Highly Stretchable, Self-Adhesive, Antidrying Ionic Conductive Organohydrogels for Strain Sensors
Abstract
:1. Introduction
2. Results and Discussion
2.1. Preparation and Characterization of the Organohydrogels
2.2. Morphology Characterization
2.3. FTIR Analysis
2.4. Mechanical Properties
2.5. Self-Adhesiveness
2.6. Antidrying Property
2.7. Ionic Conductivity
2.8. Sensing Performance
2.9. Human Motion Detection
3. Experimental Section
3.1. Materials
3.2. Preparation of the PCGTA Organohydrogels
3.3. Scanning Electron Microscope
3.4. Fourier Transform Infrared Spectroscopy
3.5. Mechanical Properties
3.6. Adhesion Tests
3.7. Moisture Retention Property Tests
3.8. Ionic Conductivity Measurement
3.9. Electrical Measurements
3.10. Human Motion Detection Demonstration
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Sample Availability
References
- Pan, X.F.; Wang, Q.H.; He, P.; Liu, K.; Ni, Y.H.; Ouyang, X.H.; Chen, L.H.; Huang, L.L.; Wang, H.P.; Tan, Y. Mussel-Inspired Nanocomposite Hydrogel-Based Electrodes with Reusable and Injectable Properties for Human Electrophysiological Signals Detection. ACS Sustain. Chem. Eng. 2019, 7, 7918–7925. [Google Scholar] [CrossRef]
- Song, Z.Q.; Li, W.Y.; Bao, Y.; Wang, W.; Liu, Z.B.; Han, F.J.; Han, D.X.; Niu, L. Bioinspired Microstructured Pressure Sensor Based on a Janus Graphene Film for Monitoring Vital Signs and Cardiovascular Assessment. Adv. Electron. Mater. 2018, 4, 1800252. [Google Scholar] [CrossRef]
- Liu, Y.J.; Cao, W.T.; Ma, M.G.; Wan, P.B. Ultrasensitive Wearable Soft Strain Sensors of Conductive, Self-healing, and Elastic Hydrogels with Synergistic “Soft and Hard” Hybrid Networks. ACS Appl. Mater. Interfaces 2017, 9, 25559–25570. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.W.; Chen, J.; Gong, Y.; Zhang, H.; Xu, T.; Nie, L.; Fu, J. Ultrastretchable Strain Sensors and Arrays with High Sensitivity and Linearity Based on Super Tough Conductive Hydrogels. Chem. Mater. 2018, 30, 8062–8069. [Google Scholar] [CrossRef]
- Cao, Y.; Tan, Y.J.; Li, S.; Lee, W.W.; Guo, H.C.; Cai, Y.Q.; Wang, C.; Tee, B.C.K. Self-healing electronic skins for aquatic environments. Nat. Electron. 2019, 2, 75–82. [Google Scholar] [CrossRef]
- Flesher, S.N.; Downey, J.E.; Weiss, J.M.; Hughes, C.L.; Herrera, A.J.; Tyler-Kabara, E.C.; Boninger, M.L.; Collinger, J.L.; Gaunt, R.A. A brain-computer interface that evokes tactile sensations improves robotic arm control. Science 2021, 372, 831. [Google Scholar] [CrossRef]
- Zhang, D.; Ren, B.P.; Zhang, Y.X.; Xu, L.J.; Huang, Q.Y.; He, Y.; Li, X.F.; Wu, J.; Yang, J.T.; Chen, Q.; et al. From design to applications of stimuli-responsive hydrogel strain sensors. J. Mater. Chem. B 2020, 8, 3171–3191. [Google Scholar] [CrossRef]
- Yu, Y.; Luo, Y.F.; Guo, A.; Yan, L.J.; Wu, Y.; Jiang, K.L.; Li, Q.Q.; Fan, S.S.; Wang, J.P. Flexible and transparent strain sensors based on super-aligned carbon nanotube films. Nanoscale 2017, 9, 6716–6723. [Google Scholar] [CrossRef]
- Jing, X.; Mi, H.Y.; Peng, X.F.; Turng, L.S. Biocompatible, self-healing, highly stretchable polyacrylic acid/reduced graphene oxide nanocomposite hydrogel sensors via mussel-inspired chemistry. Carbon 2018, 136, 63–72. [Google Scholar] [CrossRef]
