Investigation of the N^C Ligand Effects on Emission Characteristics in a Series of Bis-Metalated [Ir(N^C)2(N^N)]+ Complexes
Abstract
:1. Introduction
2. Results and Discussion
2.1. Synthesis and Characterization
2.2. Photophysics
3. Materials and Methods
3.1. General Comments
3.2. Preparation of the Complexes
3.3. X-ray Structure Determinations
3.4. Photophysical Experiments
3.5. Calculation Details
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Sample Availability
References
- Kawamura, Y.; Yanagida, S.; Forrest, S.R. Energy Transfer in Polymer Electrophosphorescent Light Emitting Devices with Single and Multiple Doped Luminescent Layers. J. Appl. Phys. 2002, 92, 87–93. [Google Scholar] [CrossRef]
- Henwood, A.F.; Zysman-Colman, E. Luminescent Iridium Complexes Used in Light-Emitting Electrochemical Cells (LEECs). Top. Curr. Chem. 2016, 374, 36. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mieczyńska, E.; Trzeciak, A.M.; Ziółkowski, J.J.; Kownacki, I.; Marciniec, B. Hydroformylation and Related Reactions of Vinylsilanes Catalyzed by Siloxide Complexes of Rhodium(I) and Iridium(I). J. Mol. Catal. A Chem. 2005, 237, 246–253. [Google Scholar] [CrossRef]
- Zhao, J.; Ji, S.; Wu, W.; Wu, W.; Guo, H.; Sun, J.; Sun, H.; Liu, Y.; Li, Q.; Huang, L. Transition Metal Complexes with Strong Absorption of Visible Light and Long-Lived Triplet Excited States: From Molecular Design to Applications. RSC Adv. 2012, 2, 1712–1728. [Google Scholar] [CrossRef]
- Zhao, J.; Wu, W.; Sun, J.; Guo, S. Triplet Photosensitizers: From Molecular Design to Applications. Chem. Soc. Rev. 2013, 42, 5323. [Google Scholar] [CrossRef]
- Li, C.; Lu, W.; Zhu, M.; Tang, B. Development of Visible-Light Induced Photoelectrochemical Platform Based on Cyclometalated Iridium(III) Complex for Bioanalysis. Anal. Chem. 2017, 89, 11098–11106. [Google Scholar] [CrossRef]
- Yoshihara, T.; Hosaka, M.; Terata, M.; Ichikawa, K.; Murayama, S.; Tanaka, A.; Mori, M.; Itabashi, H.; Takeuchi, T.; Tobita, S. Intracellular and in Vivo Oxygen Sensing Using Phosphorescent Ir(III) Complexes with a Modified Acetylacetonato Ligand. Anal. Chem. 2015, 87, 2710–2717. [Google Scholar] [CrossRef]
- Zhang, K.Y.; Gao, P.; Sun, G.; Zhang, T.; Li, X.; Liu, S.; Zhao, Q.; Lo, K.K.-W.; Huang, W. Dual-Phosphorescent Iridium(III) Complexes Extending Oxygen Sensing from Hypoxia to Hyperoxia. J. Am. Chem. Soc. 2018, 140, 7827–7834. [Google Scholar] [CrossRef]
- Shakirova, J.R.; Baigildin, V.A.; Solomatina, A.I.; Aghakhanpour, R.B.; Pavlovskiy, V.V.; Porsev, V.V.; Tunik, S.P. Intracellular PH Sensor Based on Heteroleptic Bis-Cyclometalated Iridium(III) Complex Embedded into Block-Copolymer Nanospecies: Application in Phosphorescence Lifetime Imaging Microscopy. Adv. Funct. Mater. 2022, 33, 2212390. [Google Scholar] [CrossRef]
- Solomatina, A.I.; Chelushkin, P.S.; Su, S.-H.; Wu, C.-H.; Chou, P.-T.; Tunik, S.P. Combined Fluorophore and Phosphor Conjugation: A New Design Concept for Simultaneous and Spatially Localized Dual Lifetime Intracellular Sensing of Oxygen and PH. Chem. Commun. 2022, 58, 419–422. [Google Scholar] [CrossRef]
