Residues and Dietary Risk Assessment of Prohexadione-Ca and Uniconazole in Oryza sativa L. and Citrus reticulata Blanco by Liquid Chromatography-Tandem Mass Spectrometry
Abstract
:1. Introduction
2. Results and Discussion
2.1. Method Optimization of Prohexadione and Prohexadione-Ca
2.2. Method Validation
2.3. Prohexadione-Ca and Uniconazole Residues in Citrus and Rice under Field Conditions
2.4. Stability of Prohexadione-Ca and Uniconazole Residues in Stored Samples
2.5. Dietary Intake Risk in Citrus and Rice
2.5.1. The Maximum Residue Limit (MRL)
2.5.2. Dietary Risk Assessment
3. Materials and Methods
3.1. Chemicals and Reagents
3.2. Field Experiments
3.2.1. Oryza sativa L.
3.2.2. Citrus reticulata Blanco
3.3. Stability Study
3.4. Sample Preparation
3.4.1. Prohexadione and Prohexadione-Ca
3.4.2. Uniconazole
3.5. LC-MS/MS Conditions
3.6. Method Validation
3.7. Dietary Risk Assessment
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Sample Availability
References
- Yi, S.W.; Li, F.; Wu, C.; Ge, F.; Feng, C.; Zhang, M.; Liu, Y.; Lu, H.N. Co-transformation of HMs-PAHs in rhizosphere soils and adaptive responses of rhizobacteria during whole growth period of rice (Oryza sativa L.). J. Environ. Sci. 2023, 132, 71–82. [Google Scholar] [CrossRef]
- Gill, K.; Kumar, P.; Kumar, A.; Sharma, R.; Kumar, A.; Joshi, A.K. Comprehensive mechanistic insights into the citrus genetics, breeding challenges, biotechnological implications, and omics-based interventions. Tree Genet. Genomes 2022, 18, 9. [Google Scholar] [CrossRef]
- Jabeen, R.; Hussain, S.Z.; Jan, N.; Fatima, T.; Naik, H.R.; Jabeen, A. Comparative study of brown rice and germinated brown rice for nutritional composition, in vitro starch digestibility, bioactive compounds, antioxidant activity and microstructural properties. Cereal Chem 2022, 100, 434–444. [Google Scholar] [CrossRef]
- Bons, H.K.; Kaur, N.; Rattanpal, H.S. Quality and Quantity Improvement of Citrus: Role of Plant Growth Regulators. Int. J. Agric. Environ. Biotechnol. 2015, 8, 433. [Google Scholar] [CrossRef]
- Galanakis, C.M. Sustainable Applications for the Valorization of Cereal Processing By-Products. Foods 2022, 11, 241. [Google Scholar] [CrossRef] [PubMed]
- Grazia, T.; Laura, S.; Micaela, V.; Paola, M.; Annalisa, T.; Marcello, S.L.; Matteo, L.; Susheel, K.; Annamaria, C. A new route of valorization of rice endosperm by-product: Production of polymeric biocomposites. Compos. Part B Eng. 2018, 139, 195–202. [Google Scholar] [CrossRef]
- Nandal, U.; Bhardwaj, R.L. The role of underutilized fruits in nutritional and economic security of tribals: A review. Crit. Rev. Food Sci. Nutr. 2014, 54, 880–890. [Google Scholar] [CrossRef] [PubMed]
- Mahdieh, M.; Mohammad, R.S.; Faezeh, S.; Maryam, T. A review of recent trends in the development of the microbial safety of fruits and vegetables. Trends Food Sci. Technol. 2020, 103, 321–332. [Google Scholar] [CrossRef]
- Rosachiara, A.S.; Maria, F.C.; Giuseppina, D.L. NMR-based metabolomics analysis of Calabrian citrus fruit juices and its application to industrial process quality control. Food Control 2021, 121, 107619. [Google Scholar] [CrossRef]
