Preparation of Heavily Doped P-Type PbSe with High Thermoelectric Performance by the NaCl Salt-Assisted Approach
Abstract
:1. Introduction
2. Results and Discussion
2.1. Structure and Composition
2.2. Thermoelectric Properties
3. Materials and Methods
3.1. Synthesis Method
3.2. Characterization and Measurement
3.3. Details of Computational Methods
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Sample Availability
References
- Channegowda, M.; Mulla, R.; Nagaraj, Y.; Lokesh, S.; Nayak, S.; Mudhulu, S.; Rastogi, C.K.; Dunnill, C.W.; Rajan, H.K.; Khosla, A. Comprehensive Insights into Synthesis, Structural Features, and Thermoelectric Properties of High-Performance Inorganic Chalcogenide Nanomaterials for Conversion of Waste Heat to Electricity. ACS Appl. Energy Mater. 2022, 5, 7913–7943. [Google Scholar] [CrossRef]
- Zhao, K.; Qiu, P.; Shi, X.; Chen, L. Recent Advances in Liquid-Like Thermoelectric Materials. Adv. Funct. Mater. 2019, 30, 1903867. [Google Scholar] [CrossRef]
- Pei, J.; Cai, B.; Zhuang, H.L.; Li, J.F. Bi2Te3-based applied thermoelectric materials: Research advances and new challenges. Natl. Sci. Rev. 2020, 7, 1856–1858. [Google Scholar] [CrossRef]
- Ul Haq, B.; AlFaify, S.; Alshahrani, T.; Ahmed, R.; Mahmood, Q.; Tahir, S.A.; Alhashim, H.H.; Laref, A. Exploring the potential of lead-chalcogenide monolayers for room-temperature thermoelectric applications. Ceram. Int. 2021, 47, 3380–3388. [Google Scholar] [CrossRef]
- Byrnes, J.; Mitchell, D.R.G.; Aminorroaya Yamini, S. Thermoelectric performance of thermally aged nanostructured bulk materials—A case study of lead chalcogenides. Mater. Today Phys. 2020, 13, 100190. [Google Scholar] [CrossRef]
- Chasapis, T.C.; Lee, Y.; Hatzikraniotis, E.; Paraskevopoulos, K.M.; Chi, H.; Uher, C.; Kanatzidis, M.G. Understanding the role and interplay of heavy-hole and light- hole valence bands in the thermoelectric properties of PbSe. Phys. Rev. B 2015, 91, 085207. [Google Scholar] [CrossRef] [Green Version]
- Fiedler, C.; Kleinhanns, T.; Garcia, M.; Lee, S.; Calcabrini, M.; Ibanez, M. Solution-Processed Inorganic Thermoelectric Materials: Opportunities and Challenges. Chem. Mater. 2022, 34, 8471–8489. [Google Scholar] [CrossRef]
- Shuai, J.; Sun, Y.; Tan, X.; Mori, T. Manipulating the Ge Vacancies and Ge Precipitates through Cr Doping for Realizing the High-Performance GeTe Thermoelectric Material. Small 2020, 16, 1906921. [Google Scholar] [CrossRef]
- Li, C.; Yuan, H.; Wang, Y.; Liu, H. Enhancement of the power factor of SnSe by adjusting the crystal and energy band structures. Phys. Chem. Chem. Phys. 2022, 24, 24130–24136. [Google Scholar] [CrossRef]
- Hussain, T.; Li, X.; Danish, M.H.; Rehman, M.U.; Zhang, J.; Li, D.; Chen, G.; Tang, G. Realizing high thermoelectric performance in eco-friendly SnTe via synergistic resonance levels, band convergence and endotaxial nanostructuring with Cu2Te. Nano Energy 2020, 73, 104832. [Google Scholar] [CrossRef]