- Bi, P.; Liu, X.W.; Yang, Y.; Wang, Z.Y.; Shi, J.; Liu, G.M.; Kong, F.F.; Zhu, B.P.; Xiong, R. Silver-Nanoparticle-Modified Polyimide for Multiple Artificial Skin-Sensing Applications. Adv. Mater. Technol. 2019, 4, 1900426. [Google Scholar] [CrossRef]
- Jain, R.; Jadon, N.; Pawaiya, A. Polypyrrole based next generation electrochemical sensors and biosensors: A review. TrAC Trends Anal. Chem. 2017, 97, 363–373. [Google Scholar] [CrossRef]
- Cai, G.F.; Wang, J.X.; Qian, K.; Chen, J.W.; Li, S.H.; Lee, P.S. Extremely Stretchable Strain Sensors Based on Conductive Self-Healing Dynamic Cross-Links Hydrogels for Human-Motion Detection. Adv. Sci. 2017, 4, 1600190. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Han, I.K.; Song, K.I.; Jung, S.M.; Jo, Y.; Kwon, J.; Chung, T.; Yoo, S.; Jang, J.; Kim, Y.T.; Hwang, D.S.; et al. Electroconductive, Adhesive, Non-Swelling, and Viscoelastic Hydrogels for Bioelectronics. Adv. Mater. 2023, 35, e2203431. [Google Scholar] [CrossRef]
- Huang, Z.; Chen, X.; O’Neill, S.J.K.; Wu, G.; Whitaker, D.J.; Li, J.; McCune, J.A.; Scherman, O.A. Highly compressible glass-like supramolecular polymer networks. Nat. Mater. 2022, 21, 103–109. [Google Scholar] [CrossRef] [PubMed]
- Yuk, H.; Lu, B.; Zhao, X. Hydrogel bioelectronics. Chem. Soc. Rev. 2019, 48, 1642–1667. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wei, X.R.; Ma, K.; Cheng, Y.B.; Sun, L.Y.; Chen, D.J.; Zhao, X.L.; Lu, H.; Song, B.T.; Yang, K.W.; Jia, P.X. Adhesive, Conductive, Self-Healing, and Antibacterial Hydrogel Based on Chitosan-Polyoxometalate Complexes for Wearable Strain Sensor. ACS Appl. Polym. Mater. 2020, 2, 2541–2549. [Google Scholar] [CrossRef]
- Qiao, H.Y.; Qi, P.F.; Zhang, X.H.; Wang, L.A.; Tan, Y.Q.; Luan, Z.H.; Xia, Y.Z.; Li, Y.H.; Sui, K.Y. Multiple Weak H-Bonds Lead to Highly Sensitive, Stretchable, Self Adhesive, and Self-Healing Ionic Sensors. ACS Appl. Mater. Interfaces 2019, 11, 7755–7763. [Google Scholar] [CrossRef]
- Pan, X.F.; Wang, Q.H.; Ning, D.W.; Dai, L.; Liu, K.; Ni, Y.H.; Chen, L.H.; Huang, L.L. Ultraflexible Self-Healing Guar Gum-Glycerol Hydrogel with Injectable, Antifreeze, and Strain-Sensitive Properties. ACS Biomater. Sci. Eng. 2018, 4, 3397–3404. [Google Scholar] [CrossRef]
- Foox, M.; Zilberman, M. Drug delivery from gelatin-based systems. Expert Opin. Drug Deliv. 2015, 12, 1547–1563. [Google Scholar] [CrossRef]
- Chen, G.Q.; Huang, J.R.; Gu, J.F.; Peng, S.J.; Xiang, X.T.; Chen, K.; Yang, X.X.; Guan, L.H.; Jiang, X.C.; Hou, L.X. Highly tough supramolecular double network hydrogel electrolytes for an artificial flexible and low-temperature tolerant sensor. J. Mater. Chem. A 2020, 8, 6776–6784. [Google Scholar] [CrossRef]
- Zhang, J.; Chen, L.D.; Shen, B.; Wang, Y.R.; Peng, P.; Tang, F.Y.; Feng, J. Highly transparent, self-healing, injectable and self-adhesive chitosan/polyzwitterion-based double network hydrogel for potential 3D printing wearable strain sensor. Mater. Sci. Eng. C Mater. Biol. Appl. 2020, 117, 111298. [Google Scholar] [CrossRef] [PubMed]
- Fitriani, F.; Aprilia, S.; Bilad, M.R.; Arahman, N.; Usman, A.; Huda, N.; Kobun, R. Optimization of Biocomposite Film Based on Whey Protein Isolate and Nanocrystalline Cellulose from Pineapple Crown Leaf Using Response Surface Methodology. Polymers 2022, 14, 3006. [Google Scholar] [CrossRef] [PubMed]