- Caserta, R.; Teixeira-Silva, N.S.; Granato, L.M.; Dorta, S.O.; Rodrigues, C.M.; Mitre, C.M.; Yochikawa, J.T.H.; Fischer, E.R.; Nascimento, C.A.; Souza-Neto, R.R.; et al. Citrus bio-technology: What has been done to improve disease resistance in such an important crop? Biotechnol. Res. Innov. 2019, 3, 95–109. [Google Scholar] [CrossRef]
- Li, G.J.; Wu, H.J.; Wang, Y.; Hung, W.L.; Rouseff, R.L. Determination of citrus juice coumarins, furanocoumarins and meth-oxylated flavones using solid phase extraction and HPLC with photodiode array and fluorescence detection. Food Chem. 2019, 271, 29–38. [Google Scholar] [CrossRef] [PubMed]
- Khan, N. Application of Plant Growth Promoting Microorganism and Plant Growth Regulators in Agricultural Production and Research. Agronomy 2021, 11, 524. [Google Scholar] [CrossRef]
- Gill, K.; Kumar, P.; Negi, S.; Sharma, R.; Joshi, A.K.; Suprun, I.I.; Al-Nakib, E.A. Physiological perspective of plant growth regulators in flowering, fruit setting and ripening process in citrus. Sci. Hortic. 2023, 309, 111628. [Google Scholar] [CrossRef]
- Rademacher, W. Growth Retardants: Effects on Gibberellin Biosynthesis and Other Metabolic Pathways. Annu. Rev. Plant Physiol. Plant Mol. Biol. 2000, 51, 501–531. [Google Scholar] [CrossRef] [PubMed]
- Wu, C.W.; Sun, J.Q.; Zhang, A.P.; Liu, W.P. Dissipation and Enantioselective Degradation of Plant Growth Retardants Paclobutrazol and Uniconazole in Open Field, Greenhouse, and Laboratory Soils. Environ. Sci. Technol. 2013, 47, 843–849. [Google Scholar] [CrossRef] [PubMed]
- Almeida, O.M.; Melo, H.C.; Portes, T.D. Growth and yield of the common bean in response to combined application of nitrogen and paclobutrazol. Rev. Caatinga 2016, 29, 127–132. [Google Scholar] [CrossRef]
- Carra, B.; Pasa, M.S.; Fachinello, J.C.; Spagnol, D.; Abreu, E.S.; Giovanaz, M.A. Prohexadione calcium affects shoot growth, but not yield components, of “Le Conte” pear in warm-winter climate conditions. Sci. Hortic. 2016, 209, 241–248. [Google Scholar] [CrossRef]
- Trethewey, J.A.; Rolston, M.P.; McCloy, B.L.; Chynoweth, R.J. The plant growth regulator, trinexapac-ethyl, increases seed yield in annual ryegrass (Lolium multiflorum Lam.), New Zealand. J. Agric. Res. 2016, 59, 113–121. [Google Scholar] [CrossRef]
- Desta, B.; Amare, G. Paclobutrazol as a plant growth regulator. Chem. Biol. Technol. Agric 2021, 8, 1. [Google Scholar] [CrossRef]
- De Oliveira, L.S.; Soratto, R.P.; Cairo, P.A.R.; Da Silva, L.D.; Matsumoto, S.N.; Silva, R.A. Common Bean Plant Size and Yield in Response to Rates of Foliar-Applied Paclobutrazol, Mepiquat Chloride, and Prohexadione Calcium. J. Plant. Growth Regul. 2022, 1–9. [Google Scholar] [CrossRef]
- Ilias, F.I.; Nihal, R. Prohexadione-calcium affects growth and flowering of petunia and impatiens grown under photoselective films. Sci. Hortic. 2005, 106, 190–202. [Google Scholar] [CrossRef]
- Zhou, X.; Zhang, Y.; Leng, S.; Wang, Z.; Gong, C.; Zuo, Q.; Yang, G. Uniconazole and Adaptability of Transplantations by Enhancing the Competition Tolerance in a High Sowing Density of Rapeseed Blanket Seedlings. Agronomy 2022, 12, 2637. [Google Scholar] [CrossRef]
