Comparative Analysis of Metabolic Variations, Antioxidant Profiles and Antimicrobial Activity of Salvia hispanica (Chia) Seed, Sprout, Leaf, Flower, Root and Herb Extracts
Abstract
:1. Introduction
2. Results
2.1. Metabolomic Profiling Using LC-Q-Orbitrap HRMS
2.2. Antioxidant Profiling by Post-Column Derivatization with ABTS
2.3. Analysis of the Average Content of Rosmarinic Acid Performed Using DAD-UHPLC in Extracts from Seed, Sprout, Leaf, Flower and Herb of S. hispanica
2.4. Antibacterial and Antifungal Activities
3. Discussion
4. Materials and Methods
4.1. Materials and Chemicals
4.2. Plant Material
4.3. Preparation of Extracts
4.4. Untargeted Metabolomics by LC-Q-Orbitrap HRMS
4.5. Antioxidant Profiling by Post-Colum Derivatization with ABTS
4.6. Rosmarinic Acid Determination
4.7. Antibacterial and Antifungal Activities
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Sample Availability
References
- Cahill, J.P. Ethnobotany of Chia, Salvia hispanica L. (Lamiaceae). Econ. Bot. 2003, 57, 604–618. [Google Scholar] [CrossRef]
- Wimberley, J.; Cahill, J.; Atamian, H.S. De novo Sequencing and Analysis of Salvia hispanica Tissue-Specific Transcriptome and Identification of Genes Involved in Terpenoid Biosynthesis. Plants 2020, 9, 405. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Benetoli da Silva, T.R.; de Melo, S.C.; Nascimento, A.B.; Ambrosano, L.; Bordin, J.C.; Alves, C.Z.; Secco, D.; Santos, R.F.; Gonçalves-Jr, A.C.; da Silva, G.D. Response of chia (Salvia hispanica) to sowing times and phosphorus rates over two crop cycles. Heliyon 2020, 6, e05051. [Google Scholar] [CrossRef] [PubMed]
- Motyka, S.; Skała, E.; Ekiert, H.; Szopa, A. Health-promoting approaches of the use of chia seeds. J. Funct. Foods 2023, 103, 105480. [Google Scholar] [CrossRef]
- Bordin-Rodrigues, J.C.; da Silva, T.R.B.; Del Moura Soares, D.F.; Stracieri, J.; Ducheski, R.L.P.; da Silva, G.D. Bean and chia development in accordance with fertilization management. Heliyon 2021, 7, e07316. [Google Scholar] [CrossRef]
- Ochatt, S.; Jain, S.M. Breeding of Neglected and Under-Utilized Crops, Spices, and Herbs; CRC Press: Boca Raton, FL, USA, 2007. [Google Scholar]
- Chivenge, P.; Mabhaudhi, T.; Modi, A.; Mafongoya, P. The Potential Role of Neglected and Underutilised Crop Species as Future Crops under Water Scarce Conditions in Sub-Saharan Africa. Int. J. Environ. Res. Public Health 2015, 12, 5685–5711. [Google Scholar] [CrossRef] [Green Version]
- Marcinek, K.; Krejpcio, Z. Chia seeds (Salvia hispanica): Health promoting properties and therapeutic applications—A review. Rocz. Panstw. Zakl. Hig. 2017, 68, 123–129. [Google Scholar]
- Motyka, S.; Koc, K.; Ekiert, H.; Blicharska, E.; Czarnek, K.; Szopa, A. The Current State of Knowledge on Salvia hispanica and Salviae hispanicae semen (Chia Seeds). Molecules 2022, 27, 1207. [Google Scholar] [CrossRef]
- Baldivia, A.S. A Historical Review of the Scientific and Common Nomenclature Associated with Chia: From Salvia hispanica to Salvia mexicana and Chian to Salba. Agric. Res. Technol. Open Access J. 2018, 18, 556047. [Google Scholar] [CrossRef]
- Ullah, R.; Nadeem, M.; Imran, M. Omega-3 fatty acids and oxidative stability of ice cream supplemented with olein fraction of chia (Salvia hispanica L.) oil. Lipids Health Dis. 2017, 16, 34. [Google Scholar] [CrossRef] [Green Version]
- Miranda-Ramos, K.C.; Millán-Linares, M.C.; Haros, C.M. Effect of Chia as Breadmaking Ingredient on Nutritional Quality, Mineral Availability, and Glycemic Index of Bread. Foods 2020, 9, 663. [Google Scholar] [CrossRef]
- Vuksan, V.; Whitham, D.; Sievenpiper, J.L.; Jenkins, A.L.; Rogovik, A.L.; Bazinet, R.P.; Vidgen, E.; Hanna, A. Supplementation of Conventional Therapy with the Novel Grain Salba (Salvia hispanica L.) Improves Major and Emerging Cardiovascular Risk Factors in Type 2 Diabetes. Diabetes Care 2007, 30, 2804–2810. [Google Scholar] [CrossRef] [Green Version]
- Martínez, E.; García-Martínez, R.; Álvarez-Ortí, M.; Rabadán, A.; Pardo-Giménez, A.; Pardo, J.E. Elaboration of Gluten-Free Cookies with Defatted Seed Flours: Effects on Technological, Nutritional, and Consumer Aspects. Foods 2021, 10, 1213. [Google Scholar] [CrossRef]
- Bresson, J.L.; Flynn, A.; Heinonen, M.; Hulshof, H.; Korhonen, K.; Lagiou, P.; Løvik, M.; Marchelli, R.; Martin, A.; Moseley, B.; et al. Opinion on the safety of ‘Chia seeds (Salvia hispanica L.) and ground whole Chia seeds’ as a food ingredient. EFSA J. 2009, 7, 996. [Google Scholar] [CrossRef]
- Health Canada. Salvia hispanica. Available online: http://webprod.hc-sc.gc.ca/ (accessed on 14 May 2022).
