Near-IR Absorbers Based on Pt(II)-Dithiolene Donor–Acceptor Charge-Transfer (CT) Systems: A Structural Analysis to Highlight DA Interactions
Abstract
:1. Introduction
2. Results and Discussion
2.1. Solid-State NIR Electronic Absorption Spectra and Electrochemical Properties
2.2. Crystal Packing
2.3. Hirshfield Surface Analysis
3. Materials and Methods
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Sproules, S.; Wieghardt, K. Dithiolene Radicals: Sulfur K-Edge X-Ray Absorption Spectroscopy and Harry’s Intuition. Coord. Chem. Rev. 2011, 255, 837–860. [Google Scholar] [CrossRef]
- Deplano, P.; Pilia, L.; Espa, D.; Mercuri, M.L.; Serpe, A. Square-Planar D8 Metal Mixed-Ligand Dithiolene Complexes as Second Order Nonlinear Optical Chromophores: Structure/Property Relationship. Coord. Chem. Rev. 2010, 254, 1434–1447. [Google Scholar] [CrossRef]
- Mueller-Westerhoff, U.T.; Vance, B.; Ihl Yoon, D. The Synthesis of Dithiolene Dyes with Strong Near-IR Absorption. Tetrahedron 1991, 47, 909–932. [Google Scholar] [CrossRef]
- Mebrouk, K.; Camerel, F.; Jeannin, O.; Heinrich, B.; Donnio, B.; Fourmigué, M. High Photothermal Activity within Neutral Nickel Dithiolene Complexes Derived from Imidazolium-Based Ionic Liquids. Inorg. Chem. 2016, 55, 1296–1303. [Google Scholar] [CrossRef]
- Chen, K.; Fang, W.; Zhang, Q.; Jiang, X.; Chen, Y.; Xu, W.; Shen, Q.; Sun, P.; Huang, W. Tunable NIR Absorption Property of a Dithiolene Nickel Complex: A Promising NIR-II Absorption Material for Photothermal Therapy. ACS Appl. Bio Mater. 2021, 4, 4406–4412. [Google Scholar] [CrossRef] [PubMed]
- Luong, X.H.; Pham, N.N.T.; An, K.L.; Lee, S.U.; Kim, S.S.; Park, J.S.; Lee, S.G. Near-Infrared Absorption Properties of Neutral Bis(1,2-Dithiolene) Platinum(II) Complexes Using Density Functional Theory. Nanomaterials 2022, 12, 1704. [Google Scholar] [CrossRef]
- Bigoli, F.; Deplano, P.; Devillanova, F.A.; Lippolis, V.; Lukes, P.J.; Mercuri, M.L.; Pellinghelli, M.A.; Trogu, E.F. New Neutral Nickel Dithiolene Complexes Derived from 1,3- Dialkylimidazolidine-2,4,5-Trithione, Showing Remarkable near-IR Absorption. J. Chem. Soc. Chem. Commun. 1995, 70, 371–372. [Google Scholar] [CrossRef]
- Hissler, M.; McGarrah, J.E.; Connick, W.B.; Geiger, D.K.; Cummings, S.D.; Eisenberg, R. Platinum Diimine Complexes: Towards a Molecular Photochemical Device. Coord. Chem. Rev. 2000, 208, 115–137. [Google Scholar] [CrossRef]
- Li, G.; Mark, M.F.; Lv, H.; McCamant, D.W.; Eisenberg, R. Rhodamine-Platinum Diimine Dithiolate Complex Dyads as Efficient and Robust Photosensitizers for Light-Driven Aqueous Proton Reduction to Hydrogen. J. Am. Chem. Soc. 2018, 140, 2575–2586. [Google Scholar] [CrossRef] [PubMed]
- Geary, E.A.M.; McCall, K.L.; Turner, A.; Murray, P.R.; McInnes, E.J.L.; Jack, L.A.; Yellowlees, L.J.; Robertson, N. Spectroscopic, Electrochemical and Computational Study of Pt-Diimine-Dithiolene Complexes: Rationalising the Properties of Solar Cell Dyes. Dalt. Trans. 2008, 3701–3708. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Browning, C.; Hudson, J.M.; Reinheimer, E.W.; Kuo, F.L.; McDougald, R.N.; Rabaâ, H.; Pan, H.; Bacsa, J.; Wang, X.; Dunbar, K.R.; et al. Synthesis, Spectroscopic Properties, and Photoconductivity of Black Absorbers Consisting of Pt(Bipyridine)(Dithiolate) Charge Transfer Complexes in the Presence and Absence of Nitrofluorenone Acceptors. J. Am. Chem. Soc. 2014, 136, 16185–16200. [Google Scholar] [CrossRef] [PubMed]