- Lv, R.J.; Zhang, W.J.; Xie, X.B.; Wang, Q.J.; Gao, K.G.; Zeng, Y.H.; Zeng, Y.J.; Pan, X.H.; Shang, Q.Y. Foliar application uniconazole enhanced lodging resistance of high-quality indica rice (Oryza sativa L.) by altering anatomical traits, cell structure and endogenous hormones. Field Crops Res. 2022, 277, 108425. [Google Scholar] [CrossRef]
- Kojima, K.; Akihiko, G.; Nakashima, S. Effects of Uniconazole-P on Abscission and Endogenous ABA, IAA, and GA-like Substances Levels of Satsuma Mandarin Fruitlet. Biosci. Biotechnol. Biochem. 1996, 60, 901–902. [Google Scholar] [CrossRef]
- Kadoglidou, K.; Kalaitzidis, A.; Stavrakoudis, D.; Mygdalia, A.; Katsantonis, D. A novel compost for rice cultivation developed by rice industrial by-products to serve circular economy. Agronomy 2019, 9, 553. [Google Scholar] [CrossRef]
- Todeschini, V.; AitLahmidi, N.; Mazzucco, E.; Marsano, F.; Gosetti, F.; Robotti, E.; Bona, E.; Massa, N.; Bonneau, L.; Marengo, E.; et al. Impact of Beneficial Microorganisms on Strawberry Growth, Fruit Production, Nutritional Quality, and Volatilome. Front. Plant Sci. 2018, 9, 1611. [Google Scholar] [CrossRef]
- Liang, F.; Xu, W.; Wu, H.; Zheng, B.; Liang, Q.; Li, Y.; Wang, S. Widely targeted metabolite profiling of mango stem apex during floral induction by compond of mepiquat chloride, prohexadione-calcium and uniconazole. PeerJ 2022, 10, e14458. [Google Scholar] [CrossRef]
- Matusmoto, T.; Kazuhiro, Y.; Yoshizawa, Y.; Oh, K. Comparison of Effect of Brassinosteroid and Gibberellin Biosynthesis Inhibitors on Growth of Rice Seedlings. Rice Sci. 2016, 23, 51–55. [Google Scholar] [CrossRef]
- Do Carmo Mouco, M.A.; Ono, E.O.; Rodrigues, J.D. Controle do crescimento vegetativo e floração de mangueiras cv. Kent com reguladores de crescimento vegetal. Rev. Bras. De Frutic. 2011, 33, 1043–1047. [Google Scholar] [CrossRef]
- Xu, X.F.; Huang, B.; Jin, L.F.; Zhang, D.J.; Wang, P. Effects of moderate drought and foliar spray of spraying prohexadione calcium on flowering and tree vigor of citrus under facility cultivation. J. Huazhong Agric. Univ. 2022, 41, 134–141. [Google Scholar] [CrossRef]
- Li, Y.; Zhen, D.F.; Feng, N.J.; Feng, S.J.; Xu, M.L.; Huang, L.; Zhang, R.J.; Meng, F.Y. Effects of prohexadione-Ca on growth and resistance physiology of rice seedlings under salt stress. Plant Physiol. J. 2021, 57, 1897–1906. [Google Scholar] [CrossRef]
- Zhao, H.W.; Li, Q.L.; Jin, X.T.; Li, D.; Zhu, Z.Q.; Li, Q.X. Chiral enantiomers of the plant growth regulator paclobutrazol selectively affect community structure and diversity of soil microorganisms. Sci. Total Environ. 2021, 797, 148942. [Google Scholar] [CrossRef]
- Zhan, X.P.; Liu, B.; Zhu, W.F.; Chen, J.B.; Ma, L.; Zhao, L.; Huang, L.Q.; Chen, X. Simultaneous detection of multiple plant growth regulator residues in cabbage and grape using an optimal QuEChERS sample preparation and UHPLC-MS/MS method. J. Aoac Int. 2022, 105, 129–141. [Google Scholar] [CrossRef]