- Mohd Ali, N.; Yeap, S.K.; Ho, W.Y.; Beh, B.K.; Tan, S.W.; Tan, S.G. The promising future of chia, Salvia hispanica L. J. Biomed. Biotechnol. 2012, 2012, 171956. [Google Scholar] [CrossRef] [Green Version]
- Ullah, R.; Nadeem, M.; Khalique, A.; Imran, M.; Mehmood, S.; Javid, A.; Hussain, J. Nutritional and therapeutic perspectives of Chia (Salvia hispanica L.): A review. J. Food Sci. Technol. 2016, 53, 1750–1758. [Google Scholar] [CrossRef] [Green Version]
- Grancieri, M.; Martino, H.S.D.; Gonzalez de Mejia, E. Protein Digests and Pure Peptides from Chia Seed Prevented Adipogenesis and Inflammation by Inhibiting PPARγ and NF-κB Pathways in 3T3L-1 Adipocytes. Nutrients 2021, 13, 176. [Google Scholar] [CrossRef]
- Valdivia-López, M.Á.; Tecante, A. Chia (Salvia hispanica). A review of native mexican seed and its nutritional and functional properties. Advances in Food and Nutrition Research; Elsevier Inc.: Amsterdam, The Netherlands, 2015; Volume 75, pp. 53–75. [Google Scholar] [CrossRef]
- Melo, D.; MacHado, T.B.; Oliveira, M.B.P.P. Chia seeds: An ancient grain trending in modern human diets. Food Funct. 2019, 10, 3068–3089. [Google Scholar] [CrossRef]
- Hrnčič, M.; Ivanovski, M.; Cör, D.; Knez, Ž. Chia Seeds (Salvia hispanica L.): An Overview—Phytochemical Profile, Isolation Methods, and Application. Molecules 2019, 25, 11. [Google Scholar] [CrossRef] [Green Version]
- Martínez Cruz, O.; Paredes López, O. Phytochemical profile and nutraceutical potential of chia seeds (Salvia hispanica L.) by ultra high performance liquid chromatography. J. Chromatogr. A 2014, 1346, 43–48. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; He, P.; Hou, Y.; Chen, S.; Xiao, Z.; Zhan, J.; Luo, D.; Gu, M.; Lin, D. Berberine inhibits the interleukin-1 beta-induced inflammatory response via MAPK downregulation in rat articular chondrocytes. Drug Dev. Res. 2019, 80, 637–645. [Google Scholar] [CrossRef] [PubMed]
- Gómez-Favela, M.A.; Gutiérrez-Dorado, R.; Cuevas-Rodríguez, E.O.; Canizalez-Román, V.A.; del Rosario León-Sicairos, C.; Milán-Carrillo, J.; Reyes-Moreno, C. Improvement of Chia Seeds with Antioxidant Activity, GABA, Essential Amino Acids, and Dietary Fiber by Controlled Germination Bioprocess. Plant Foods Hum. Nutr. 2017, 72, 345–352. [Google Scholar] [CrossRef] [PubMed]
- Villanueva-Lazo, A.; Montserrat-de la Paz, S.; Grao-Cruces, E.; Pedroche, J.; Toscano, R.; Millan, F.; Millan-Linares, M.C. Antioxidant and Immunomodulatory Properties of Chia Protein Hydrolysates in Primary Human Monocyte–Macrophage Plasticity. Foods 2022, 11, 623. [Google Scholar] [CrossRef]
- Kulczyński, B.; Kobus-Cisowska, J.; Taczanowski, M.; Kmiecik, D.; Gramza-Michałowska, A. The Chemical Composition and Nutritional Value of Chia Seeds—Current State of Knowledge. Nutrients 2019, 11, 1242. [Google Scholar] [CrossRef] [Green Version]
- Rossi, S.A.; Oliva, M.E.; Ferreira, M.R.; Chicco, A.; Ferreira, M.R.; Chicco, A.; Lombardo, Y.B. Dietary chia seed induced changes in hepatic transcription factors and their target lipogenic and oxidative enzyme activities in dyslipidaemic insulin-resistant rats. Br. J. Nutr. 2013, 109, 1617–1627. [Google Scholar] [CrossRef] [Green Version]
- Oliva, M.E.; Ingaramo, P.; Vega Joubert, M.B.; Ferreira, M.D.R.; D’Alessandro, M.E. Effects of Salvia hispanica L. (chia) seed on blood coagulation, endothelial disfunction and liver fibrosis in an experimental model of metabolic cyndrome. Chia Seed Shows Good Protein Quality, Hypoglycemic Effect and Improves the Lipid Profile and Liver and Intestinal Morphology of Wistar Rats. Foods Funct. 2021, 12, 12407–12420. [Google Scholar] [CrossRef]
- Fonte-Faria, T.; Citelli, M.; Atella, G.C.; Raposo, H.F.; Zago, L.; de Souza, T.; da Silva, S.V.; Barja-Fidalgo, C. Chia oil supplementation changes body composition and activates insulin signaling cascade in skeletal muscle tissue of obese animals. Nutrition 2019, 58, 167–174. [Google Scholar] [CrossRef]
- Da Silva Marineli, R.; Moura, C.S.; Moraes, É.A.; Lenquiste, S.A.; Lollo, P.C.B.; Morato, P.N.; Amaya-Farfan, J.; Maróstica, M.R. Chia (Salvia hispanica L.) enhances HSP, PGC-1α expressions and improves glucose tolerance in diet-induced obese rats. Nutrition 2015, 31, 740–748. [Google Scholar] [CrossRef]
- Toscano, L.T.; da Silva, C.S.O.; Toscano, L.T.; de Almeida, A.E.M.; da Cruz Santos, A.; Silva, A.S. Chia Flour Supplementation Reduces Blood Pressure in Hypertensive Subjects. Plant Foods Hum. Nutr. 2014, 69, 392–398. [Google Scholar] [CrossRef]
- Segura Campos, M.R.; Peralta González, F.; Chel Guerrero, L.; Betancur Ancona, D. Angiotensin I-Converting Enzyme Inhibitory Peptides of Chia (Salvia hispanica) Produced by Enzymatic Hydrolysis. Int. J. Food Sci. 2013, 2013, 158482. [Google Scholar] [CrossRef] [Green Version]
- Orona-Tamayo, D.; Valverde, M.; Nieto-Rendón, B.; Paredes-Lopez, O. Inhibitory activity of chia (Salvia hispanica L.) protein fractions against angiotensin I-converting enzyme and antioxidant capacity. Leb. Technol. 2015, 64, 236–242. [Google Scholar] [CrossRef]
- Da Silva, B.P.; Dias, D.M.; de Castro Moreira, M.E.; Toledo, R.C.L.; da Matta, S.L.P.; Lucia, C.M.D.; Martino, H.S.D.; Pinheiro-Sant’Ana, H.M. Chia Seed Shows Good Protein Quality, Hypoglycemic Effect and Improves the Lipid Profile and Liver and Intestinal Morphology of Wistar Rats. Plant Foods Hum. Nutr. 2016, 71, 225–230. [Google Scholar] [CrossRef] [PubMed]
- Calvo-Lerma, J.; Paz-Yépez, C.; Asensio-Grau, A.; Heredia, A.; Andrés, A. Impact of Processing and Intestinal Conditions on in Vitro Digestion of Chia (Salvia hispanica) Seeds and Derivatives. Foods 2020, 9, 290. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gómez-Velázquez, H.D.J.; Aparicio-Fernández, X.; Reynoso-Camacho, R. Chia Sprouts Elicitation with Salicylic Acid and Hydrogen Peroxide to Improve their Phenolic Content, Antioxidant Capacities In Vitro and the Antioxidant Status in Obese Rats. Plant Foods Hum. Nutr. 2021, 76, 363–370. [Google Scholar] [CrossRef]