- Chelushkin, P.S.; Shakirova, J.R.; Kritchenkov, I.S.; Baigildin, V.A.; Tunik, S.P. Phosphorescent NIR Emitters for Biomedicine: Applications, Advances and Challenges. Dalton Trans. 2022, 51, 1257–1280. [Google Scholar] [CrossRef]
- Ragni, R.; Plummer, E.A.; Brunner, K.; Hofstraat, J.W.; Babudri, F.; Farinola, G.M.; Naso, F.; de Cola, L. Blue Emitting Iridium Complexes: Synthesis, Photophysics and Phosphorescent Devices. J. Mater. Chem. 2006, 16, 1161. [Google Scholar] [CrossRef]
- Chen, Z.; Wang, L.; Ho, C.-L.; Chen, S.; Suramitr, S.; Plucksacholatarn, A.; Zhu, N.; Hannongbua, S.; Wong, W.-Y. Smart Design on the Cyclometalated Ligands of Iridium(III) Complexes for Facile Tuning of Phosphorescence Color Spanning from Deep-Blue to Near-Infrared. Adv. Opt. Mater. 2018, 6, 1800824. [Google Scholar] [CrossRef]
- Kritchenkov, I.S.; Chelushkin, P.S.; Sokolov, V.V.; Pavlovskiy, V.V.; Porsev, V.V.; Evarestov, R.A.; Tunik, S.P. Near-Infrared [Ir(N∧C)2(N∧N)]+ Emitters and Their Noncovalent Adducts with Human Serum Albumin: Synthesis and Photophysical and Computational Study. Organometallics 2019, 38, 3740–3751. [Google Scholar] [CrossRef]
- Kritchenkov, I.S.; Elistratova, A.A.; Sokolov, V.V.; Chelushkin, P.S.; Shirmanova, M.V.; Lukina, M.M.; Dudenkova, V.V.; Shcheslavskiy, V.I.; Kalinina, S.; Reeß, K.; et al. A Biocompatible Phosphorescent Ir(III) Oxygen Sensor Functionalized with Oligo(Ethylene Glycol) Groups: Synthesis, Photophysics and Application in PLIM Experiments. New J. Chem. 2020, 44, 10459–10471. [Google Scholar] [CrossRef]
- Zhang, G.; Zhang, H.; Gao, Y.; Tao, R.; Xin, L.; Yi, J.; Li, F.; Liu, W.; Qiao, J. Near-Infrared-Emitting Iridium(III) Complexes as Phosphorescent Dyes for Live Cell Imaging. Organometallics 2014, 33, 61–68. [Google Scholar] [CrossRef]
- Takeuchi, T.; Zhang, S.; Negishi, K.; Yoshihara, T.; Hosaka, M.; Tobita, S. Phosphorescent Light-Emitting Iridium Complexes Serve as a Hypoxia-Sensing Probe for Tumor Imaging in Living Animals. In Proceedings of the Volume 7576, Reporters, Markers, Dyes, Nanoparticles, and Molecular Probes for Biomedical Applications II, SPIE BiOS, San Francisco, CA, USA, 11 February 2010; Achilefu, S., Raghavachari, R., Eds.; Volume 7576, p. 75760B. [Google Scholar] [CrossRef]
- Liao, J.-L.; Rajakannu, P.; Liu, S.-H.; Lee, G.-H.; Chou, P.-T.; Jen, A.K.-Y.; Chi, Y. Iridium(III) Complexes Bearing Tridentate Chromophoric Chelate: Phosphorescence Fine-Tuned by Phosphine and Hydride Ancillary. Inorg. Chem. 2018, 57, 8287–8298. [Google Scholar] [CrossRef]
- Yoshihara, T.; Yamaguchi, Y.; Hosaka, M.; Takeuchi, T.; Tobita, S. Ratiometric Molecular Sensor for Monitoring Oxygen Levels in Living Cells. Angew. Chem. Int. Ed. 2012, 51, 4148–4151. [Google Scholar] [CrossRef]
- Wang, L.; Yin, H.; Cui, P.; Hetu, M.; Wang, C.; Monro, S.; Schaller, R.D.; Cameron, C.G.; Liu, B.; Kilina, S.; et al. Near-Infrared-Emitting Heteroleptic Cationic Iridium Complexes Derived from 2,3-Diphenylbenzo[g]Quinoxaline as in Vitro Theranostic Photodynamic Therapy Agents. Dalton Trans. 2017, 46, 8091–8103. [Google Scholar] [CrossRef]