- Gayner, C.; Amouyal, Y. Energy Filtering of Charge Carriers: Current Trends, Challenges, and Prospects for Thermoelectric Materials. Adv. Funct. Mater. 2019, 30, 1901789. [Google Scholar] [CrossRef]
- Li, X.; Liu, J.; Li, S.; Zhang, J.; Li, D.; Xu, R.; Zhang, Q.; Zhang, X.; Xu, B.; Zhang, Y.; et al. Synergistic band convergence and endotaxial nanostructuring: Achieving ultralow lattice thermal conductivity and high figure of merit in eco-friendly SnTe. Nano Energy 2020, 67, 104261–104271. [Google Scholar] [CrossRef]
- Liu, S.; Yu, Y.; Wu, D.; Xu, X.; Xie, L.; Chao, X.; Bosman, M.; Pennycook, S.J.; Yang, Z.; He, J. Coherent Sb/CuTe Core/Shell Nanostructure with Large Strain Contrast Boosting the Thermoelectric Performance of n-Type PbTe. Adv. Funct. Mater. 2021, 31, 2007340. [Google Scholar] [CrossRef]
- Lee, K.H.; Kim, Y.M.; Park, C.O.; Shin, W.H.; Kim, S.W.; Kim, H.S.; Kim, S.i. Cumulative defect structures for experimentally attainable low thermal conductivity in thermoelectric (Bi,Sb)2Te3 alloys. Mater. Today Energy 2021, 21, 100795. [Google Scholar] [CrossRef]
- Hodges, J.M.; Hao, S.Q.; Grovogui, J.A.; Zhang, X.M.; Bailey, T.P.; Li, X.; Gan, Z.H.; Hu, Y.Y.; Uher, C.; Dravid, V.P.; et al. Chemical Insights into PbSe-x%HgSe: High Power Factor and Improved Thermoelectric Performance by Alloying with Discordant Atoms. J. Am. Chem. Soc. 2018, 140, 18115–18123. [Google Scholar] [CrossRef] [PubMed]
- Zhou, C.; Yu, Y.; Lee, Y.-L.; Ge, B.; Lu, W.; Cojocaru-Mirédin, O.; Im, J.; Cho, S.-P.; Wuttig, M.; Shi, Z. Exceptionally high average power factor and thermoelectric figure of merit in n-type PbSe by the dual incorporation of Cu and Te. J. Am. Chem. Soc. 2020, 142, 15172–15186. [Google Scholar] [CrossRef]
- Luo, Z.Z.; Cai, S.; Hao, S.; Bailey, T.P.; Spanopoulos, I.; Luo, Y.; Xu, J.; Uher, C.; Wolverton, C.; Dravid, V.P.; et al. Strong valence band convergence to enhance thermoelectric performance in PbSe with two chemically independent controls. Angew. Chem. Int. Ed. 2021, 60, 268–273. [Google Scholar] [CrossRef]
- Cai, S.; Hao, S.; Luo, Z.-Z.; Li, X.; Hadar, I.; Bailey, T.; Hu, X.; Uher, C.; Hu, Y.-Y.; Wolverton, C.; et al. Discordant nature of Cd in PbSe: Off-centering and core-shell nanoscale CdSe precipitates lead to high thermoelectric performance. Energy Environ. Sci. 2020, 13, 200–211. [Google Scholar] [CrossRef]
- Tan, G.; Hao, S.; Cai, S.; Bailey, T.P.; Luo, Z.; Hadar, I.; Uher, C.; Dravid, V.P.; Wolverton, C.; Kanatzidis, M.G. All-Scale Hierarchically Structured p-Type PbSe Alloys with High Thermoelectric Performance Enabled by Improved Band Degeneracy. J. Am. Chem. Soc. 2019, 141, 4480–4486. [Google Scholar] [CrossRef] [PubMed]
- Zhou, N.N.; Hu, Z.Q.; Nasser, R.; Song, J.-M. Thermoelectric Properties of PbSe Nanocomposites from Solution-Processed Building Blocks. ACS Appl. Energy Mater. 2021, 4, 2014–2019. [Google Scholar] [CrossRef]