- Bermejo, N.F.; Munné-Bosch, S. Mixing chia seeds and sprouts at different developmental stages: A cost-effective way to improve antioxidant vitamin composition. Food Chem. 2023, 405, 134880. [Google Scholar] [CrossRef]
- Bermejo, N.F.; Hoummadi, G.; Munné-Bosch, S. β-Carotene biofortification of chia sprouts with plant growth regulators. Plant Physiol. Biochem. 2021, 168, 398–409. [Google Scholar] [CrossRef]
- Amato, M.; Caruso, M.C.; Guzzo, F.; Galgano, F.; Commisso, M.; Bochicchio, R.; Labella, R.; Favati, F. Nutritional quality of seeds and leaf metabolites of Chia (Salvia hispanica L.) from Southern Italy. Eur. Food Res. Technol. 2015, 241, 615–625. [Google Scholar] [CrossRef]
- Benincasa, P.; Falcinelli, B.; Lutts, S.; Stagnari, F.; Galieni, A. Sprouted Grains: A Comprehensive Review. Nutrients 2019, 11, 421. [Google Scholar] [CrossRef] [Green Version]
- Dziadek, K.; Kopeć, A.; Dziadek, M.; Sadowska, U.; Cholewa-Kowalska, K. The Changes in Bioactive Compounds and Antioxidant Activity of Chia (Salvia hispanica L.) Herb under Storage and Different Drying Conditions: A Comparison with Other Species of Sage. Molecules 2022, 27, 1569. [Google Scholar] [CrossRef]
- Gan, R.Y.; Lui, W.Y.; Wu, K.; Chan, C.L.; Dai, S.H.; Sui, Z.Q.; Corke, H. Bioactive compounds and bioactivities of germinated edible seeds and sprouts: An updated review. Trends Food Sci. Technol. 2017, 59, 1–14. [Google Scholar] [CrossRef]
- Teodoro, A.J. Bioactive Compounds of Food: Their Role in the Prevention and Treatment of Diseases. Oxid. Med. Cell. Longev. 2019, 2019, 3765986. [Google Scholar] [CrossRef] [Green Version]
- Erba, D.; Angelino, D.; Marti, A.; Manini, F.; Faoro, F.; Morreale, F.; Pellegrini, N.; Casiraghi, M.C. Effect of sprouting on nutritional quality of pulses. Int. J. Food Sci. Nutr. 2019, 70, 30–40. [Google Scholar] [CrossRef]
- Castañeta, G.; Cifuentes, N.; Sepulveda, B.; Bárcenas-Pérez, D.; Cheel, J.; Areche, C. Untargeted Metabolomics by Using UHPLC–ESI–MS/MS of an Extract Obtained with Ethyl Lactate Green Solvent from Salvia rosmarinus. Separations 2022, 9, 327. [Google Scholar] [CrossRef]
- Abd Rashed, A.; Rathi, D.-N.G. Bioactive Components of Salvia and Their Potential Antidiabetic Properties: A Review. Molecules 2021, 26, 3042. [Google Scholar] [CrossRef]
- Rahman, M.J.; de Camargo, A.C.; Shahidi, F. Phenolic and polyphenolic profiles of chia seeds and their in vitro biological activities. J. Funct. Foods 2017, 35, 622–634. [Google Scholar] [CrossRef]
- Oliveira-Alves, S.C.; Vendramini-Costa, D.B.; Betim Cazarin, C.B.; Maróstica Júnior, M.R.; Borges Ferreira, J.P.; Silva, A.B.; Prado, M.A.; Bronze, M.R. Characterization of phenolic compounds in chia (Salvia hispanica L.) seeds, fiber flour and oil. Food Chem. 2017, 232, 295–305. [Google Scholar] [CrossRef]
- Abdel-Aty, A.M.; Elsayed, A.M.; Salah, H.A.; Bassuiny, R.I.; Mohamed, S.A. Egyptian chia seeds (Salvia hispanica L.) during germination: Upgrading of phenolic profile, antioxidant, antibacterial properties and relevant enzymes activities. Food Sci. Biotechnol. 2021, 30, 723–734. [Google Scholar] [CrossRef]
- Dib, H.; Seladji, M.; Bencheikh, F.Z.; Faradji, M.; Benammar, C.; Belarbi, M. Phytochemical Screening and Antioxidant Activity of Salvia hispanica. J. Pharm. Res. Int. 2021, 33, 167–174. [Google Scholar] [CrossRef]
- Tuncil, Y.E.; Çelik, Ö.F. Total phenolic contents, antioxidant and antibacterial activities of chia seeds (Salvia hispanica L.) having different coat color. Akad. Ziraat Derg. 2019, 8, 113–120. [Google Scholar] [CrossRef] [Green Version]
- Da Silva Marineli, R.; Moraes, É.A.; Lenquiste, S.A.; Godoy, A.T.; Eberlin, M.R.; Marostica, M.R. Chemical characterization and antioxidant potential of Chilean chia seeds and oil (Salvia hispanica L.). Food Sci. Technol. 2014, 59, 1304–1310. [Google Scholar] [CrossRef]
- Silveira Coelho, M.; de las Mercedes Salas-Mellado, M. Chemical Characterization of CHIA (Salvia hispanica L.) for Use in Food Products. J. Food Nutr. Res. 2014, 2, 263–269. [Google Scholar] [CrossRef] [Green Version]
- Sargi, S.C.; Silva, B.C.; Santos, H.M.C.; Montanher, P.F.; Boeing, J.S.; Júnior, O.O.S.; Souza, N.E.; Visentainer, J.V. Antioxidant capacity and chemical composition in seeds rich in omega-3: Chia, flax, and perilla. Food Sci. Technol 2013, 33, 541–548. [Google Scholar] [CrossRef] [Green Version]
- Segura-Campos, M.R.; Ciau-Solís, N.; Rosado-Rubio, G.; Chel-Guerrero, L.; Betancur-Ancona, D. Chemical and Functional Properties of Chia Seed (Salvia hispanica L.) Gum. Int. J. Food Sci. 2014, 2014, 241053. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tepe, B.; Sokmen, M.; Akpulat, H.A.; Sokmen, A. Screening of the antioxidant potentials of six Salvia species from Turkey. Food Chem. 2006, 95, 200–204. [Google Scholar] [CrossRef]
- Craig, R. Application for approval of whole chia (Salvia hispanica L.) seed and ground whole seed as novel food ingredient. Commission Decision 2009/827/EC. In Advisory Committee for Novel Foods and Process; Company David Armstrong: Dublin, Ireland, 2004; pp. 1–29. [Google Scholar]
- Liu, A.H.; Guo, H.; Ye, M.; Lin, Y.H.; Sun, J.H.; Xu, M.; Guo, D.A. Detection, characterization and identification of phenolic acids in Danshen using high-performance liquid chromatography with diode array detection and electrospray ionization mass spectrometry. J. Chromatogr. A 2007, 1161, 170–182. [Google Scholar] [CrossRef]
