Applications of Polyacetylene Derivatives in Gas and Liquid Separation
Abstract
:1. Introduction
2. Separation Mechanism
3. Application of Substituted Polyacetylenes in Gas Separation
4. Application of Substituted Polyacetylenes in Liquid Separation
5. Prospect
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Du, J.; Duan, L. The united nations environment programme issued the 2018 emission gap report. World Agric. 2019, 98. [Google Scholar]
- Fei, W.; Ai, N.; Chen, J. Capture and separation of greenhouse gases Co2—The challenge and opportunity for separation technology. Chem. Ind. Eng. Prog. 2005, 24, 1–4. [Google Scholar]
- Li, J.R.; Kuppler, R.J.; Zhou, H.C. Selective gas adsorption and separation in metal-organic frameworks. Chem. Soc. Rev. 2009, 38, 1477–1504. [Google Scholar] [CrossRef]
- Ding, S.Y.; Wang, W. Covalent organic frameworks (cofs): From design to applications. Chem. Soc. Rev. 2013, 42, 548–568. [Google Scholar] [CrossRef] [PubMed]
- Budd, P.M.; Msayib, K.J.; Tattershall, C.E.; Ghanem, B.S.; Reynolds, K.J.; Mckeown, N.B.; Fritsch, D. Gas separation membranes from polymers of intrinsic microporosity. J. Membr. Sci. 2005, 251, 263–269. [Google Scholar] [CrossRef]
- Bernardo, P.; Drioli, E.; Golemme, G. Membrane gas separation: A review/state of the art. Ind. Eng. Chem. Res. 2009, 48, 4638–4663. [Google Scholar] [CrossRef]
- Wang, H.J.; Wang, M.D.; Liang, X.; Yuan, J.Q.; Yang, H.; Wang, S.Y.; Ren, Y.X.; Wu, H.; Pan, F.S.; Jiang, Z.Y. Organic molecular sieve membranes for chemical separations. Chem. Soc. Rev. 2021, 50, 5468–5516. [Google Scholar] [CrossRef]
- Okada, T.; Yoshikawa, M.; Matsuura, T. A study on the pervaporation of ethanol water mixtures on the basis of pore flow model. J. Membr. Sci. 1991, 59, 151–168. [Google Scholar] [CrossRef]
- Okada, T.; Matsuura, T. A new transport model for pervaporation. J. Membr. Sci. 1991, 59, 133–150. [Google Scholar] [CrossRef]
- Graham, T. On the absorption and dialytic separation of gases by colloid septa. 1. Action of a septum of caoutchouc. J. Membr. Sci. 1995, 100, 27–31. [Google Scholar] [CrossRef]
- Wijmans, J.G.; Baker, R.W. The solution-diffusion model—A review. J. Membr. Sci. 1995, 107, 1–21. [Google Scholar] [CrossRef]
- Xu, Y.; Xu, Z. Polymer Membrane Materials; Chemical Industry Press: Beijing, China, 2005. [Google Scholar]
- Budd, P.M.; Mckeown, N.B.; Fritsch, D. Free volume and intrinsic microporosity in polymers. J. Mater. Chem. 2005, 15, 1977–1986. [Google Scholar] [CrossRef]
- Budd, P.M.; Mckeown, N.B. Highly permeable polymers for gas separation membranes. Polym. Chem. 2010, 1, 63–68. [Google Scholar] [CrossRef]
- Du, N.Y.; Park, H.B.; Dal-Cin, M.M.; Guiver, M.D. Advances in high permeability polymeric membrane materials for CO2 separations. Energy Environ. Sci. 2012, 5, 7306–7322. [Google Scholar] [CrossRef] [Green Version]
- Yong, C.; Conghou, W.; Ming, W. Gas Membrane Separation Technology and Application; Chemical Industry Press: Beijing, China, 2004. [Google Scholar]
- Vandezande, P.; Gevers, L.; Vankelecom, I. Solvent resistant nanofiltration: Separating on a molecular level. Chem. Soc. Rev. 2008, 37, 365–405. [Google Scholar] [CrossRef]
- Marchetti, P.; Solomon, M.; Szekely, G.; Livingston, A.G. Molecular separation with organic solvent nanofiltration: A critical review. Chem. Rev. 2014, 114, 10735–10806. [Google Scholar] [CrossRef] [PubMed]