- Raphel, A.; Vivekanandhan, P.; Kumaran, S. High entropy phenomena induced low thermal conductivity in BiSbTe1.5Se1.5 thermoelectric alloy through mechanical alloying and spark plasma sintering. Mater. Lett. 2020, 269, 127672. [Google Scholar] [CrossRef]
- Liu, M.; Zhang, J.; Xu, J.; Hu, B.; Sun, K.; Yang, Y.; Wang, J.; Du, B.; Zhang, H. The crystallization, thermodynamic and thermoelectric properties of vast off-stoichiometric Sn–Se crystals. J. Mater. Chem. C 2020, 8, 6422–6434. [Google Scholar] [CrossRef]
- Canfield, P.C.; Fisher, I.R. High-temperature solution growth of intermetallic single crystals and quasicrystals. J. Cryst. Growth 2001, 225, 155–161. [Google Scholar] [CrossRef]
- Teshima, K.; Lee, S.; Sakurai, M.; Kameno, Y.; Yubuta, K.; Suzuki, T.; Shishido, T.; Endo, M.; Oishi, S. Well-Formed One-Dimensional Hydroxyapatite Crystals Grown by an Environmentally Friendly Flux Method. Cryst. Growth Des. 2009, 9, 2937–2940. [Google Scholar] [CrossRef]
- Rakshit, M.; Jana, D.; Banerjee, D. General strategies to improve thermoelectric performance with an emphasis on tin and germanium chalcogenides as thermoelectric materials. J. Mater. Chem. A 2022, 10, 6872–6926. [Google Scholar] [CrossRef]
- Giraldo, S.; Jehl, Z.; Placidi, M.; Izquierdo-Roca, V.; Perez-Rodriguez, A.; Saucedo, E. Progress and Perspectives of Thin Film Kesterite Photovoltaic Technology: A Critical Review. Adv. Mater. 2019, 31, e1806692. [Google Scholar] [CrossRef] [Green Version]
- Chen, J.; Shen, L.; Liu, W.; Tang, Y.; Lu, J.; Sun, L.; Ge, W.; Yang, P.; Deng, S. High thermoelectric performance of Na-doped beta-Zn4Sb3 prepared by NaCl salt-assisted approach. J. Alloys Compd. 2021, 856, 157345. [Google Scholar] [CrossRef]
- Lu, J.; Li, D.; Liu, W.; Shen, L.; Chen, J.; Ge, W.; Deng, S. Thermal stability and thermoelectric properties of Cd-doped nano-layered Cu2Se prepared using NaCl flux method. Chin. Phys. B 2020, 29, 127403. [Google Scholar] [CrossRef]
- Qian, X.; Wu, H.J.; Wang, D.Y.; Zhang, Y.; Wang, J.F.; Wang, G.T.; Zheng, L.; Pennycook, S.J.; Zhao, L.D. Synergistically optimizing interdependent thermoelectric parameters of n-type PbSe through alloying CdSe. Energy Environ. Sci. 2019, 12, 1969–1978. [Google Scholar] [CrossRef]
- Zhu, Y.C.; Wang, D.Y.; Hong, T.; Hu, L.; Ina, T.; Zhan, S.P.; Qin, B.C.; Shi, H.N.; Su, L.Z.; Gao, X.; et al. Multiple valence bands convergence and strong phonon scattering lead to high thermoelectric performance in p-type PbSe. Nat. Commun. 2022, 13, 4179. [Google Scholar] [CrossRef]
- Jood, P.; Male, J.P.; Anand, S.; Matsushita, Y.; Takagiwa, Y.; Kanatzidis, M.G.; Snyder, G.J.; Ohta, M. Na Doping in PbTe: Solubility, Band Convergence, Phase Boundary Mapping, and Thermoelectric Properties. J. Am. Chem. Soc. 2020, 142, 15464–15475. [Google Scholar] [CrossRef] [PubMed]
