiella pneumonia (ATTC70063) | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
4 | Listeria monocytogenes (ATCC19115) | 9.7 | 9.3 | NA | NA | NA | NA |
5 | Proteus mirabilis (ATCC35659) | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
6 | Pseudomonas aeruginosa (ATCC27853) | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
7 | Staphylococcus aureus (ATTC25923) | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
8 | Aspergillus flavus | 0.0 | 0.0 | 16 | 24 | NA | NA |
9 | Fusarium fungal | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
No. | Test Microbial Organisms | 5 μg/mL | 10 μg/mL | 20 μg/mL | 40 μg/mL | 80 μg/mL | |||||
---|---|---|---|---|---|---|---|---|---|---|---|
L | F | L | F | L | F | L | F | L | F | ||
1 | Enterococcus faecalis (ATCC79112) | G | G | G | G | MIC | MIC | MBC | MBC | NA | NA |
2 | Listeria monocytogenes (ATCC19115) | G | G | G | G | MIC | MIC | MBC | MBC | NA | NA |
3 | Aspergillus flavus | G | G | G | G | G | G | MIC | MIC | MBC | MBC |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tessema, F.B.; Gonfa, Y.H.; Asfaw, T.B.; Tadesse, M.G.; Tadesse, T.G.; Bachheti, A.; Alshaharni, M.O.; Kumar, P.; Kumar, V.; Širić, I.; et al. Targeted HPTLC Profile, Quantification of Flavonoids and Phenolic Acids, and Antimicrobial Activity of Dodonaea angustifolia (L.f.) Leaves and Flowers. Molecules 2023, 28, 2870. https://doi.org/10.3390/molecules28062870
Tessema FB, Gonfa YH, Asfaw TB, Tadesse MG, Tadesse TG, Bachheti A, Alshaharni MO, Kumar P, Kumar V, Širić I, et al. Targeted HPTLC Profile, Quantification of Flavonoids and Phenolic Acids, and Antimicrobial Activity of Dodonaea angustifolia (L.f.) Leaves and Flowers. Molecules. 2023; 28(6):2870. https://doi.org/10.3390/molecules28062870
Chicago/Turabian StyleTessema, Fekade Beshah, Yilma Hunde Gonfa, Tilahun Belayneh Asfaw, Mesfin Getachew Tadesse, Tigist Getachew Tadesse, Archana Bachheti, Mohammed O. Alshaharni, Pankaj Kumar, Vinod Kumar, Ivan Širić, and et al. 2023. "Targeted HPTLC Profile, Quantification of Flavonoids and Phenolic Acids, and Antimicrobial Activity of Dodonaea angustifolia (L.f.) Leaves and Flowers" Molecules 28, no. 6: 2870. https://doi.org/10.3390/molecules28062870
APA StyleTessema, F. B., Gonfa, Y. H., Asfaw, T. B., Tadesse, M. G., Tadesse, T. G., Bachheti, A., Alshaharni, M. O., Kumar, P., Kumar, V., Širić, I., Abou Fayssal, S., Chaubey, K. K., & Bachheti, R. K. (2023). Targeted HPTLC Profile, Quantification of Flavonoids and Phenolic Acids, and Antimicrobial Activity of Dodonaea angustifolia (L.f.) Leaves and Flowers. Molecules, 28(6), 2870. https://doi.org/10.3390/molecules28062870