- Zhang, K.Y.; Liu, H.-W.; Tang, M.-C.; Choi, A.W.-T.; Zhu, N.; Wei, X.-G.; Lau, K.-C.; Lo, K.K.-W. Dual-Emissive Cyclometalated Iridium(III) Polypyridine Complexes as Ratiometric Biological Probes and Organelle-Selective Bioimaging Reagents. Inorg. Chem. 2015, 54, 6582–6593. [Google Scholar] [CrossRef]
- Gitlina, A.Y.; Ivonina, M.V.; Sizov, V.V.; Starova, G.L.; Pushkarev, A.P.; Volyniuk, D.; Tunik, S.P.; Koshevoy, I.O.; Grachova, E.v. A Rare Example of a Compact Heteroleptic Cyclometalated Iridium(III) Complex Demonstrating Well-Separated Dual Emission. Dalton Trans. 2018, 47, 7578–7586. [Google Scholar] [CrossRef] [PubMed]
- Lowry, M.S.; Bernhard, S. Synthetically Tailored Excited States: Phosphorescent, Cyclometalated Iridium(III) Complexes and Their Applications. Chem. A Eur. J. 2006, 12, 7970–7977. [Google Scholar] [CrossRef] [PubMed]
- Shvekhgeimer, M.G.-A. The Pfitzinger Reaction. (Review). Chem. Heterocycl. Compd. 2004, 40, 257–294. [Google Scholar] [CrossRef]
- Pfitzinger, W. Chinolinderivate Aus Isatinsäure. J. Prakt. Chem. 1888, 38, 582–584. [Google Scholar] [CrossRef] [Green Version]
- Kritchenkov, I.S.; Mikhnevich, V.G.; Stashchak, V.S.; Solomatina, A.I.; Kozina, D.O.; Sokolov, V.V.; Tunik, S.P. Novel NIR-Phosphorescent Ir(III) Complexes: Synthesis, Characterization and Their Exploration as Lifetime-Based O2 Sensors in Living Cells. Molecules 2022, 27, 3156. [Google Scholar] [CrossRef]
- Solomatina, A.I.; Kuznetsov, K.M.; Gurzhiy, V.V.; Pavlovskiy, V.V.; Porsev, V.V.; Evarestov, R.A.; Tunik, S.P. Luminescent Organic Dyes Containing a Phenanthro[9,10-D]Imidazole Core and [Ir(N^C)(N^N)]+ Complexes Based on the Cyclometalating and Diimine Ligands of This Type. Dalton Trans. 2020, 49, 6751–6763. [Google Scholar] [CrossRef]
- Solomatina, A.I.; Kozina, D.O.; Porsev, V.V.; Tunik, S.P. PH-Responsive N^C-Cyclometalated Iridium(III) Complexes: Synthesis, Photophysical Properties, Computational Results, and Bioimaging Application. Molecules 2021, 27, 232. [Google Scholar] [CrossRef]
- Solomatina, A.I.; Galenko, E.E.; Kozina, D.O.; Kalinichev, A.A.; Baigildin, V.A.; Prudovskaya, N.A.; Shakirova, J.R.; Khlebnikov, A.F.; Porsev, V.V.; Evarestov, R.A.; et al. Nonsymmetric [Pt(C^N*N′^C′)] Complexes: Aggregation-Induced Emission in the Solid State and in Nanoparticles Tuned by Ligand Structure. Chem. A Eur. J. 2022, 28, e202203341. [Google Scholar] [CrossRef]
- Kuznetsov, K.M.; Kritchenkov, I.S.; Shakirova, J.R.; Gurzhiy, V.V.; Pavlovskiy, V.V.; Porsev, V.V.; Sokolov, V.V.; Tunik, S.P. Red-to-NIR Iridium(III) Emitters: Synthesis, Photophysical and Computational Study, the Effects of Cyclometallating and Β-Diketonate Ligands. Eur. J. Inorg. Chem. 2021, 2021, 2163–2170. [Google Scholar] [CrossRef]
- Caspar, J.V.; Kober, E.M.; Sullivan, B.P.; Meyer, T.J. Application of the Energy Gap Law to the Decay of Charge-Transfer Excited States. J. Am. Chem. Soc. 1982, 104, 630–632. [Google Scholar] [CrossRef]
- Caspar, J.V.; Meyer, T.J. Application of the Energy Gap Law to Nonradiative, Excited-State Decay. J. Phys. Chem. 1983, 87, 952–957. [Google Scholar] [CrossRef]