- Jiang, B.; Yu, Y.; Cui, J.; Liu, X.; Xie, L.; Liao, J.; Zhang, Q.; Huang, Y.; Ning, S.; Jia, B.; et al. High-entropy-stabilized chalcogenides with high thermoelectric performance. Science 2021, 371, 830–834. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Pei, Y.; Lalonde, A.D.; Snyder, G.J. Heavily Doped p-Type PbSe with High Thermoelectric Performance: An Alternative for PbTe. Adv. Mater. 2011, 23, 1366–1370. [Google Scholar] [CrossRef] [PubMed]
- Sun, L.; Shai, X.; Chen, Z.; Tang, Y.; Liu, W.; Shen, L.; Ge, W.; Deng, S. High performance in room temperature and thermoelectric properties of PbSe single crystal prepared by Pb-flux method. Phys. B Condens. Matter 2020, 578, 411797. [Google Scholar] [CrossRef]
- Song, X.F.; Shai, X.X.; Deng, S.K.; Wang, J.S.; Li, J.; Ma, X.R.; Li, X.R.; Wei, T.T.; Ren, W.A.; Gao, L.; et al. Anisotropic Chalcogenide Perovskite CaZrS3: A Promising Thermoelectric Material. J. Phys. Chem. C 2022, 126, 11751–11760. [Google Scholar] [CrossRef]
- Kim, H.S.; Choi, G.; Ha, M.Y.; Kim, D.H.; Park, S.H.; Chung, I.; Lee, W.B. Thermoelectric transport properties of Pb doped SnSe alloys (PbxSn1−xSe): DFT-BTE simulations. J. Solid State Chem. 2019, 270, 413–418. [Google Scholar] [CrossRef]
- Perdew, J.; Burke, K.; Wang, Y. Generalized gradient approximation for the exchange-correlation hole of a many-electron system. Phys. Rev. B 1996, 54, 16533–16539. [Google Scholar] [CrossRef] [Green Version]
- Perez, M.; Templeman, T.; Shandalov, M.; Ezersky, V.; Yahel, E.; Golan, Y. Citrate-controlled chemical solution deposition of PbSe thin films. Crystengcomm 2019, 21, 1818–1825. [Google Scholar] [CrossRef]
- Wu, Y.X.; Nan, P.F.; Chen, Z.W.; Zeng, Z.Z.; Liu, R.H.; Dong, H.L.; Xie, L.; Xiao, Y.W.; Chen, Z.Q.; Gu, H.K.; et al. Thermoelectric Enhancements in PbTe Alloys Due to Dislocation-Induced Strains and Converged Bands. Adv. Sci. 2020, 7, 9. [Google Scholar] [CrossRef]
- Huang, Z.; Zhang, Y.; Wu, H.; Pennycook, S.J.; Zhao, L.-D. Enhancing Thermoelectric Performance of p-Type PbSe through Suppressing Electronic Thermal Transports. ACS Appl. Energy Mater. 2019, 2, 8236–8243. [Google Scholar] [CrossRef]
- Li, J.; Sui, J.; Pei, Y.; Meng, X.; Berardan, D.; Dragoe, N.; Cai, W.; Zhao, L.D. The roles of Na doping in BiCuSeO oxyselenides as a thermoelectric material. J. Mater. Chem. A 2014, 2, 4903–4906. [Google Scholar] [CrossRef]
- Rodríguez-Lazcano, Y.; Barrios-Salgado, E.; Pérez-Orozco, J.P.; Campos, J.; Altuzar, P.; Regla, E.L.; Quesada-Saliba, D. Microwave-assisted chemical bath deposition of PbSe thermoelectric thin films. Appl. Phys. A 2021, 127, 537. [Google Scholar] [CrossRef]
- Zhang, Q.; Cao, F.; Liu, W.; Lukas, K.; Ren, Z. Heavy doping and band engineering by potassium to improve the thermoelectric figure of merit in p-type PbTe, PbSe, and PbTe(1−y)Se(y). J. Am. Chem. Soc. 2012, 134, 10031–10038. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Biswas, K.; He, J.; Blum, I.; Wu, C.I.; Hogan, T.P.; Seidman, D.N.; Dravid, V.P.; Kanatzidis, M.G. High-performance bulk thermoelectrics with all-scale hierarchical architectures. Nature 2012, 489, 414–418. [Google Scholar] [CrossRef] [PubMed]