- Ruan, M.; Li, Y.; Li, X.; Luo, J.; Kong, L. Qualitative and quantitative analysis of the major constituents in Chinese medicinal preparation Guan-Xin-Ning injection by HPLC–DAD–ESI-MSn. J. Pharm. Biomed. Anal. 2012, 59, 184–189. [Google Scholar] [CrossRef]
- Chen, H.; Zhang, Q.; Wang, X.; Yang, J.; Wang, Q. Qualitative Analysis and Simultaneous Quantification of Phenolic Compounds in the Aerial Parts of Salvia miltiorrhiza by HPLC-DAD and ESI/MSn. Phytochem. Anal. 2011, 22, 247–257. [Google Scholar] [CrossRef]
- Pellegrini, M.; Lucas-Gonzalez, R.; Sayas-Barberá, E.; Fernández-López, J.; Pérez-Álvarez, J.A.; Viuda-Martos, M. Bioaccessibility of Phenolic Compounds and Antioxidant Capacity of Chia (Salvia hispanica L.) Seeds. Plant Foods Hum. Nutr. 2018, 73, 47–53. [Google Scholar] [CrossRef]
- Pająk, P.; Socha, R.; Broniek, J.; Królikowska, K.; Fortuna, T. Antioxidant properties, phenolic and mineral composition of germinated chia, golden flax, evening primrose, phacelia and fenugreek. Food Chem. 2019, 275, 69–76. [Google Scholar] [CrossRef]
- Motyka, S.; Ekiert, H.; Szopa, A. Chia sprouts and microgreens as a new nutraceutical raw materials and their health-promoting impact in modern dietetics. Curr. Issues Pharm. Med. Sci. 2023. Under Review (CIPMS-00112-2023-01). [Google Scholar]
- Dahham, S.; Tabana, Y.; Iqbal, M.; Ahamed, M.; Ezzat, M.; Majid, A.; Majid, A. The Anticancer, Antioxidant and Antimicrobial Properties of the Sesquiterpene β-Caryophyllene from the Essential Oil of Aquilaria crassna. Molecules 2015, 20, 11808–11829. [Google Scholar] [CrossRef]
- Dorman, H.J.D.; Deans, S.G. Antimicrobial agents from plants: Antibacterial activity of plant volatile oils. J. Appl. Microbiol. 2000, 88, 308–316. [Google Scholar] [CrossRef]
- Barrero, A.F.; Quílez del Moral, J.F.; Lara, A.; Herrador, M.M. Antimicrobial Activity of Sesquiterpenes from the Essential Oil of Juniperus thurifera Wood. Planta Med. 2005, 71, 67–71. [Google Scholar] [CrossRef]
- Ahmed, M.; Ting, I.P.; Scora, R.W. Leaf Oil Composition of Salvia hispanica L. from Three Geographical Areas. J. Essent. Oil Res. 1994, 6, 223–228. [Google Scholar] [CrossRef]
- Elshafie, H.S.; Aliberti, L.; Amato, M.; De Feo, V.; Camele, I. Chemical composition and antimicrobial activity of chia (Salvia hispanica L.) essential oil. Eur. Food Res. Technol. 2018, 244, 1675–1682. [Google Scholar] [CrossRef]
- Sánchez-Velázquez, O.A.; Mondor, M.; Segura-Campos, M.R.; del Carmen Quintal-Bojórquez, N.; Hernández-Álvarez, A.J. Bioactive Phytochemicals from Chia Seed (Salvia hispanica) Oil Processing By-Products; Springer: Berlin/Heidelberg, Germany, 2022; pp. 1–25. [Google Scholar]
- Brieskorn, C.H.; Biechele, W. Flavone aus Salvia officinalis L. 22. Mitt. über Inhaltsstoffe von Salvia off. L. Arch. Pharm. 1971, 304, 557–561. [Google Scholar] [CrossRef]
- Lu, Y.; Yeap Foo, L. Polyphenolics of Salvia—A review. Phytochemistry 2002, 59, 117–140. [Google Scholar] [CrossRef]
- Zúñiga-López, M.C.; Maturana, G.; Campmajó, G.; Saurina, J.; Núñez, O. Determination of Bioactive Compounds in Sequential Extracts of Chia Leaf (Salvia hispanica L.) Using UHPLC-HRMS (Q-Orbitrap) and a Global Evaluation of Antioxidant In Vitro Capacity. Antioxidants 2021, 10, 1151. [Google Scholar] [CrossRef]
- Abou Zeid, E.M.; Abdel Ghani, A.E.; Mahmoud, M.Y.; Abdallah, R.H. Phytochemical Investigation and Biological Screening of Ethyl Acetate Fraction of Salvia hispanica L. Aerial Parts. Pharmacogn. J. 2022, 14, 226–234. [Google Scholar] [CrossRef]
- Silveira Coelho, M.; Manólio Soares-Freitas, R.A.; Gomes Arêas, J.A.; Gandra, E.A.; de Las Mercedes Salas-Mellado, M. Peptides from Chia Present Antibacterial Activity and Inhibit Cholesterol Synthesis. Plant Foods Hum. Nutr. 2018, 73, 101–107. [Google Scholar] [CrossRef]
- Güzel, S.; Ülger, M.; Özay, Y. Antimicrobial and Antiproliferative Activities of Chia (Salvia hispanica L.) Seeds. Int. J. Second. Metab. 2020, 7, 174–180. [Google Scholar] [CrossRef]
- de Falco, B.; Amato, M.; Lanzotti, V. Chia seeds products: An overview. Phytochem. Rev. 2017, 16, 745–760. [Google Scholar] [CrossRef]
- Motyka, S.; Ekiert, H.; Szopa, A. Chemical composition, biological activity and utilization of chia seeds (Salviae hispanicae semen). Farm. Pol. 2021, 77, 651–661. [Google Scholar] [CrossRef]
- Stojković, D.; Petrović, J.; Soković, M.; Glamočlija, J.; Kukić-Marković, J.; Petrović, S. In situ antioxidant and antimicrobial activities of naturally occurring caffeic acid, p -coumaric acid and rutin, using food systems. J. Sci. Food Agric. 2013, 93, 3205–3208. [Google Scholar] [CrossRef]
- Duda-Chodak, A.; Tarko, T.; Satora, P.; Sroka, P. Interaction of dietary compounds, especially polyphenols, with the intestinal microbiota: A review. Eur. J. Nutr. 2015, 54, 325–341. [Google Scholar] [CrossRef] [Green Version]
- Tajkarimi, M.M.; Ibrahim, S.A.; Cliver, D.O. Antimicrobial herb and spice compounds in food. Food Control 2010, 21, 1199–1218. [Google Scholar] [CrossRef]
- Gyawali, R.; Ibrahim, S.A. Natural products as antimicrobial agents. Food Control 2014, 46, 412–429. [Google Scholar] [CrossRef]
- Yadav, A.; Joshi, A.; Kachhwaha, S. Chemical characterization of extracts from various parts of Salvia hispanica L. and their antibacterial activity. Indian J. Nat. Prod. Resour. 2021, 12, 202–213. [Google Scholar] [CrossRef]
- Divyapriya, G.K.; Veeresh, D.J.; Yavagal, P.C. Evaluation of antibacterial efficiacy of chia (Salvia hispanica) seeds extract against Porphyromonas gingivalis, Fusobacterium nucleatum and Agregatibacter Actinomycetemcomitans-An in-vitro study. Int. J. Ayurveda Pharma Res. 2016, 4. Available online: https://ijapr.in/index.php/ijapr/article/view/325. (accessed on 20 September 2022).