- Gomez, H.C.; Serpa, A.; Velasquez-Cock, J.; Ganan, P.; Castro, C.; Velez, L.; Zuluaga, R. Vegetable nanocellulose in food science: A review. Food Hydrocoll. 2016, 57, 178–186. [Google Scholar] [CrossRef]
- Klemm, D.; Kramer, F.; Moritz, S.; Lindstrom, T.; Ankerfors, M.; Gray, D.; Dorris, A. Nanocelluloses: A New Family of Nature-Based Materials. Angew. Chem. Int. Ed. 2011, 50, 5438–5466. [Google Scholar] [CrossRef]
- Zhang, X.H.; Sheng, N.N.; Wang, L.A.; Tan, Y.Q.; Liu, C.Z.; Xia, Y.Z.; Nie, Z.H.; Sui, K.Y. Supramolecular nanofibrillar hydrogels as highly stretchable, elastic and sensitive ionic sensors. Mater. Horiz. 2019, 6, 326–333. [Google Scholar] [CrossRef]
- Yang, B.W.; Yuan, W. Highly Stretchable and Transparent Double-Network Hydrogel Ionic Conductors as Flexible Thermal-Mechanical Dual Sensors and Electroluminescent Devices. ACS Appl. Mater. Interfaces 2019, 11, 16765–16775. [Google Scholar] [CrossRef]
- Li, M.; Chen, D.; Sun, X.; Xu, Z.; Yang, Y.; Song, Y.; Jiang, F. An environmentally tolerant, highly stable, cellulose nanofiber-reinforced, conductive hydrogel multifunctional sensor. Carbohydr. Polym. 2022, 284, 119199. [Google Scholar] [CrossRef]
- He, P.; Wu, J.; Pan, X.; Chen, L.; Liu, K.; Gao, H.; Wu, H.; Cao, S.; Huang, L.; Ni, Y. Anti-freezing and moisturizing conductive hydrogels for strain sensing and moist-electric generation applications. J. Mater. Chem. A 2020, 8, 3109–3118. [Google Scholar] [CrossRef]
- Xu, J.; Jing, R.; Ren, X.; Gao, G. Fish-inspired anti-icing hydrogel sensors with low-temperature adhesion and toughness. J. Mater. Chem. A 2020, 8, 9373–9381. [Google Scholar] [CrossRef]
- Wu, Y.; Qu, J.; Zhang, X.; Ao, K.; Zhou, Z.; Zheng, Z.; Mu, Y.; Wu, X.; Luo, Y.; Feng, S.-P. Biomechanical Energy Harvesters Based on Ionic Conductive Organohydrogels via the Hofmeister Effect and Electrostatic Interaction. Acs Nano 2021, 15, 13427–13435. [Google Scholar] [CrossRef]
- Pan, X.F.; Wang, Q.H.; Guo, R.S.; Ni, Y.H.; Liu, K.; Ouyang, X.H.; Chen, L.H.; Huang, L.L.; Cao, S.L.; Xie, M.Y. An integrated transparent, UV-filtering organohydrogel sensor via molecular-level ion conductive channels. J. Mater. Chem. A 2019, 7, 4525–4535. [Google Scholar] [CrossRef]
- He, Z.; Yuan, W. Adhesive, Stretchable, and Transparent Organohydrogels for Antifreezing, Antidrying, and Sensitive Ionic Skins. ACS Appl. Mater. Interfaces 2021, 13, 1474–1485. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Ma, Y.; Li, D.; Lu, S.; Li, Y.; Li, Z. Highly stretchable, self-healing, and degradable ionic conductive cellulose hydrogel for human motion monitoring. Int. J. Biol. Macromol. 2022, 223, 1530–1538. [Google Scholar] [CrossRef] [PubMed]
- Rubentheren, V.; Ward, T.A.; Chee, C.Y.; Nair, P.; Salami, E.; Fearday, C. Effects of heat treatment on chitosan nanocomposite film reinforced with nanocrystalline cellulose and tannic acid. Carbohydr. Polym. 2016, 140, 202–208. [Google Scholar] [CrossRef]
- Nath, J.; Saikia, P.P.; Handique, J.; Gupta, K.; Dolui, S.K. Multifunctional Mussel-Inspired Gelatin and Tannic Acid-Based Hydrogel with Ph-Controllable Release of Vitamin B 12. J. Appl. Polym. Sci. 2020, 137, 49193. [Google Scholar] [CrossRef]
- Wang, Z.; Zhao, S.J.; Song, R.Y.; Zhang, W.; Zhang, S.F.; Li, J.Z. The Synergy between Natural Polyphenol-Inspired Catechol Moieties and Plant Protein-Derived Bio-Adhesive Enhances the Wet Bonding Strength. Sci. Rep. 2017, 7, 9664. [Google Scholar] [CrossRef] [Green Version]