- Lonsdale, H.K.; Merten, U.; Riley, R.L. Transport properties of cellulose acetate osmotic membranes. J. Appl. Polym. Sci. 1965, 9, 1341. [Google Scholar] [CrossRef]
- Robeson, L.M. Correlation of separation factor versus permeability for polymeric membranes. J. Membr. Sci. 1991, 62, 165–185. [Google Scholar] [CrossRef]
- Robeson, L.M. The upper bound revisited. J. Membr. Sci. 2008, 320, 390–400. [Google Scholar] [CrossRef]
- Nagai, K.; Masuda, T.; Nakagawa, T.; Freeman, B.D.; Pinnau, I. Poly[1-(trimethylsilyl)-1-propyne] and related polymers: Synthesis, properties and functions. Prog. Polym. Sci. 2001, 26, 721–798. [Google Scholar] [CrossRef]
- Ponomarenko, M.V.; Kalinovich, N.; Serguchev, Y.A.; Bremer, M.; Roschenthaler, G.V. Synthesis of pentafluoro-lambda(6)-sulfanyl substituted acetylenes for novel liquid crystals. J. Fluor. Chem. 2012, 135, 68–74. [Google Scholar] [CrossRef]
- Shirakawa, H.; Louis, E.J.; MacDiarmid, A.G.; Chiang, C.K.; Heeger, A.J. Synthesis of electrically conducting organic polymers: Halogen derivatives of polyacetylene. J. Chem. Soc. Chem. Commun. 1977. [Google Scholar] [CrossRef]
- Ko, K.C.; Cho, D.; Lee, J.Y. Systematic approach to design organic magnetic molecules: Strongly coupled diradicals with ethylene coupler. J. Phys. Chem. A 2012, 116, 6837–6844. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.W.; Xie, Z.L.; Lam, J.; Law, C.; Tang, B.Z. Silole-containing polyacetylenes. Synthesis, thermal stability, light emission, nanodimensional aggregation, and restricted intramolecular rotation. Macromolecules 2003, 36, 1108–1117. [Google Scholar] [CrossRef]
- Masuda, T.; Isobe, E.; Higashimura, T.; Takada, K. Poly[1-(trimethylsilyl)-1-propyne]—A new high polymer synthesized with transition-metal catalysts and characterized by extremely high gas-permeability. J. Am. Chem. Soc. 1983, 105, 7473–7474. [Google Scholar] [CrossRef]
- Plate, N.A.; Bokarev, A.K.; Kaliuzhnyi, N.E.; Litvinova, E.G.; Khotimskii, V.S.; Volkov, V.V.; Yampolskii, Y.P. Gas and vapor permeation and sorption in poly(trimetylsilylpropyne). J. Membr. Sci. 1991, 60, 13–24. [Google Scholar] [CrossRef]
- Paul, D.R. Gas sorption and transport in glassy-polymers. Ber. Bunsen-Ges. Phys. Chem. Chem. Phys. 1979, 83, 294–302. [Google Scholar] [CrossRef]
- Ichiraku, Y.; Stern, S.A.; Nakagawa, T. An investigation of the high gas-permeability of poly(1-trimethylsilyl-1-propyne). J. Membr. Sci. 1987, 34, 5–18. [Google Scholar] [CrossRef]
- Sese, G.; Catlow, C.; Vessal, B. Molecular-dynamics simulations of polyacetylene. Mol. Simul. 1992, 9, 99–113. [Google Scholar] [CrossRef]
- Clough, S.B.; Sun, X.F.; Tripathy, S.K.; Baker, G.L. Molecular-dynamics simulation of substituted polyacetylenes. Macromolecules 1991, 24, 4264–4269. [Google Scholar] [CrossRef]
- Morisato, A.; Pinnau, I. Synthesis and gas permeation properties of poly(4-methyl-2-pentyne). J. Membr. Sci. 1996, 121, 243–250. [Google Scholar] [CrossRef]
- Tsuchihara, K.; Masuda, T.; Higashimura, T. Polymerization of silicon-containing diphenylacetylenes and high gas-permeability of the product polymers. Macromolecules 1992, 25, 5816–5820. [Google Scholar] [CrossRef]
- Toy, L.G.; Nagai, K.; Freeman, B.D.; Pinnau, I.; He, Z.; Masuda, T.; Teraguchi, M.; Yampolskii, Y.P. Pure-gas and vapor permeation and sorption properties of poly[1-phenyl-2-[p-(trimethylsilyl)phenyl]acetylene] (ptmsdpa). Macromolecules 2000, 33, 2516–2524. [Google Scholar] [CrossRef]