- Chen, J.Y.; Cao, S.R.; Zhu, M.; Xi, C.X.; Zhang, L.; Li, X.L.; Wang, G.M.; Zhou, Y.T.; Chen, Z.Q. Fabrication of a high selectivity magnetic solid phase extraction adsorbent based on β-cyclodextrin and application for recognition of plant growth regulators. J. Chromatogr. 2018, 1547, 1–13. [Google Scholar] [CrossRef]
- Luo, Z.L.; Zhang, L.X.; Mou, Y.; Cui, S.R.; Gu, Z.; Yu, J.; Ma, X.J. Multi-residue analysis of plant growth regulators and pesticides in traditional Chinese medicines by high-performance liquid chromatography coupled with tandem mass spectrometry. Anal. Bioanal. Chem. 2019, 411, 2447–2460. [Google Scholar] [CrossRef]
- Zhang, L.; Luo, Z.; Cui, S.; Xie, L.; Yu, J.; Tang, D.; Ma, X.; Mou, Y. Residue of Paclobutrazol and Its Regulatory Effects on the Secondary Metabolites of Ophiopogon japonicas. Molecules 2019, 24, 3504. [Google Scholar] [CrossRef]
- Yue, K.X.; Yan, Y.M.; Zhang, H.X.; Wu, J.J.; Liu, Z.Y.; Pi, Z.F.; Ma, J.S.; Liu, Z.Q.; Song, F.R. Advances in Toxicity of Plant Growth Regulators. Agrochemicals 2021, 60, 239–243. [Google Scholar] [CrossRef]
- Choi, J.H.; Yoon, H.J.; Do, J.A.; Park, Y.C.; Kim, J.H.; Choi, D. An analytical method for prohexadione in Chinese cabbage and apple. Biomed. Chromatogr. BMC 2011, 25, 493–497. [Google Scholar] [CrossRef]
- Zhang, F.; Fan, S.; Gu, K.; Deng, K.; Pan, C. Uniconazole residue and decline in wheat and soil under field application. Bull. Environ. Contam. Toxicol. 2013, 90, 499–503. [Google Scholar] [CrossRef]
- MARA (Ministry of Agriculture and Rural Affairs of the People’s Republic of China). National Food Safety Standard—Maximum Residue Limits for Pesticides in Food (GDB 2763-2021); China Agriculture Press: Beijing, China, 2021.
- MARA (Ministry of Agriculture and Rural Affairs of the People’s Republic of China). Guideline for the Testing of Pesticide Residued in Crops (NY/T 788-2018); China Agriculture Press: Beijing, China, 2018.
- Wang, Z.W.; Di, S.S.; Qi, P.P.; Xu, H.; Zhao, H.Y.; Wang, X.Q. Dissipation, accumulation and risk assessment of fungicides after repeated spraying on greenhouse strawberry. Sci. Total Environ. 2021, 758, 144067. [Google Scholar] [CrossRef]
- Dong, J.N.; Li, X.R.; Chen, G.F.; Liu, F.; Zhang, X.B.; Niao, H. Residue and Dissipation Analysis on Prohexadione-Ca in Potato and Plant. Chin. Potato J. 2019, 33, 352–358. [Google Scholar]
- MARA (Ministry of Agriculture and Rural Affairs of the People’s Republic of China). Guideline for the Stability Testing of Pesticide Residues in Stored Commodities of Plant Origin (NY/T 3094-2017); China Agriculture Press: Beijing, China, 2017.
- Li, Y.J.; Xu, J.B.; Zhao, X.P.; He, H.M.; Zhang, C.P.; Zhang, Z.H. The dissipation behavior, household processing factor and risk assessment for cyenopyrafen residues in strawberry and mandarin fruits. Food Chem. 2021, 359, 129925. [Google Scholar] [CrossRef]
- EU (European Commission). Guidance Document on Analytical Quality Control and Method Validation Procedures for Pesticide Residues and Analysis in Food and Feed (SANTE/11813/2017). 2017. Available online: https://ec.europa.eu/food/sites/food/files/plant/docs/pesticides_mrl_guidelines_wrkdoc_2017-11813.pdf (accessed on 20 December 2022).