- Cui, H.; Zhang, X.; Zhou, H.; Zhao, C.; Lin, L. Antimicrobial activity and mechanisms of Salvia sclarea essential oil. Bot. Stud. 2015, 56, 16. [Google Scholar] [CrossRef] [Green Version]
- Nadeem, M.; Imran, M.; Aslam Gondal, T.; Imran, A.; Shahbaz, M.; Muhammad Amir, R.; Wasim Sajid, M.; Batool Qaisrani, T.; Atif, M.; Hussain, G.; et al. Therapeutic Potential of Rosmarinic Acid: A Comprehensive Review. Appl. Sci. 2019, 9, 3139. [Google Scholar] [CrossRef] [Green Version]
- Kusznierewicz, B.; Mróz, M.; Koss-Mikołajczyk, I.; Namieśnik, J. Comparative evaluation of different methods for determining phytochemicals and antioxidant activity in products containing betalains—Verification of beetroot samples. Food Chem. 2021, 362, 130132. [Google Scholar] [CrossRef]
- Kusznierewicz, B.; Piasek, A.; Bartoszek, A.; Namiesnik, J. Application of a commercially available derivatization instrument and commonly used reagents to HPLC on-line determination of antioxidants. J. Food Compos. Anal. 2011, 24, 1073–1080. [Google Scholar] [CrossRef]
- Kusznierewicz, B.; Piasek, A.; Bartoszek, A.; Namiesnik, J. The Optimisation of Analytical Parameters for Routine Profiling of Antioxidants in Complex Mixtures by HPLC Coupled Post-column Derivatisation. Phytochem. Anal. 2011, 22, 392–402. [Google Scholar] [CrossRef]
- Widelski, J.; Okińczyc, P.; Paluch, E.; Mroczek, T.; Szperlik, J.; Żuk, M.; Sroka, Z.; Sakipova, Z.; Chinou, I.; Skalicka-Woźniak, K.; et al. The Antimicrobial Properties of Poplar and Aspen–Poplar Propolises and Their Active Components Against Selected Microorganisms, including Helicobacter pylori. Pathogens 2022, 11, 191. [Google Scholar] [CrossRef]
No. | RT [min] | Name | Proposed Formula | Theoretical (m/z) | Observed (m/z) | Δ (ppm) | Fragment Ions (m/z) | Class * |
---|---|---|---|---|---|---|---|---|
1 | 1.86 | Raffinose | C25H28O11 | 503.15534 | 503.15543 | −0.2 | 89.0230; 71.0124; 101.0231; 59.0125; 113.0231 | S |
2 | 1.88 | Gluconic acid | C6H12O7 | 195.05048 | 195.04985 | 3.2 | 75.0073; 59.0125; 72.9917; 71.0124; 87.0074 | OA |
3 | 1.91 | Xylonic acid | C5H10O6 | 165.03992 | 165.03904 | 5.3 | 87.0074; 75.0073; 71.0124; 59.0125; 72.9917 | OA |
4 | 1.95 | Sucrose | C12H22O11 | 341.10839 | 341.10850 | −0.3 | 59.0125; 89.023; 71.0124; 101.023; 113.0231 | S |
5 | 1.95 | Threonic acid | C4H8O5 | 135.02935 | 135.02827 | 8.0 | 75.0073; 71.0124; 72.9917; 59.0125; 55.0176 | OA |
6 | 2.01 | Quinic acid | C7H12O6 | 191.05557 | 191.05491 | 3.4 | 85.0281; 93.0332; 59.0125; 87.0074; 71.0124 | OA |
7 | 2.02 | Tartaric acid | C4H6O6 | 149.00862 | 149.00763 | 6.6 | 72.9917; 59.0125; 87.0074; 73.9951; 68.9968 | OA |
8 | 2.09 | Heptose | C7H14O7 | 209.06613 | 209.06571 | 2.0 | 85.0281; 57.0332; 59.0125; 55.0176; 71.0124 | S |
9 | 2.29 | Malic acid | C4H6O5 | 133.01370 | 133.01258 | 8.4 | 71.0125; 72.9917; 59.0125; 72.0158; 115.0022 | OA |
10 | 2.35 | Uric acid isomer | C5H4N4O3 | 167.02052 | 167.02071 | −1.1 | 69.008; 96.019; 124.014; 97.0029; 81.008 | P |
11 | 2.67 | Citric acid | C6H8O7 | 191.01918 | 191.01843 | 3.9 | 87.0074; 111.0075; 57.0332; 85.0281; 67.0175 | OA |
12 | 2.77 | Uric acid isomer | C5H4N4O3 | 167.02052 | 167.01958 | 5.6 | 69.008; 96.019; 124.0139; 97.0029; 110.9332 | P |
13 | 3.03 | Isocitric acid | C6H8O7 | 191.01918 | 191.01845 | 3.8 | 87.0073; 111.0074; 57.0332; 85.0281; 67.0175 | OA |
14 | 3.14 | Pseudouridine | C9H12N2O6 | 243.06171 | 243.06187 | −0.6 | 82.0284; 110.0234; 66.0335; 118.9651; 146.9601 | P |
15 | 3.56 | Methoxyguanosine | C11H15N5O6 | 312.09441 | 312.09476 | −1.1 | 134.0461; 146.9601; 135.0507; 148.9558; 254.889 | P |
16 | 3.39 | Homocitric acid | C7H10O7 | 205.03483 | 205.03441 | 2.1 | 71.0488; 101.023; 99.0438; 115.0385; 125.0231 | OA |
17 | 3.80 | Arbutin | C12H16O7 | 271.08178 | 271.08193 | −0.5 | 108.0204; 109.0235; 71.0124; 85.0281; 123.0441 | H |
18 | 5.87 | Dihydroxybenzoic acid hexoside | C13H16O9 | 315.07161 | 315.07193 | −1.0 | 108.0204; 152.0105; 109.0288; 112.9843; 68.9944 | PAD |
19 | 6.13 | Danshensu | C9H10O5 | 197.04500 | 197.04456 | 2.2 | 72.9917; 123.0439; 135.0441; 134.0361; 122.0361 | PAD |
20 | 6.42 | Dihydroxybenzoic acid hexoside | C13H16O9 | 315.07161 | 315.07191 | −0.9 | 109.0282; 153.0183; 152.0105; 112.9843; 68.9943 | PAD |
21 | 7.00 | Neochlorogenic acid | C16H18O9 | 353.08726 | 353.08754 | −0.8 | 191.0554; 135.044; 179.0341; 192.0587; 136.0473 | PAD |
22 | 7.04 | Unknown | C75H57O12 | 1148.37718 | 1148.37575 | −1.3 | 1148.377; 1149.3793; 1026.3395; 1027.3422; 127.6119 | - |
23 | 7.44 | D-(+)-Tryptophan | C11H12N2O2 | 203.08205 | 203.08161 | 2.2 | 116.0493; 74.0234; 142.0652; 117.0527; 72.0076 | AA |
24 | 7.48 | Caftaric acid | C13H12O9 | 311.04031 | 311.04066 | −1.1 | 135.044; 149.0081; 179.0341; 87.0074; 136.0473 | OA |
25 | 7.64 | Unknown | C20H36O11 | 451.21794 | 451.21830 | −0.8 | 167.1068; 89.023; 71.0124; 119.0337; 59.0125 | - |
26 | 8.21 | Caffeoyl glucose | C15H18O9 | 341.08726 | 341.08739 | −0.4 | 135.044; 179.0342; 180.0376; 136.0474; 134.0368 | PAD |