- Qin, Z.H.; Dong, D.Y.; Yao, M.M.; Yu, Q.Y.; Sun, X.; Guo, Q.; Zhang, H.T.; Yao, F.L.; Li, J.J. Freezing-Tolerant Supramolecular Organohydrogel with High Toughness, Thermoplasticity, and Healable and Adhesive Properties. ACS Appl. Mater. Interfaces 2019, 11, 21184–21193. [Google Scholar] [CrossRef]
- Krogsgaard, M.; Andersen, A.; Birkedal, H. Gels and threads: Mussel-inspired one-pot route to advanced responsive materials. Chem. Commun. 2014, 50, 13278–13281. [Google Scholar] [CrossRef]
- Shao, C.Y.; Wang, M.; Meng, L.; Chang, H.L.; Wang, B.; Xu, F.; Yang, J.; Wan, P.B. Mussel-Inspired Cellulose Nanocomposite Tough Hydrogels with Synergistic Self-Healing, Adhesive, and Strain-Sensitive Properties. Chem. Mater. 2018, 30, 3110–3121. [Google Scholar] [CrossRef]
- Wang, Q.H.; Pan, X.F.; Lin, C.M.; Lin, D.Z.; Ni, Y.H.; Chen, L.H.; Huang, L.L.; Cao, S.L.; Ma, X.J. Biocompatible, self-wrinkled, antifreezing and stretchable hydrogel-based wearable sensor with PEDOT:sulfonated lignin as conductive materials. Chem. Eng. J. 2019, 370, 1039–1047. [Google Scholar] [CrossRef]
- Ge, G.; Lu, Y.; Qu, X.Y.; Zhao, W.; Ren, Y.F.; Wang, W.J.; Wang, Q.; Huang, W.; Dong, X.C. Muscle-Inspired Self-Healing Hydrogels for Strain and Temperature Sensor. Acs Nano 2020, 14, 218–228. [Google Scholar] [CrossRef] [PubMed]
- Tian, X.L.; Yi, Y.K.; Yang, P.; Liu, P.; Qu, L.; Li, M.T.; Hu, Y.S.; Yang, B.L. High-Charge Density Polymerized Ionic Networks Boosting High Ionic Conductivity as Quasi-Solid Electrolytes for High-Voltage Batteries. ACS Appl. Mater. Interfaces 2019, 11, 4001–4010. [Google Scholar] [CrossRef] [PubMed]
Samples | Gel | AA | TA | AlCl3·6H2O | H2O | Gly |
---|---|---|---|---|---|---|
PCGTA-X0 organohydrogel | 0.8 g | 3.2 g | 0.04 g | 0.3 g | 7.83 g | 7.83 g |
PCGTA-X0.025 organohydrogel | 0.8 g | 3.2 g | 0.04 g | 0.3 g | 7.83 g (With 5 g CNC 0.025 wt%) | 7.83 g |
PCGTA- X0.05 organohydrogel | 0.8 g | 3.2 g | 0.04 g | 0.3 g | 7.83 g (With 5 g CNC 0.05 wt%) | 7.83 g |
PCGTA-X0.075 organohydrogel | 0.8 g | 3.2 g | 0.04 g | 0.3 g | 7.83 g (With 5 g CNC 0.075 wt%) | 7.83 g |
PCGTA-X0.1 organohydrogel | 0.8 g | 3.2 g | 0.04 g | 0.3 g | 7.83 g (With 5 g CNC 0.1 wt%) | 7.83 g |
PGTA hydrogel | 0.8 g | 3.2 g | 0.04 g | 0.3 g | 15.66 g | 0 g |
PGTA-Y0.5 organohydrogel | 0.8 g | 3.2 g | 0.04 g | 0.1 g | 7.83 g | 7.83 g |
PGTA-Y1 organohydrogel | 0.8 g | 3.2 g | 0.04 g | 0.2 g | 7.83 g | 7.83 g |
PGTA-Y1.5 organohydrogel | 0.8 g | 3.2 g | 0.04 g | 0.3 g | 7.83 g | 7.83 g |
PGTA-Y2 organohydrogel | 0.8 g | 3.2 g | 0.04 g | 0.4 g | 7.83 g | 7.83 g |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Huang, X.; Wang, C.; Yang, L.; Ao, X. Highly Stretchable, Self-Adhesive, Antidrying Ionic Conductive Organohydrogels for Strain Sensors. Molecules 2023, 28, 2817. https://doi.org/10.3390/molecules28062817
Huang X, Wang C, Yang L, Ao X. Highly Stretchable, Self-Adhesive, Antidrying Ionic Conductive Organohydrogels for Strain Sensors. Molecules. 2023; 28(6):2817. https://doi.org/10.3390/molecules28062817
Chicago/Turabian StyleHuang, Xinmin, Chengwei Wang, Lianhe Yang, and Xiang Ao. 2023. "Highly Stretchable, Self-Adhesive, Antidrying Ionic Conductive Organohydrogels for Strain Sensors" Molecules 28, no. 6: 2817. https://doi.org/10.3390/molecules28062817