- Bortchagovsky, E.G.; Kazantseva, Z.I.; Koshets, I.A.; Nešpůrek, S.; Jastrabik, L. Optical Properties of Double-Layer Structure Phthalocyanine- Tetracyanoquinodimethane. Thin Solid Films 2004, 460, 269–273. [Google Scholar] [CrossRef]
- Coropceanu, V.; Cornil, J.; Filho, D.A.d.S.; Olivier, Y.; Silbey, R.; Bre´das, J.-L. Charge Transport in Organic Semiconductors. Chem. Rev. 2007, 4, 926–952. [Google Scholar] [CrossRef]
- Bakulin, A.A.; Rao, A.; Pavelyev, V.G.; van Loosdrecht, P.H.M.; Pshenichnikov, M.S.; Niedzialek, D.; Cornil, J.; Beljonne, D.; Friend, R.H. The Role of Driving Energyand Delocalized States for Charge Separation in Organic Semiconductors. Science 2012, 335, 1340–1344. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Walzer, K.; Männig, B.; Pfeiffer, M.; Leo, K. Highly Efficient Organic Devices Based on Electrically Doped Transport Layers. Chem. Rev. 2007, 107, 1233–1271. [Google Scholar] [CrossRef]
- Al-Amar, M.M.; Hamam, K.J.; Mezei, G.; Guda, R.; Hamdan, N.M.; Burns, C.A. A New Method to Improve the Lifetime Stability of Small Molecule Bilayer Heterojunction Organic Solar Cells. Sol. Energy Mater. Sol. Cells 2013, 109, 270–274. [Google Scholar] [CrossRef]
- Smucker, B.W.; Hudson, J.M.; Omary, M.A.; Dunbar, K.R. Structural, Magnetic, and Optoelectronic Properties of (Diimine)(Dithiolato)Platinum(II) and -Palladium(II) Complexes and Their Charge-Transfer Adducts with Nitrile Acceptors. Inorg. Chem. 2003, 42, 4714–4723. [Google Scholar] [CrossRef] [PubMed]
- Curreli, S.; Deplano, P.; Faulmann, C.; Ienco, A.; Mealli, C.; Mercuri, M.L.; Pilia, L.; Pintus, G.; Serpe, A.; Trogu, E.F. Electronic Factors Affecting Second-Order NLO Properties: Case Study of Four Different Push-Pull Bis-Dithiolene Nickel Complexes. Inorg. Chem. 2004, 43, 5069–5079. [Google Scholar] [CrossRef] [PubMed]
- Kato, R.; Kashimura, Y.; Sawa, H.; Okano, Y. Synthesis, Structure, and Electrochemical Properties of New “Unsymmetrical” Metal Dithiolate Complexes. Chem. Lett. 1997, 26, 921–922. [Google Scholar] [CrossRef]
- Kashimura, Y.; Okano, Y.; Yamaura, J.I.; Kato, R. Synthesis, Structures, and Physical Properties of Molecular Conductors Based on Unsymmetrical Metal-Dithiolene Complexes2. Synth. Met. 1999, 103, 2123–2124. [Google Scholar] [CrossRef]
- Dalgleish, S.; Morrison, C.; Middlemiss, D.S.; Mount, A.R.; Collins, A.; Pilia, L.; Serpe, A.; Mercuri, M.L.; Roberts-Bleming, S.J.; Charlton, A.; et al. Synthesis, Structure and Spectroscopic Properties of a New Class of Polymerisable Nickel Dithiolenes. J. Mater. Chem. 2009, 19, 6194. [Google Scholar] [CrossRef] [Green Version]
- Espa, D.; Pilia, L.; Marchiò, L.; Mercuri, M.L.; Serpe, A.; Sessini, E.; Deplano, P. Near-Infrared Pigments Based on Ion-Pair Charge Transfer Salts of Dicationic and Dianionic Metal–Dithiolene [M(II) = Pd, Pt] Complexes. Dalton Trans. 2013, 42, 12429–12439. [Google Scholar] [CrossRef] [PubMed]
- Bigoli, F.; Deplano, P.; Mercuri, M.L.; Pellinghelli, M.A.; Pilia, L.; Pintus, G.; Serpe, A.; Trogu, E.F. Ion Pair Charge-Transfer Complexes between Anionic and Cationic Metal-Dithiolenes [M(II) = Pd, Pt]. Inorg. Chem. 2002, 41, 5241–5248. [Google Scholar] [CrossRef] [PubMed]