- Weng, J.; Mei, Q.; Jiang, W.; Fan, Q.; Tong, B.; Ling, Q.; Huang, W. Effect of PH on the Photophysical Properties of Two New Carboxylic-Substituted Iridium(III) Complexes. Analyst 2013, 138, 1689–1699. [Google Scholar] [CrossRef]
- Shakirova, J.R.; Tomashenko, O.A.; Galenko, E.E.; Khlebnikov, A.F.; Hirva, P.; Starova, G.L.; Su, S.H.; Chou, P.T.; Tunik, S.P. Metalated Ir(III) Complexes Based on the Luminescent Diimine Ligands: Synthesis and Photophysical Study. Inorg. Chem. 2018, 57, 6853–6864. [Google Scholar] [CrossRef]
- Nonoyama, M. Benzo[h]Quinolin-10-Yl-N Iridium(III) Complexes. Bull. Chem. Soc. Jpn. 1974, 47, 767–768. [Google Scholar] [CrossRef] [Green Version]
- Sheldrick, G.M. Crystal Structure Refinement with SHELXL. Acta Crystallogr. C. Struct. Chem. 2015, 71, 3–8. [Google Scholar] [CrossRef] [Green Version]
- Sheldrick, G.M. SHELXT—Integrated Space-Group and Crystal-Structure Determination. Acta Crystallogr. A Found. Adv. 2015, 71, 3–8. [Google Scholar] [CrossRef] [Green Version]
- Dolomanov, O.V.; Bourhis, L.J.; Gildea, R.J.; Howard, J.A.K.; Puschmann, H. OLEX2: A Complete Structure Solution, Refinement and Analysis Program. J. Appl. Crystallogr. 2009, 42, 339–341. [Google Scholar] [CrossRef]
- Spek, A.L. PLATON SQUEEZE: A Tool for the Calculation of the Disordered Solvent Contribution to the Calculated Structure Factors. Acta Crystallogr. C Struct. Chem. 2015, 71, 9–18. [Google Scholar] [CrossRef] [Green Version]
- Brouwer, A.M. Standards for Photoluminescence Quantum Yield Measurements in Solution (IUPAC Technical Report). Pure Appl. Chem. 2011, 83, 2213–2228. [Google Scholar] [CrossRef] [Green Version]
- Resch-Genger, U.; Rurack, K. Determination of the Photoluminescence Quantum Yield of Dilute Dye Solutions (IUPAC Technical Report). Pure Appl. Chem. 2013, 85, 2005–2013. [Google Scholar] [CrossRef]
- Kohn, W.; Sham, L.J. Self-Consistent Equations Including Exchange and Correlation Effects. Phys. Rev. 1965, 140, A1133–A1138. [Google Scholar] [CrossRef] [Green Version]
- Hohenberg, P.; Kohn, W. Inhomogeneous Electron Gas. Phys. Rev. 1964, 136, B864–B871. [Google Scholar] [CrossRef] [Green Version]
- Frisch, M.J.; Trucks, G.W.; Schlegel, H.B.; Scuseria, G.E.; Robb, M.A.; Cheeseman, J.R.; Scalmani, G.; Barone, V.; Petersson, G.A.; Nakatsuji, H.; et al. Gaussian 16; revision A.03; Gaussian Inc.: Wallingford, CT, USA, 2016. [Google Scholar]
- Becke, A.D. A New Mixing of Hartree–Fock and Local Density-functional Theories. J. Chem. Phys. 1993, 98, 1372–1377. [Google Scholar] [CrossRef]
- Andrae, D.; Häußermann, U.; Dolg, M.; Stoll, H.; Preuß, H. Energy-Adjusted Ab Initio Pseudopotentials for the Second and Third Row Transition Elements. Theor. Chim. Acta 1990, 77, 123–141. [Google Scholar] [CrossRef]
- Peverati, R.; Truhlar, D.G. Screened-Exchange Density Functionals with Broad Accuracy for Chemistry and Solid-State Physics. Phys. Chem. Chem. Phys. 2012, 14, 16187. [Google Scholar] [CrossRef]
- Tomasi, J.; Mennucci, B.; Cammi, R. Quantum Mechanical Continuum Solvation Models. Chem. Rev. 2005, 105, 2999–3094. [Google Scholar] [CrossRef]
