Support Vector Machine-Based Global Classification Model of the Toxicity of Organic Compounds to Vibrio fischeri
Abstract
:1. Introduction
2. Results and Discussion
3. Materials and Methods
3.1. Experimental Data
3.2. Molecular Descriptor Calculation
3.3. Support Vector Machine Algorithm
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Mo, L.-Y.; Yuan, B.-K.; Zhu, J.; Qin, L.-T.; Dai, J.-F. QSAR models for predicting additive and synergistic toxicities of binary pesticide mixtures on Scenedesmus obliquus. Chin. J. Struct. Chem. 2022, 41, 2203166–2203177. [Google Scholar]
- Isah, H.M.; Sawyerr, H.O.; Raimi, M.O.; Bashir, B.G.; Haladu, S.; Odipe, O.E. Assessment of commonly used pesticides and frequency of self-reported symptoms on farmers health in Kura, Kano State, Nigeria. J. Educ. Learn. Manag. 2020, 1, 31–54. [Google Scholar]
- Yu, X.; Zeng, Q. Random forest algorithm-based classification model of pesticide aquatic toxicity to fishes. Aquat. Toxicol. 2022, 251, 106265. [Google Scholar] [CrossRef] [PubMed]
- Yu, X. Prediction of chemical toxicity to Tetrahymena pyriformis with four-descriptor models. Ecotoxicol. Environ. Saf. 2020, 190, 110146. [Google Scholar] [CrossRef]
- Zhang, S.; Wang, N.; Su, L.; Xu, X.; Li, C.; Qin, W.; Zhao, Y. MOA-based linear and nonlinear QSAR models for predicting the toxicity of organic chemicals to Vibrio fischeri. Environ. Sci. Pollut. Res. 2020, 27, 9114–9125. [Google Scholar] [CrossRef] [PubMed]
- Cronin, M.T.D.; Schultz, T.W. Structure-toxicity relationships for three mechanisms of action of toxicity to Vibrio fischeri. Ecotoxicol. Environ. Saf. 1998, 39, 65–69. [Google Scholar] [CrossRef]
- Cronin, M.T.D.; Bowers, G.S.; Sinks, G.D.; Schultz, T.W. Structure-toxicity relationships for aliphatic compounds encompassing a variety of mechanisms of toxic action to Vibrio fischeri. SAR QSAR Environ. Res. 2000, 11, 301–312. [Google Scholar] [CrossRef]
- Qin, W.C.; Su, L.M.; Zhang, X.J.; Qin, H.W.; Wen, Y.; Guo, Z.; Sun, F.T.; Sheng, L.X.; Zhao, Y.H.; Abraham, M.H. Toxicity of organic pollutants to seven aquatic organisms: Effect of polarity and ionization. SAR QSAR Environ. Res. 2010, 21, 389–401. [Google Scholar] [CrossRef]
- Li, C.; Yang, X.H.; Li, X.H.; Chen, J.W.; Qiao, X.L. Development of a model for predicting hydroxyl radical reaction rate constants of organic chemicals at different temperatures. Chemosphere 2014, 95, 613–618. [Google Scholar] [CrossRef]
- Wang, X.H.; Yu, Y.; Huang, T.; Qin, W.C.; Su, L.M.; Zhao, Y.H. Comparison of toxicities to Vibrio fischeri and fish based on discrimination of excess toxicity from baseline level. PLoS ONE 2016, 11, e0150028. [Google Scholar] [CrossRef]
- Wang, C.; Wei, Z.B.; Wang, L.S.; Sun, P.; Wang, Z.Y. Assessment of bromide-based ionic liquid toxicity toward aquatic organisms and QSAR analysis. Ecotoxicol. Environ. Saf. 2015, 115, 112–118. [Google Scholar] [CrossRef]
- Wang, Y.; Yang, X.H.; Wang, J.Y.; Cong, Y.; Mu, J.L.; Jin, F. ADFT-based toxicity QSAR study of aromatic hydrocarbons to Vibrio fischeri: Consideration of aqueous freely dissolved concentration. J. Hazard. Mater. 2016, 308, 149–156. [Google Scholar] [CrossRef] [PubMed]
- De Melo, E.B.; Martins, J.P.A.; Miranda, E.H.; Ferreira, M.M.C. A best comprehension about the toxicity of phenylsulfonyl carboxylates in Vibrio fischeri using quantitative structure activity/property relationship methods. J. Hazard. Mater. 2016, 304, 233–241. [Google Scholar] [CrossRef] [PubMed]