- Parker, D.S.; Singh, D.J. High-temperature thermoelectric performance of heavily doped PbSe. Phys. Rev. B 2010, 82, 035204. [Google Scholar] [CrossRef] [Green Version]
- Wang, S.; Zheng, G.; Luo, T.; She, X.; Li, H.; Tang, X. Exploring the doping effects of Ag in p-type PbSe compounds with enhanced thermoelectric performance. J. Phys. D Appl. Phys. 2011, 44, 475304–475312. [Google Scholar] [CrossRef]
- Pei, Y.L.; He, J.; Li, J.F.; Li, F.; Liu, Q.; Pan, W.; Barreteau, C.; Berardan, D.; Dragoe, N.; Zhao, L.D. High thermoelectric performance of oxyselenides: Intrinsically low thermal conductivity of Ca-doped BiCuSeO. NPG Asia Mater. 2013, 5, e47. [Google Scholar] [CrossRef] [Green Version]
- Wan, C.L.; Pan, W.; Xu, Q.; Qin, Y.X.; Wang, J.D.; Qu, Z.X.; Fang, M.H. Effect of point defects on the thermal transport properties of (LaxGd1−x)2Zr2O7: Experiment and theoretical model. Phys. Rev. B 2006, 74, 144109. [Google Scholar] [CrossRef]
Samples | Crystal Compositions | RH | nH | μH | ρ | |||
---|---|---|---|---|---|---|---|---|
PbSe-(NaCl)x | cm3/C | 1019 cm−3 | cm2/Vs | g·cm3 | ||||
Pb | Se | Na | Cl | |||||
x = 3 | 48.52 | 50.7 | 0.17 | 0.61 | 0.23 | 2.717 | 276 | 8.47 |
x = 3.5 | 48.17 | 50.6 | 0.2 | 1.03 | 0.21 | 2.976 | 292 | 8.59 |
x = 4 | 47.96 | 50.1 | 0.3 | 1.64 | 0.18 | 3.472 | 295 | 8.52 |
x = 4.5 | 47.58 | 50.1 | 0.41 | 1.91 | 0.15 | 4.167 | 270 | 8.74 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ma, X.; Shai, X.; Ding, Y.; Zheng, J.; Wang, J.; Sun, J.; Li, X.; Chen, W.; Wei, T.; Ren, W.; et al. Preparation of Heavily Doped P-Type PbSe with High Thermoelectric Performance by the NaCl Salt-Assisted Approach. Molecules 2023, 28, 2629. https://doi.org/10.3390/molecules28062629
Ma X, Shai X, Ding Y, Zheng J, Wang J, Sun J, Li X, Chen W, Wei T, Ren W, et al. Preparation of Heavily Doped P-Type PbSe with High Thermoelectric Performance by the NaCl Salt-Assisted Approach. Molecules. 2023; 28(6):2629. https://doi.org/10.3390/molecules28062629
Chicago/Turabian StyleMa, Xinru, Xuxia Shai, Yu Ding, Jie Zheng, Jinsong Wang, Jiale Sun, Xiaorui Li, Weitao Chen, Tingting Wei, Weina Ren, and et al. 2023. "Preparation of Heavily Doped P-Type PbSe with High Thermoelectric Performance by the NaCl Salt-Assisted Approach" Molecules 28, no. 6: 2629. https://doi.org/10.3390/molecules28062629
APA StyleMa, X., Shai, X., Ding, Y., Zheng, J., Wang, J., Sun, J., Li, X., Chen, W., Wei, T., Ren, W., Gao, L., Deng, S., & Zeng, C. (2023). Preparation of Heavily Doped P-Type PbSe with High Thermoelectric Performance by the NaCl Salt-Assisted Approach. Molecules, 28(6), 2629. https://doi.org/10.3390/molecules28062629