- Yampolskii, Y.P.; Shishatskii, S.M.; Shantorovich, V.P.; Antipov, E.M.; Kuzmin, N.N.; Rykov, S.V.; Khodjaeva, V.L.; Plate, N.A. Transport characteristics and other physicochemical properties of aged poly(1-(trimethylsilyl)-1-propyne). J. Appl. Polym. Sci. 1993, 48, 1935–1944. [Google Scholar] [CrossRef]
- Borisov, I.; Bakhtin, D.; Luque-Alled, J.M.; Rybakova, A.; Makarova, V.; Foster, A.B.; Harrison, W.J.; Volkov, V.; Polevaya, V.; Gorgojo, P.; et al. Synergistic enhancement of gas selectivity in thin film composite membranes of pim-1. J. Mater. Chem. A 2019, 7, 6417–6430. [Google Scholar] [CrossRef] [Green Version]
- Polevaya, V.; Geiger, V.; Bondarenko, G.; Shishatskiy, S.; Khotimskiy, V. Chemical modification of poly(1-trimethylsylil-1-propyne) for the creation of highly efficient Co2-selective membrane materials. Materials 2019, 12, 2763. [Google Scholar] [CrossRef] [Green Version]
- Kossov, A.A.; Geiger, V.Y.; Matson, S.M.; Litvinova, E.G.; Polevaya, V.G. Synthesis and gas-transport properties of poly(1-trimethylsilyl-1-propyne)- and poly(4-methyl-2-pentyne)-based chlorinated polyacetylenes for membrane separation of carbon dioxide. Membr. Membr. Technol. 2019, 1, 212–219. [Google Scholar] [CrossRef] [Green Version]
- Starannikova, L.; Khodzhaeva, V.; Yampolskii, Y. Mechanism of aging of poly[1-(trimethylsilyl)-1 propyne] and its effect on gas permeability. J. Membr. Sci. 2004, 244, 183–191. [Google Scholar] [CrossRef]
- Bakhtin, D.S.; Kulikov, L.A.; Bondarenko, G.N.; Vasilevskii, V.P.; Maksimov, A.L.; Volkov, A.V. Stabilization of gas transport properties of composite membranes with a thin ptmsp selective layer by adding porous aromatic framework nanoparticles and simultaneous polymer crosslinking. Pet. Chem. 2018, 58, 790–796. [Google Scholar] [CrossRef]
- Kelman, S.D.; Rowe, B.W.; Bielawski, C.W.; Pas, S.J.; Hill, A.J.; Paul, D.R.; Freeman, B.D. Crosslinking poly[1-(trimethylsilyl)-1-propyne] and its effect on physical stability. J. Membr. Sci. 2008, 320, 123–134. [Google Scholar] [CrossRef]
- Carta, M.; Malpass-Evans, R.; Croad, M.; Rogan, Y.; Jansen, J.C.; Bernardo, P.; Bazzarelli, F.; Mckeown, N.B. An efficient polymer molecular sieve for membrane gas separations. Science 2013, 339, 303–307. [Google Scholar] [CrossRef]
- Lau, C.H.; Nguyen, P.T.; Hill, M.R.; Thornton, A.W.; Konstas, K.; Doherty, C.M.; Mulder, R.J.; Bourgeois, L.; Liu, A.; Sprouster, D.J.; et al. Ending aging in super glassy polymer membranes. Angew. Chem. Int. Edit. 2014, 53, 5322–5326. [Google Scholar] [CrossRef] [Green Version]
- Lau, C.H.; Konstas, K.; Thornton, A.W.; Liu, A.; Mudie, S.; Kennedy, D.F.; Howard, S.C.; Hill, A.J.; Hill, M.R. Gas-separation membranes loaded with porous aromatic frameworks that improve with age. Angew. Chem. Int. Edit. 2015, 54, 2669–2673. [Google Scholar] [CrossRef]
- Lau, C.H.; Mulet, X.; Konstas, K.; Doherty, C.M.; Sani, M.A.; Separovic, F.; Hill, M.R.; Wood, C.D. Hypercrosslinked additives for ageless gas-separation membranes. Angew. Chem. Int. Edit. 2016, 55, 1998–2001. [Google Scholar] [CrossRef] [PubMed]
- Ishihara, K.; Nagase, Y.; Matsui, K. Pervaporation of alcohol water mixtures through poly[1-(trimethylsilyl)-1-propyne] membrane. Makromol. Chem. Rapid Commun. 1986, 7, 43–46. [Google Scholar] [CrossRef]
- Nagase, Y.; Ishihara, K.; Matsui, K. Chemical modification of poly(substituted-acetylene). 2. Pervaporation of ethanol water mixture through poly(1-trimethylsilyl-1-propyne) poly(dimethylsiloxane) graft copolymer membrane. J. Polym. Sci. Part B-Polym. Phys. 1990, 28, 377–386. [Google Scholar] [CrossRef]