- Batista, J.; Vikić-Topić, D.; Lučić, B. The Difference Between the Accuracy of Real and the Corresponding Random Model is a Useful Parameter for Validation of Two-State Classification Model Quality. Croat. Chem. Acta 2016, 89, 527–534. [Google Scholar] [CrossRef]
- Lučić, B.; Batista, J.; Bojović, V.; Lovrić, M.; Kržić, A.S.; Bešlo, D.; Nadramija, D.; Vikić-Topić, D. Estimation of Random Accuracy and its Use in Validation of Predictive Quality of Classification Models within Predictive Challenges. Croat. Chem. Acta 2019, 92, 379–391. [Google Scholar] [CrossRef] [Green Version]
- Halder, A.K.; Cordeiro, M.N.D.S. Multi-Target In Silico Prediction of Inhibitors for Mitogen-Activated Protein Kinase-Interacting Kinases. Biomolecules 2021, 11, 1670. [Google Scholar] [CrossRef]
- Zvinavashe, E.; Du, T.; Griff, T.; van den Berg, H.H.J.; Soffers, A.E.M.F.; Vervoort, J.; Murk, A.J.; Rietjens, I.M.C.M. Quantitative structure-activity relationship modeling of the toxicity of organothiophosphate pesticides to Daphnia magna and Cyprinus carpio. Chemosphere 2009, 75, 1531–1538. [Google Scholar] [CrossRef]
- Yu, X. Support vector machine-based model for toxicity of organic compounds against fish. Regul. Toxicol. Pharm. 2021, 123, 104942. [Google Scholar] [CrossRef]
- Todeschini, R.; Consonni, V.; Mauri, A.; Pavan, M. DRAGON Software for the Calculation of Molecular Descriptors, revision 6.0 for Windows. Talete s.r.l.: Milan, Italy, 2012. [Google Scholar]
- Nekoei, M.; Mohammadhosseini, M.; Pourbasheer, E. QSAR study of VEGFR-2 inhibitors by using genetic algorithm-multiple linear regressions (GA-MLR) and genetic algorithm-support vector machine (GA-SVM): A comparative approach. Med. Chem. Res. 2015, 24, 3037–3046. [Google Scholar] [CrossRef]
- Yu, X. Quantitative structure-toxicity relationships of organic chemicals against Pseudokirchneriella subcapitata. Aquat. Toxicol. 2020, 224, 105496. [Google Scholar] [CrossRef] [PubMed]
- Darnag, R.; Minaoui, B.; Fakir, M. QSAR models for prediction study of HIV protease inhibitors using support vector machines, neural networks and multiple linear regression. Arab. J. Chem. 2017, 10, S600–S608. [Google Scholar] [CrossRef] [Green Version]
- Yu, X. Support Vector Machine-Based Prediction of Enantioselectivity in Fluorination of Allylic Alcohols. ChemistrySelect 2022, 7, e202104369. [Google Scholar] [CrossRef]
Descriptor | Coefficients | Std. Error | t-Test | Sig. | VIF |
---|---|---|---|---|---|
Constant | −2.029 | 0.510 | −3.980 | <0.001 | / |
SpMax4_Bh(m) | 0.542 | 0.096 | 5.657 | <0.001 | 4.167 |
AVS_B(p) | 1.602 | 0.179 | 8.962 | <0.001 | 3.264 |
MLOGP2 | 0.063 | 0.006 | 10.398 | <0.001 | 1.342 |
N-074 | 0.448 | 0.095 | 4.708 | <0.001 | 1.114 |
B01[C-C] | −1.463 | 0.0207 | −7.063 | <0.001 | 1.107 |
QXXm | −0.007 | 0.001 | −6.043 | <0.001 | 1.772 |
CATS2D_04_NL | −0.468 | 0.068 | −6.902 | <0.001 | 1.139 |
C-016 | 0.366 | 0.069 | 5.335 | <0.001 | 1.097 |
DBI | 0.292 | 0.060 | 4.891 | <0.001 | 3.159 |
SM03_AEA(dm) | −0.179 | 0.039 | −4.644 | <0.001 | 1.428 |
Physical Meaning | Class |
---|---|
SpMax4_Bh(m) means the largest eigenvalue no. 4 of Burden matrix weighted by mass and reflects molecular similarity/diversity on large databases. | Burden eigenvalues |