- Li, R.J.; Liu, T.G.; Cui, S.H.; Zhang, S.C.; Yu, J.L.; Song, G.H. Residue behaviors and dietary risk assessment of dinotefuran and its metabolites in Oryza sativa by a new HPLC-MS/MS method. Food Chem. 2017, 235, 188–193. [Google Scholar] [CrossRef]
- Peterson, R.K. Comparing ecological risks of pesticides: The utility of a Risk Quotient ranking approach across refinements of exposure. Pest. Manag. Sci. 2006, 62, 46–56. [Google Scholar] [CrossRef]
Compounds | Linearity (mg/L) | Matrix | Regression Equation | Correlation Coefficient (R2) | Limit of Detection (LOD, mg/L) | Limit of Quantitation (LOQ, mg/kg) |
---|---|---|---|---|---|---|
Prohexadione | 0.002–0.2 | Brown rice | y = 1085.33x + 79.1864 | 0.998 8 | 0.002 0 | 0.050 0 |
Rice hull | y = 1038.4x + 369.114 | 0.999 8 | 0.002 0 | 0.050 0 | ||
Rice straw | y = 878.72x + 58.5053 | 0.999 9 | 0.002 0 | 0.050 0 | ||
Whole citrus fruit | y = 371,672x + 266 | 0.999 5 | 0.002 0 | 0.050 0 | ||
Citrus pulp | y = 377,460x + 351 | 0.999 9 | 0.002 0 | 0.050 0 | ||
Solvent | y = 451,692x − 117 | 0.999 9 | / | / | ||
Uniconazole | 0.0002–0.02 | Brown rice | y = 1345.25x − 34.3587 | 0.999 9 | 0.000 2 | 0.010 0 |
Rice hull | y = 1234.72x − 3.54155 | 0.999 9 | 0.000 2 | 0.010 0 | ||
Rice straw | y = 1156.3x + 1.46754 | 0.999 9 | 0.000 2 | 0.010 0 | ||
Whole citrus fruit | y = 112,837,058x + 2050 | 1.000 0 | 0.000 2 | 0.010 0 | ||
Citrus pulp | y = 125,369,785x − 20,942 | 0.999 1 | 0.000 2 | 0.010 0 | ||
Solvent | y = 83,296,042x + 16,250 | 0.999 9 | / | / |
Table | Compounds | Matrix | Harvest Interval (Days) | Residue (mg/kg) | STMR a (mg/kg) | HR b (mg/kg) |
---|---|---|---|---|---|---|
In 2020/ At 12 sites | Prohexadione-Ca | Brown rice | 62–112 | <0.05 (12) | 0.05 | 0.05 |
Rice hull | 62–112 | <0.05 (12) | 0.05 | 0.05 | ||
Rice straw | 62–112 | <0.05 (12) | 0.05 | 0.05 | ||
Uniconazole | Brown rice | 62–112 | <0.01 (12) | 0.01 | 0.01 | |
Rice hull | 62–112 | <0.01 (12) | 0.01 | 0.01 | ||
Rice straw | 62–112 | <0.01 (12) | 0.01 | 0.01 | ||
In 2019/ At 12 sites | Prohexadione-Ca | Whole citrus fruit | 134–191 | <0.05 (12) | 0.05 | 0.05 |
Citrus pulp | 134–191 | <0.05 (12) | 0.05 | 0.05 | ||
Uniconazole | Whole citrus fruit | 134–191 | <0.01 (12) | 0.01 | 0.01 | |
Citrus pulp | 134–191 | <0.01 (12) | 0.01 | 0.01 |
Food Category | Dietary Intake (kg/Person/Day) | MRL a/STMR b (mg/kg) | Source of Reference Limit | Commodity | NEDI c (mg) | ADI d (mg/kg b.w.) | RQ (%) |
---|---|---|---|---|---|---|---|
Rice cereals and rice products | 0.239 9 | 0.05 | STMR | Brown rice | 0.012 0 | ADI × 3 e | |
Wheat cereals and wheat products | 0.138 5 | 0.1 | EU | Wheat | 0.013 9 | ||
Other cereal grains | 0.023 3 | ||||||
Potatos | 0.049 5 | ||||||
Dried beans and their products | 0.016 | ||||||
Dark-colored vegetables | 0.091 5 | ||||||
Light-colored vegetables | 0.183 7 | ||||||
Pickles | 0.010 3 | ||||||
Fruits | 0.045 7 | 0.05 | STMR | Mandarin | 0.002 3 | ||
Nuts | 0.003 9 | ||||||
Livestocks and poultries | 0.079 5 | ||||||
Milk and milk products | 0.026 3 | ||||||