- Nagase, Y.; Ueda, T.; Matsui, K.; Uchikura, M. Chemical modification of poly(substituted-acetylene). 1. Synthesis and gas-permeability of poly(1-trimethylsilyl-1-propyne) poly(dimethylsiloxane) graft copolymer. J. Polym. Sci. Part B-Polym. Phys. 1991, 29, 171–179. [Google Scholar] [CrossRef]
- Nagase, Y.; Takamura, Y.; Matsui, K. Chemical modification of poly(substituted-acetylene). 5. Alkylsilylation of poly(1-trimethylsilyl-1-propyne) and improved liquid separating property at pervaporation. J. Appl. Polym. Sci. 1991, 42, 185–190. [Google Scholar] [CrossRef]
- Nagase, Y.; Sugimoto, K.; Takamura, Y.; Matsui, K. Chemical modification of poly(substituted-acetylene). 6. Introduction of fluoroalkyl group into poly(1-trimethylsilyl-1-propyne) and the improved ethanol permselectivity at pervaporation. J. Appl. Polym. Sci. 1991, 43, 1227–1232. [Google Scholar] [CrossRef]
- Kang, Y.S.; Shin, E.M.; Jung, B.; Kim, J.J. Composite membranes of poly(1-trimethylsilyl-1-propyne) and poly(dimethyl siloxane) and their pervaporation properties for ethanol-water mixture. J. Appl. Polym. Sci. 1994, 53, 317–323. [Google Scholar] [CrossRef]
- Volkov, A.V.; Stamatialis, D.F.; Khotimsky, V.S.; Volkov, V.V.; Wessling, M.; Plate, N.A. Poly[1-(trimethylsilyl)-1-propyne] as a solvent resistance nanofiltration membrane material. J. Membr. Sci. 2006, 281, 351–357. [Google Scholar] [CrossRef]
- Volkov, A.V.; Parashchuk, V.V.; Stamatialis, D.F.; Khotimsky, V.S.; Volkov, V.V.; Wessling, M. High permeable ptmsp/pan composite membranes for solvent nanofiltration. J. Membr. Sci. 2009, 333, 88–93. [Google Scholar] [CrossRef]
- Volkov, A.V.; Volkov, V.V.; Khotimskii, V.S. Membranes based on poly[(1-trimethylsilyl)-1-propyne] for liquid-liquid separation. Polym. Sci. Ser. A 2009, 51, 1367–1382. [Google Scholar] [CrossRef]
- Cheng, X.Q.; Konstas, K.; Doherty, C.M.; Wood, C.D.; Mulet, X.; Xie, Z.L.; Ng, D.; Hill, M.R.; Shao, L.; Lau, C.H. Hyper-cross-linked additives that impede aging and enhance permeability in thin polyacetylene films for organic solvent nanofiltration. ACS Appl. Mater. Interfaces 2017, 9, 14401–14408. [Google Scholar] [CrossRef]
- Seki, H.; Masuda, T. Polymerization of [o-n-(perfluorohexyl)phenyl]acetylene and polymer properties. J. Polym. Sci. Pol. Chem. 1995, 33, 1907–1912. [Google Scholar] [CrossRef]
- Sakaguchi, T.; Yumoto, K.; Kwak, G.; Yoshikawa, M.; Masuda, T. Pervaporation of ethanol/water and benzene/cyclohexane mixtures using novel substituted polyacetylene membranes. Polym. Bull. 2002, 48, 271–276. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, M.; Hu, G.; Shen, T.; Zhang, H.; Sun, J.Z.; Tang, B.Z. Applications of Polyacetylene Derivatives in Gas and Liquid Separation. Molecules 2023, 28, 2748. https://doi.org/10.3390/molecules28062748
Chen M, Hu G, Shen T, Zhang H, Sun JZ, Tang BZ. Applications of Polyacetylene Derivatives in Gas and Liquid Separation. Molecules. 2023; 28(6):2748. https://doi.org/10.3390/molecules28062748
Chicago/Turabian StyleChen, Manyu, Guangze Hu, Tanxiao Shen, Haoke Zhang, Jing Zhi Sun, and Ben Zhong Tang. 2023. "Applications of Polyacetylene Derivatives in Gas and Liquid Separation" Molecules 28, no. 6: 2748. https://doi.org/10.3390/molecules28062748
APA StyleChen, M., Hu, G., Shen, T., Zhang, H., Sun, J. Z., & Tang, B. Z. (2023). Applications of Polyacetylene Derivatives in Gas and Liquid Separation. Molecules, 28(6), 2748. https://doi.org/10.3390/molecules28062748