AVS_B(p) is the average vertex sum from Burden matrix weighted by polarizability and associated with nucleophilic aromatic substitution reaction in benzene rings. | 2D matrix-based descriptors |
MLOGP2 denotes the squared Moriguchi octanol–water partition coefficient and describes molecular hydrophobic property. | Molecular properties |
N-074 is the number of R#N/R=N-groups. | Atom-centered fragments |
B01[C-C] reflects the presence/absence of C-C at topological distance 1. | 2D Atom Pairs |
QXXm means the quadrupole X-component value/weighted by mass and is related to molecular polar and volume. | Geometrical descriptors |
CATS2D_04_NL denotes the CATS 2D negative-lipophilic at lag 04 and is associated with the type and the number of pharmacophore points. | CATS 2D |
C-016 is the number of =CHR groups. | Atom-centered fragments |
DBI is the Dragon branching index and correlated with molecular size and branching. | Topological indices |
SM03_AEA(dm) is the spectral moment of order 3 from the augmented edge adjacency matrix weighted by dipole moment and reflects molecular fragment counts. | Edge adjacency indices |
Class | Exp. | Calc. | Acc. | |
---|---|---|---|---|
Class − 1 | Class + 1 | |||
Class − 1 | 241 | 187 | 54 | 77.6% |
Class + 1 | 210 | 34 | 176 | 83.8% |
(Overall Acc. = 80.5%) (Training set in BLR) | Spec. | Sen. | ||
84.6% | 76.5% | |||
Class − 1 | Class + 1 | |||
Class − 1 | 80 | 58 | 22 | 72.5% |
Class + 1 | 70 | 14 | 56 | 80.0% |
(Overall Acc. = 76.0%) (Test set in BLR) | Spec. | Sen. | ||
80.6% | 71.8% | |||
Class − 1 | Class + 1 | |||
Class − 1 | 321 | 245 | 76 | 76.3% |
Class + 1 | 280 | 48 | 232 | 82.9% |
(Overall Acc. = 79.4%) (Total set in BLR) | Spec. | Sen. | ||
83.6% | 75.3% | |||
Class − 1 | Class + 1 | |||
Class − 1 | 241 | 211 | 30 | 87.6% |
Class + 1 | 210 | 19 | 191 | 91.0% |
(Overall Acc. = 89.1%) (Training set in SVM) | Spec. | Sen. | ||
91.7% | 86.4% | |||
Class − 1 | Class + 1 | |||
Class − 1 | 80 | 63 | 17 | 78.8% |
Class + 1 | 70 | 13 | 57 | 81.4% |
(Overall Acc. = 80.0%) (Test set in SVM) | Spec. | Sen. | ||
82.9% | 77.0% | |||
Class − 1 | Class + 1 | |||
Class − 1 | 321 | 274 | 47 | 85.4% |
Class + 1 | 280 | 32 | 248 | 88.6% |
(Overall Acc. = 86.9%) (Total data in SVM) | Spec. | Sen. | ||
89.5% | 84.1% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wu, F.; Zhang, X.; Fang, Z.; Yu, X. Support Vector Machine-Based Global Classification Model of the Toxicity of Organic Compounds to Vibrio fischeri. Molecules 2023, 28, 2703. https://doi.org/10.3390/molecules28062703
Wu F, Zhang X, Fang Z, Yu X. Support Vector Machine-Based Global Classification Model of the Toxicity of Organic Compounds to Vibrio fischeri. Molecules. 2023; 28(6):2703. https://doi.org/10.3390/molecules28062703
Chicago/Turabian StyleWu, Feng, Xinhua Zhang, Zhengjun Fang, and Xinliang Yu. 2023. "Support Vector Machine-Based Global Classification Model of the Toxicity of Organic Compounds to Vibrio fischeri" Molecules 28, no. 6: 2703. https://doi.org/10.3390/molecules28062703
APA StyleWu, F., Zhang, X., Fang, Z., & Yu, X. (2023). Support Vector Machine-Based Global Classification Model of the Toxicity of Organic Compounds to Vibrio fischeri. Molecules, 28(6), 2703. https://doi.org/10.3390/molecules28062703