Egg and egg products | 0.023 6 | ||||||
Fish and fish products | 0.030 1 | ||||||
Oil seeds and oil | 0.032 7 | 1 | USA | Peanut | 0.032 7 | ||
Animal origin oil and fat | 0.008 7 | ||||||
Sugars and starch | 0.004 4 | ||||||
Salt | 0.012 | ||||||
Soy sauce | 0.009 | ||||||
Total | 1.028 6 | 0.060 8 | 0.2 | 0.48% |
Food Category | Dietary Intake (kg/Person/Day) | MRL a/STMR b (mg/kg) | Source of Reference Limit | Commodity | NEDI c (mg) | ADI d (mg/kg b.w.) | RQ (%) |
---|---|---|---|---|---|---|---|
Rice cereals and rice products | 0.239 9 | 0.01 | STMR | Brown rice | 0.002 4 | ADI × 63 e | |
Wheat cereals and wheat products | 0.138 5 | 0.05 | China | Wheat | 0.006 9 | ||
Other cereal grains | 0.023 3 | ||||||
Potatos | 0.049 5 | ||||||
Dried beans and their products | 0.016 | ||||||
Dark-colored vegetables | 0.091 5 | ||||||
Light-colored vegetables | 0.183 7 | ||||||
Pickles | 0.010 3 | ||||||
Fruits | 0.045 7 | 0.01 | STMR | Mandarin | 0.000 5 | ||
Nuts | 0.003 9 | ||||||
Livestocks and poultries | 0.079 5 | ||||||
Milk and milk products | 0.026 3 | ||||||
Egg and egg products | 0.023 6 | ||||||
Fish and fish products | 0.030 1 | ||||||
Oilseeds and oil | 0.032 7 | 0.05 | China | Rapeseed, Peanut | 0.001 6 | ||
Animal origin oil and fat | 0.008 7 | ||||||
Sugars and starch | 0.004 4 | ||||||
Salt | 0.012 | ||||||
Soy sauce | 0.009 | ||||||
Total | 1.028 6 | 0.114 2 | 0.02 | 1.26% |
Analyte | Precursor (m/z) | Product (m/z) | Collision Energy (eV) | Retention Time (min) | Ionization Mode |
---|---|---|---|---|---|
Prohexadione | 211.00 | 123.00 * | 14 | 2.82 | ESI(−) |
211.00 | 167.00 | 20 | |||
Uniconazole | 292.10 | 70.10 * | 24 | 3.72 | ESI(+) |
292.10 | 125.00 | 28 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ye, H.; Luo, Y.; Li, Y.; Wang, X.; He, H.; Jiang, J.; Yu, J.; Zhang, C. Residues and Dietary Risk Assessment of Prohexadione-Ca and Uniconazole in Oryza sativa L. and Citrus reticulata Blanco by Liquid Chromatography-Tandem Mass Spectrometry. Molecules 2023, 28, 2611. https://doi.org/10.3390/molecules28062611
Ye H, Luo Y, Li Y, Wang X, He H, Jiang J, Yu J, Zhang C. Residues and Dietary Risk Assessment of Prohexadione-Ca and Uniconazole in Oryza sativa L. and Citrus reticulata Blanco by Liquid Chromatography-Tandem Mass Spectrometry. Molecules. 2023; 28(6):2611. https://doi.org/10.3390/molecules28062611
Chicago/Turabian StyleYe, Hui, Yuqin Luo, Yanjie Li, Xiangyun Wang, Hongmei He, Jinhua Jiang, Jianzhong Yu, and Changpeng Zhang. 2023. "Residues and Dietary Risk Assessment of Prohexadione-Ca and Uniconazole in Oryza sativa L. and Citrus reticulata Blanco by Liquid Chromatography-Tandem Mass Spectrometry" Molecules 28, no. 6: 2611. https://doi.org/10.3390/molecules28062611
APA StyleYe, H., Luo, Y., Li, Y., Wang, X., He, H., Jiang, J., Yu, J., & Zhang, C. (2023). Residues and Dietary Risk Assessment of Prohexadione-Ca and Uniconazole in Oryza sativa L. and Citrus reticulata Blanco by Liquid Chromatography-Tandem Mass Spectrometry. Molecules, 28(6), 2611. https://doi.org/10.3390/molecules28062611