27 | 8.48 | Chlorogenic acid | C16H18O9 | 353.08726 | 353.08745 | −0.5 | 191.0554; 85.0281; 161.0234; 93.0331; 135.0438 | PAD |
28 | 8.87 | Salicylic acid | C7H6O3 | 137.02387 | 137.02389 | −0.1 | 108.0204; 136.0154; 137.0233; 91.0176; 65.0019 | OA |
29 | 9.15 | Tuberonic acid hexoside | C18H28O9 | 387.16551 | 387.16584 | −0.8 | 59.0125; 89.023; 101.0231; 71.0124; 207.102 | OA |
30 | 9.49 | Feruloyl arabinose | C14H14O9 | 325.05596 | 325.05622 | −0.8 | 134.0362; 193.05; 112.9847; 117.0334; 135.0395 | PAD |
31 | 9.80 | Tuberonic acid hexoside | C18H28O9 | 387.16551 | 387.16582 | −0.8 | 59.0125; 89.0230; 163.1119; 71.0124; 101.023 | OA |
32 | 9.95 | Caffeic acid | C9H8O4 | 179.03444 | 179.03362 | 4.6 | 135.0441; 134.0362; 89.0383; 107.0491; 136.0473 | PAD |
33 | 10.47 | Unknown | C17H30O9 | 377.18116 | 377.18142 | −0.7 | 59.0125; 71.0124; 112.9844; 377.1813; 89.023 | - |
34 | 10.64 | Orientin | C21H20O11 | 447.09274 | 447.09305 | −0.7 | 327.0511; 357.0618; 328.0545; 297.0406; 285.0406 | FV |
35 | 10.82 | Tuberonic acid | C12H18O4 | 225.11269 | 225.11245 | 1.1 | 59.0125; 97.0645; 68.9944; 81.0331; 95.0489 | OA |
36 | 10.86 | Unknown | C75H55O11 | 1130.36658 | 1130.36512 | −1.3 | 1131.3685; 1132.3582; 1133.3661; 239.0889; 652.0154 | - |
37 | 10.92 | Przewalskinic acid A | C18H14O8 | 357.06105 | 357.06142 | −1.0 | 109.0282; 159.0442; 269.0817; 135.0441; 175.0392 | PAD |
38 | 11.46 | Vitexin | C21H20O10 | 431.09783 | 431.09814 | −0.7 | 311.0564; 283.0613; 312.0597; 341.0668; 269.0458 | FV |
39 | 11.86 | Salviaflaside | C24H26O13 | 521.12952 | 521.12978 | −0.5 | 161.0235; 323.0773; 359.0748; 179.0341; 324.0808 | PAD |
40 | 12.00 | Scutellarin | C21H18O12 | 461.07201 | 461.07254 | −1.1 | 285.0407; 286.044; 113.0232; 85.0282; 112.9843 | FV |
41 | 12.23 | Luteolin rutinoside | C27H30O15 | 593.15065 | 593.15118 | −0.9 | 285.0403; 593.1502; 284.0327; 594.1534; 269.0456 | FV |
42 | 12.38 | Apigenin rutinoside | C27H30O14 | 577.15574 | 577.15610 | −0.6 | 269.0455; 270.0489; 577.1547; 311.0541; 112.9841 | FV |
43 | 12.48 | Apigenin-malonyl glucoside | C24H22O13 | 517.09822 | 517.09854 | −0.6 | 311.0564; 413.088; 312.0597; 341.0667; 283.0614 | FV |
44 | 12.75 | Rabdosiin | C36H30O16 | 717.14557 | 717.14622 | −0.9 | 475.1037; 339.051; 519.0935; 476.1072; 365.0666 | PAD |
45 | 13.08 | Dehydroxyl-rosmarinic acid-glucoside | C24H26O12 | 505.13461 | 505.13508 | −0.9 | 161.0235; 323.0773; 181.0498; 179.0342; 324.0809 | PAD |
46 | 13.40 | Apigenin-7-glucuronide | C21H18O11 | 445.07709 | 445.07747 | −0.8 | 269.0456; 113.0231; 270.049; 85.0281; 59.0125 | FV |
47 | 13.46 | Syringetin-glucoside | C23H24O13 | 507.11387 | 507.11422 | −0.7 | 345.0616; 330.0382; 346.065; 331.0416; 315.0149 | FV |
48 | 13.82 | Tuberonic acid hexoside | C18H28O9 | 387.16551 | 387.16587 | −0.9 | 89.0230; 59.0125; 112.9843; 71.0125; 113.0232 | OA |
49 | 13.96 | Rosmarinic acid | C21H18O11 | 359.07670 | 359.07689 | −0.5 | 161.0235; 72.9917; 179.0341; 135.044; 197.045 | PAD |
50 | 14.08 | Azelaic acid | C9H16O4 | 187.09704 | 187.09638 | 3.5 | 97.0646; 123.0803; 57.0332; 125.0961; 95.0489 | OA |
51 | 14.64 | Apigenin caffeoyl glucoside | C30H26O13 | 593.12952 | 593.13009 | −1.0 | 431.0985; 311.0564; 413.0882; 293.0458; 432.102 | FV |
52 | 15.16 | Hydramacroside A | C28H36O12 | 563.21286 | 563.21326 | −0.7 | 387.1663; 175.0392; 388.1696; 563.2132; 193.0499 | SI |
53 | 15.34 | Isorhamnetin | C16H12O7 | 315.05048 | 315.05074 | 0.8 | 300.0277; 112.9843; 136.987; 301.0312; 68.9943 | FV |
54 | 15.39 | Ferulic acid | C10H10O4 | 193.05009 | 193.04959 | 2.6 | 133.0284; 161.0235; 134.0354; 132.0207; 137.0236 | PAD |
55 | 15.96 | 4-Hydroxybenzoic acid | C7H6O3 | 137.02387 | 137.02282 | 7.6 | 93.0332; 65.0383; 94.0366; 75.0226; 66.0416 | PAD |
56 | 16.65 | Unknown | C17H30O8 | 361.18625 | 361.18662 | −1.0 | 68.9942; 112.9842; 161.0230; 346.1458; 101.0224 | - |
57 | 17.04 | Luteolin | C15H10O6 | 285.03992 | 285.04008 | −0.6 | 133.0283; 285.0405; 151.0026; 175.0392; 107.0126 | FV |
58 | 17.10 | Luteone 7-glucoside | C26H28O11 | 515.15534 | 515.15563 | −0.6 | 355.1188; 267.1034; 267.1394; 112.9843; 311.0934 | FV |
59 | 17.27 | Unknown | C20H18O6 | 353.10252 | 353.10282 | −0.8 | 247.1127; 265.087; 245.0968; 291.1024; 221.0970 | - |
60 | 17.49 | Methyl rosmarinate | C19H18O8 | 373.09235 | 373.09270 | −0.9 | 135.0440; 179.0342; 174.9552; 146.9602; 136.0474 | PAD |
61 | 17.64 | Spinacetin | C17H14O8 | 345.06105 | 345.06136 | −0.9 | 315.0149; 215.0344; 287.0198; 316.0181; 330.0383 | FV |
62 | 17.92 | Trihydroxy-octadecadienoic acid | C18H32O5 | 327.21715 | 327.21740 | −0.7 | 171.1018; 85.0281; 137.0961; 57.0332; 69.0332 | FA |
63 | 17.93 | Unknown | C20H16O6 | 351.08687 | 351.08702 | −0.4 | 281.0455; 219.081; 245.0966; 261.0921; 247.0758 | - |
64 | 18.06 | Salvianolic acid F | C17H14O6 | 313.07122 | 313.07146 | −0.8 | 161.0235; 133.0283; 162.0268; 123.0439; 151.039 | PAD |
65 | 18.18 | Salvicanaric acid methyl ester | C20H28O5 | 347.18585 | 347.18607 | −0.6 | 347.1865; 348.1899; 303.1604; 329.1759; 304.1631 | TP |