- O’boyle, N.M.; Tenderholt, A.L.; Langner, K.M. Cclib: A Library for Package-Independent Computational Chemistry Algorithms. J. Comput. Chem. 2008, 29, 839–845. [Google Scholar] [CrossRef]
- Martin, R.L. Natural Transition Orbitals. J. Chem. Phys. 2003, 118, 4775–4777. [Google Scholar] [CrossRef]
- Lu, T.; Chen, F. Multiwfn: A Multifunctional Wavefunction Analyzer. J. Comput. Chem. 2012, 33, 580–592. [Google Scholar] [CrossRef]
Abs, nm (ε × 10−4, L × mol−1 × cm−1) | λems, nm a | λexc, nm b | Φ, % b (aer/degas) | τ, µs c (aer/degas) | kr, s−1 (degas) d | knr, s−1 (degas) e | λems, (calc) | |
---|---|---|---|---|---|---|---|---|
Ir1-H | 267 (54), 293 (49), 355 (26), 473 (4) | 636, 668sh | 273, 293, 363, 465 | 17/45 | 0.53/1.14 | 3.9 × 105 | 4.8 × 105 | 638 |
Ir1-F | 268 (59), 295 (57), 357 (30), 474 (5) | 641, 665sh | 273, 293, 364, 468 | 16/28 | 0.53/0.87 | 3.2 × 105 | 8.3 × 105 | 654 |
Ir1-NO2 | 260 (44), 306 (42), 366 (29), 511 (5) | 671 | 267, 309, 365, 499, 535sh | 13/20 | 0.25/0.33 | 6.0 × 105 | 2.4 × 106 | 708 |
Ir2-H | 267 (51), 297 (54), 348sh f (27), 365 (28), 460 (6) | 614, 656sh | 273, 293, 346sh, 364, 452 | 17/49 | 0.72/1.98 | 2.4 × 105 | 2.6 × 105 | 560 |
Ir2-F | 270 (42), 300 (44), 345 (21), 365sh (20), 466 (5) | 623, 663sh | 273, 297, 348sh, 364, 458 | 18/55 | 0.71/2.10 | 2.6 × 105 | 2.1 × 105 | 632 |
Ir2-NO2 | 262 (29), 310 (27), 365 (21), 488 (4.5) | 634, 690sh | 269, 309, 365, 482, 516sh | 47/81 | 0.63/1.07 | 7.6 × 105 | 1.7 × 105 | 657 |
Ir3-F | 306 (30), 336 (20), 408sh (8), 498 (5) | 692, 740sh | 306, 349, 398sh, 495 | 8/21 | 0.29/0.68 | 3.1 × 105 | 1.2 × 106 | 642 |
Ir4-F | 372 (41), 316 (49.5), 343 (32), 383sh (22.5), 438sh (10), 554 (7) | 766, 820sh | 290, 366, 528 | <0.1/0.1 | 0.12/0.16 | 3.1 × 103 | 6.2 × 106 | 715 |
Ir4-NO2 | 270 (42), 315sh (35.5), 328 (36), 395 (31), 458sh (13), 590 (12) | 792, 822sh | 297, 335sh, 366, 579, 596 | <0.1/0.1 | 0.07/0.09 | 1.1 × 104 | 1.1 × 107 | 779 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hendi, Z.; Kozina, D.O.; Porsev, V.V.; Kisel, K.S.; Shakirova, J.R.; Tunik, S.P. Investigation of the N^C Ligand Effects on Emission Characteristics in a Series of Bis-Metalated [Ir(N^C)2(N^N)]+ Complexes. Molecules 2023, 28, 2740. https://doi.org/10.3390/molecules28062740
Hendi Z, Kozina DO, Porsev VV, Kisel KS, Shakirova JR, Tunik SP. Investigation of the N^C Ligand Effects on Emission Characteristics in a Series of Bis-Metalated [Ir(N^C)2(N^N)]+ Complexes. Molecules. 2023; 28(6):2740. https://doi.org/10.3390/molecules28062740
Chicago/Turabian StyleHendi, Zohreh, Daria O. Kozina, Vitaly V. Porsev, Kristina S. Kisel, Julia R. Shakirova, and Sergey P. Tunik. 2023. "Investigation of the N^C Ligand Effects on Emission Characteristics in a Series of Bis-Metalated [Ir(N^C)2(N^N)]+ Complexes" Molecules 28, no. 6: 2740. https://doi.org/10.3390/molecules28062740
APA StyleHendi, Z., Kozina, D. O., Porsev, V. V., Kisel, K. S., Shakirova, J. R., & Tunik, S. P. (2023). Investigation of the N^C Ligand Effects on Emission Characteristics in a Series of Bis-Metalated [Ir(N^C)2(N^N)]+ Complexes. Molecules, 28(6), 2740. https://doi.org/10.3390/molecules28062740