66 | 18.44 | Salvianolic acid F | C17H14O6 | 313.07122 | 313.07143 | −0.7 | 161.0234; 133.0283; 123.044; 151.0391; 162.0268 | PAD |
67 | 18.61 | Unknown | C21H22O8 | 401.12365 | 401.12389 | −0.6 | 266.9768; 401.1448; 121.7044; 191.5617; 214.7006 | - |
68 | 19.11 | Trihydroxyoctadecenoic acid | C18H34O5 | 329.23280 | 329.23304 | −0.7 | 211.1335; 171.1018; 229.1442; 112.9843; 183.1383 | FA |
69 | 19.21 | Salvianolic acid F | C17H14O6 | 313.07122 | 313.07142 | −0.6 | 161.0235; 133.0284; 162.0268; 123.044; 151.0391 | PAD |
70 | 19.38 | Apigenin | C15H10O5 | 269.04500 | 269.04522 | −0.8 | 117.0333; 151.0027; 269.0457; 149.0234; 107.0126 | FV |
71 | 19.60 | Hydroxycarnosic acid | C20H28O5 | 347.18585 | 347.18598 | −0.4 | 273.186; 317.1759; 274.1902; 271.1705; 245.1907 | TP |
72 | 19.73 | Jaceosidin | C17H14O7 | 329.06613 | 329.06633 | −0.6 | 299.0198; 313.0355; 300.0232; 314.0423; 271.0246 | FV |
73 | 19.93 | Trihydroxy-dimethoxyflavone | C17H14O7 | 329.06613 | 329.06633 | −0.6 | 299.0198; 313.0356; 300.0232; 314.0422; 285.0401 | FV |
74 | 20.40 | Gibberellin A5 methyl ester | C20H24O5 | 343.15458 | 343.15473 | 0.5 | 343.1551; 271.0978; 344.1584; 218.058; 275.0927 | TP |
75 | 20.61 | Carnosol isomer | C20H26O4 | 329.17528 | 329.17563 | 1.0 | 314.1526; 299.0198; 329.1758; 298.1214; 316.1317 | TP |
76 | 20.82 | Hydroxyrosmadial | C20H24O6 | 359.14947 | 359.14967 | −0.6 | 359.1503; 315.1602; 360.1537; 316.1635; 329.1399 | TP |
77 | 21.08 | Trihydroxy-trimethoxyflavone | C18H16O8 | 359.07670 | 359.07703 | −0.9 | 329.0305; 314.0071; 330.0338; 311.0201; 315.0106 | FV |
78 | 21.26 | Rosmadial isomer | C20H24O5 | 343.15458 | 343.15473 | 0.5 | 343.1552; 328.1319; 344.1586; 313.1446; 298.1207 | TP |
79 | 21.38 | Carnosic acid isomer | C20H28O4 | 331.19094 | 331.19132 | −1.1 | 331.1916; 299.1653; 331.1586; 246.0897; 287.2019 | TP |
80 | 22.01 | Hispidulin | C16H12O6 | 299.05557 | 299.05584 | −0.9 | 284.0327; 285.0361; 256.0375; 299.056; 133.0283 | FV |
81 | 22.58 | Cirsimaritin | C17H14O6 | 313.07122 | 313.07157 | −1.1 | 283.0249; 284.0283; 297.0406; 255.0299; 163.0027 | FV |
82 | 22.66 | Salvinal | C20H20O6 | 355.11817 | 355.11842 | −0.7 | 355.1189; 356.1223; 235.0762; 325.0719; 201.0551 | BF |
83 | 22.93 | Rosmaridiphenol isomer | C20H28O3 | 315.19602 | 315.19623 | −0.6 | 315.1966; 283.1701; 112.9843; 68.9944; 230.0942 | TP |
84 | 22.97 | Rosmadial derivative | C20H26O5 | 345.17020 | 345.17103 | −2.4 | 345.1707; 314.0386; 346.1743; 171.1014; 315.0402 | TP |
85 | 23.29 | Rosmadial isomer | C20H24O5 | 343.15458 | 343.15480 | 0.7 | 330.1474; 300.1368; 299.1653; 343.155; 315.1601 | TP |
86 | 23.36 | Hydroxycarnosic acid | C20H28O5 | 347.18585 | 347.18584 | 0.01 | 332.1534; 303.1967; 302.1427; 304.2001; 347.1776 | TP |
87 | 23.38 | Rosmadial derivative | C20H26O5 | 345.17020 | 345.17046 | −0.7 | 330.1473; 300,1397; 331.1508; 315.0402; 301,1402 | TP |
88 | 23.60 | Dihydroxy-trimethoxyflavone | C18H16O7 | 343.08178 | 343.08215 | −1.1 | 313.0356; 298.012; 314.039; 193.0136; 299.0153 | FV |
89 | 23.75 | FA 18:4+2O | C18H28O4 | 307.19094 | 307.19122 | −0.9 | 119.0854; 97.0645; 137.096; 65.0383; 125.0959 | FA |
90 | 23.84 | Hydroperoxyoctadecatrienoic acid | C18H30O4 | 309.20659 | 309.20698 | −1.3 | 99.0802; 209.1177; 171.1018; 57.0332; 137.0963 | FA |
91 | 24.04 | Dihydroxyoctadecadienoic acid | C18H32O4 | 311.22224 | 311.22258 | −1.1 | 223.1700; 87.0437; 57.0333; 224.1735; 85.0281 | FA |
92 | 24.15 | Carnosol isomer | C20H26O4 | 329.17528 | 329.17559 | 0.9 | 329.1759; 330.1793; 112.9843; 314.1518; 299.0200 | TP |
93 | 24.19 | Acacetin/Genkwanin | C16H12O5 | 283.06065 | 283.06089 | −0.8 | 268.0378; 269.0411; 240.0421; 117.0332; 239.0345 | FV |
94 | 24.23 | Hydroxycarnosic acid | C20H28O5 | 347.18585 | 347.18620 | −1.0 | 347.1864; 348.19; 331.1514; 303.1968; 243.1754 | TP |
95 | 24.26 | Carnosol isomer | C20H26O4 | 329.17528 | 329.17563 | 1.03 | 329.1759; 330.1793; 112.9843; 314.1518; 299.02 | TP |
96 | 24.77 | Rosmadial isomer | C20H24O5 | 343.15455 | 343.15486 | −0.9 | 343.1551; 299.1656; 269.1182; 328.1314; 315.1611 | TP |
97 | 24.88 | Carnosol isomer | C20H26O4 | 329.17528 | 329.17557 | 0.8 | 329.1759; 314.1525; 330.1793; 285.186; 315.1558 | TP |
98 | 24.90 | Palmitoyl-sulfoquinovosyl glycerol | C25H48O11S | 555.28391 | 555.28420 | −0.5 | 555.2846; 556.2879; 225.007; 80.9637; 299.0440 | FA |
99 | 25.11 | Hydroperoxyoctadecatrienoic acid | C18H30O4 | 309.20659 | 309.20692 | −1.1 | 96.9588; 309.174; 125.0959; 171.1015; 79.9560 | FA |
100 | 25.30 | GibberellinA24 | C20H26O5 | 345.17020 | 345.17054 | −1.0 | 257.1911; 81.0332; 301.1811; 259.1341; 283.1706 | TP |
101 | 25.35 | Rosmanol | C20H26O5 | 345.1702 | 345.1704 | 0.6 | 283.1704; 330.1473; 315.1964; 284.1736 | TP |
102 | 25.42 | Carnosol isomer | C20H26O4 | 329.17529 | 329.17563 | −1.0 | 329.176; 69.0332; 330.1794; 285.1859; 287.2019 | TP |
103 | 25.75 | Taxodione | C20H26O3 | 313.18038 | 313.18078 | 1.3 | 298.1573; 299.1608; 313.1809; 314.1844; 297.1488 | TP |
104 | 26.24 | Hydroxy-deoxocarnosol | C20H28O4 | 331.19094 | 331.19116 | −0.7 | 331.1916; 287.1654; 332.1952; 313.1812; 288.1686 | FA |
105 | 26.47 | Rosmaridiphenol isomer | C20H28O3 | 315.19602 | 315.19618 | −0.5 | 315.1967; 79.9559; 244.1103; 300.1732; 299.1653 | TP |
106 | 26.51 | 13-Hydroxy-9.11-octadecadienoic acid/13-HODE | C18H32O3 | 295.22728 | 295.22749 | 0.6 | 171.102; 277.2174; 195.1389; 295.2286; 113.096 | FA |
107 | 26.58 | Hydroxy-deoxocarnosol | C20H28O4 | 331.19094 | 331.19134 | −1.2 | 331.1915; 298.1574; 332.195; 285.1859; 270.1624 | TP |
108 | 26.62 | Carnosol isomer | C20H26O4 | 329.17528 | 329.17560 | 0.9 | 301.1810; 302.1843; 286.1575; 329.1757; 271.1337 | TP |
109 | 26.64 | Rosmaridiphenol isomer | C20H28O3 | 315.19598 | 315.19618 | 0.5 | 315.1967; 316.2000; 285.1861; 79.956; 286.1894 | TP |
110 | 26.70 | Epirosmanol | C20H26O5 | 345.17020 | 345.17045 | −0.7 | 286.1576; 245.1910; 273.1860; 289.1809; 287.1613 | TP |
111 | 26.75 | Sugiol | C20H28O2 | 299.20108 | 299.20142 | 1.0 | 299.2018; 300.2051; 227.1073; 228.1119; 283.1698 | TP |
112 | 26.77 | Rosmaridiphenol isomer | C20H28O3 | 315.19602 | 315.19622 | −0.6 | 315.1967; 316.2001; 297.1861; 241.1231; 272.1420 | TP |
113 | 26.95 | Carnosol isomer | C20H26O4 | 329.17528 | 329.17560 | 0.9 | 314.1527; 329.176; 315.1559; 330.1795; 299.0203 | TP |
114 | 27.06 | Carnosol isomer | C20H26O4 | 329.17528 | 329.17558 | 0.9 | 314.1527; 315.1559; 329.1759; 299.0201; 330.1793 | TP |
115 | 27.28 | Carnosol isomer | C20H26O4 | 329.17528 | 329.17560 | 0.9 | 329.1759; 330.1792; 314.1523; 313.1441; 299.1297 | TP |
Plant Material | Content (mg/100 g DW) ± SD |
---|---|
Seeds | 127.25 ± 0.03 |
Sprouts | 134.27 ± 0.04 |
Leaves | 198.53 ± 0.18 |
Flowers | 149.45± 0.03 |
Herb | 185.12 ± 0.02 |
Microorganisms | Whole Seeds * | Ground Seeds | Sprouts | Leaves | Herb | Roots * | Standard Drug (mg/L) | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
MIC | MBC/MFC | MIC | MBC/MFC | MIC | MBC/MFC | MIC | MBC/MFC | MIC | MBC/MFC | MIC | MBC/MFC | MIC | MBC/MFC | |
Gram-positive bacteria | mg/mL | Vancomycin | ||||||||||||
S. aureus ATCC 25923 | 0.625 | 0.625 | 1.25 | 1.25 | 2.5 | 2.5 | 0.625 | 0.625 | 2.5 | 2.5 | 1.25 | 1.25 | 0.98 | 0.98 |
S. aureus ATCC BAA 1707 | 5 | 2.5 | >10 | 10 | 5 | 5 | 1.25 | 1.25 | 5 | 5 | 2.5 | >5 | 0.98 | 0.98 |
S. epidermidis ATCC 12228 | 5 | >5 | 2.5 | 5 | 2.5 | >10 | 0.313 | 0.313 | 2.5 | 2.5 | 2.5 | >5 | 0.98 | 0.98 |
M. luteus ATCC 10240 | 0.07 | 0.625 | 0.15 | 1.25 | 0.625 | 1.25 | 1.25 | 1.25 | 2.5 | 5 | 0.625 | 5 | 0.12 | 0.12 |
B. cereus ATCC 10876 | 0.31 | >5 | 0.625 | >10 | 0.625 | >10 | 1.25 | >10 | 5 | >10 | 1.25 | >5 | 1.95 | 3.9 |
E. faecalis ATCC 29212 | 5 | >5 | 1.25 | >10 | 1.25 | >10 | 1.25 | 5 | 5 | >10 | >5 | >5 | 0.98 | 1.95 |
Gram-negative bacteria | mg/mL | Ciprofloxacin | ||||||||||||
S. Typhimurium ATCC 14028 | >5 | >5 | >10 | >10 | 10 | >10 | 5 | >10 | 10 | >10 | >5 | >5 | 0.061 | 0.06 |
E. coli ATCC 25922 | >5 | >5 | >10 | >10 | 10 | >10 | 5 | >10 | >10 | >10 | >5 | >5 | 0.015 | 0.08 |
P. mirabilis ATCC 12453 | >5 | >5 | >10 | >10 | 10 | >10 | 2.5 | 2.5 | 5 | >10 | >5 | >5 | 0.030 | 0.03 |
K. pneumoniae ATCC 13883 | >5 | >5 | >10 | >10 | 10 | >10 | 10 | >10 | 10 | >10 | >5 | >5 | 0.122 | 0.24 |
P. aeruginosa ATCC 9027 | >5 | >5 | 10 | >10 | 10 | >10 | 5 | >10 | 5 | >10 | >5 | >5 | 0.488 | 0.98 |
Fungi | mg/mL | Nystatin | ||||||||||||
C. glabrata ATCC 90030 | 5 | 5 | 10 | >10 | 10 | >10 | 10 | >10 | 10 | >10 | 0.625 | 5 | 0.48 | 0.48 |
C. albicans ATCC 102231 | 0.07 | 5 | 10 | >10 | 2.5 | >10 | 5 | >10 | 10 | >10 | 1.25 | 5 | 0.24 | 0.48 |
C. parapsilosis ATCC 22019 | 0.003 | 5 | 10 | >10 | 0.625 | 10 | 10 | 10 | 10 | 10 | 0.31 | 5 | 0.24 | 0.48 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Motyka, S.; Kusznierewicz, B.; Ekiert, H.; Korona-Głowniak, I.; Szopa, A. Comparative Analysis of Metabolic Variations, Antioxidant Profiles and Antimicrobial Activity of Salvia hispanica (Chia) Seed, Sprout, Leaf, Flower, Root and Herb Extracts. Molecules 2023, 28, 2728. https://doi.org/10.3390/molecules28062728
Motyka S, Kusznierewicz B, Ekiert H, Korona-Głowniak I, Szopa A. Comparative Analysis of Metabolic Variations, Antioxidant Profiles and Antimicrobial Activity of Salvia hispanica (Chia) Seed, Sprout, Leaf, Flower, Root and Herb Extracts. Molecules. 2023; 28(6):2728. https://doi.org/10.3390/molecules28062728
Chicago/Turabian StyleMotyka, Sara, Barbara Kusznierewicz, Halina Ekiert, Izabela Korona-Głowniak, and Agnieszka Szopa. 2023. "Comparative Analysis of Metabolic Variations, Antioxidant Profiles and Antimicrobial Activity of Salvia hispanica (Chia) Seed, Sprout, Leaf, Flower, Root and Herb Extracts" Molecules 28, no. 6: 2728. https://doi.org/10.3390/molecules28062728
APA StyleMotyka, S., Kusznierewicz, B., Ekiert, H., Korona-Głowniak, I., & Szopa, A. (2023). Comparative Analysis of Metabolic Variations, Antioxidant Profiles and Antimicrobial Activity of Salvia hispanica (Chia) Seed, Sprout, Leaf, Flower, Root and Herb Extracts. Molecules, 28(6), 2728. https://doi.org/10.3390/molecules28062728