- Deplano, P.; Mercuri, M.L.; Marchiò, L.; Pilia, L.; Salidu, M.; Serpe, A.; Congiu, F.; Sanna, S. Electro-Conducting Properties of Charge-Transfer Salts Based on Cationic and Anionic Platinum Dithiolenes—Crystal Structure of [Pt(Me2pipdt)2][Pt(Dtcr)2]. Eur. J. Inorg. Chem. 2005, 2005, 1829–1835. [Google Scholar] [CrossRef]
- Bigoli, F.; Chen, C.; Wu, W.; Deplano, P.; Mercuri, L.; Pellinghelli, M.A.; Pilia, L.; Pintus, G.; Trogu, E.F. [Ni(R2pipdt)2](BF4)2 (R2pipdt=1,4-Disubstituted-Piperazine-3,2-Dithione) as Useful Precursors of Mixed-Ligand Dithiolenes of Interest for Non-Linear Optics. Chem. Commun. 2001, 2, 2246–2247. [Google Scholar] [CrossRef] [PubMed]
- Kisch, H.; Eisen, B.; Dinnebier, R.; Shankland, K.; David, W.I.F.; Knoch, F. Chiral Metal-Dithiolene / Viologen Ion Pairs: Synthesis and Electrical Conductivity **. Chem. Eur. J. 2001, 3, 738–748. [Google Scholar] [CrossRef]
- Kisch, H. Tailoring of Solid State Electrical Conductivity and Optical Electron Transfer Activation of Dioxygen in Solution through Supramolecular Charge-Transfer Interaction in Ion Pairs. Coord. Chem. Rev. 1997, 159, 385–396. [Google Scholar] [CrossRef]
- McKinnon, J.J.; Jayatilaka, D.; Spackman, M.A. Towards Quantitative Analysis of Intermolecular Interactions with Hirshfeld Surfaces. Chem. Commun. 2007, 7, 3814. [Google Scholar] [CrossRef]
- Kishore, R.; Kashanna, J.; Tripuramallu, B.K. Synthesis, Characterization and Hirshfeld Surface Analyses of Ni(Mnt)-Alkyl Bis(Imidazolium) Ion Pair Compounds: Supramolecular Interactions Mediated Self-Assembly. J. Mol. Struct. 2022, 1264, 133207. [Google Scholar] [CrossRef]
- Spackman, M.A.; Jayatilaka, D. Hirshfeld Surface Analysis. CrystEngComm 2009, 11, 19. [Google Scholar] [CrossRef]
- Espa, D.; Pilia, L.; Marchiò, L.; Artizzu, F.; Di Carlo, G.; Marinotto, D.; Serpe, A.; Tessore, F.; Deplano, P. A Nonlinear Optical Active Polymer Film Based on Pd(II) Dithione/Dithiolate Second-Order NLO Chromophores. Dalt. Trans. 2016, 45, 17431–17438. [Google Scholar] [CrossRef] [PubMed]
- Wolff, S.K.; Grimwood, D.J.; McKinnon, J.J.; Turner, M.J.; Jayatilaka, D.; Spackman, M.A. CrystalExplorer 3.1. 2012.
- Spackman, M.A.; McKinnon, J.J. Fingerprinting Intermolecular Interactions in Molecular Crystals. CrystEngComm 2002, 4, 378. [Google Scholar] [CrossRef]
Compound | Packing Motif | D oxidation Potential (V) E1/2 | A reduction Potential (V) E1/2 | λmax CT (nm) |
---|---|---|---|---|
1 | -DDADD- | +0.54 | +0.19 | 800–1500 broad-week abs |
2 | -DDADD- | +0.59 | +0.59 | “800–1500 broad-week abs |
3 | -DDADD- | +0.48 | +0.17 | 800–1500 broad-week abs |
4 | -DDAADD- | +0.49 (Ep) | −0.70 | Not observed |
5 | -DADAD- | +0.50 (Ep) | −0.42 | 900 |
6 | -DDADD- | +0.48 (Ep) | +0.18 | Not available |
7 | -DADAD- | +0.48 (Ep) | +0.18 | 950 |
8 | -DADAD- | +0.21 | −0.24 | 937 |
9 | -DADAD- | +0.21 | −0.13 | 1270 |
10 | -DADAD- | +0.40 | −0.15 | 960 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Espa, D.; Pilia, L.; Artizzu, F.; Serpe, A.; Deplano, P.; Marchiò, L. Near-IR Absorbers Based on Pt(II)-Dithiolene Donor–Acceptor Charge-Transfer (CT) Systems: A Structural Analysis to Highlight DA Interactions. Molecules 2023, 28, 2566. https://doi.org/10.3390/molecules28062566
Espa D, Pilia L, Artizzu F, Serpe A, Deplano P, Marchiò L. Near-IR Absorbers Based on Pt(II)-Dithiolene Donor–Acceptor Charge-Transfer (CT) Systems: A Structural Analysis to Highlight DA Interactions. Molecules. 2023; 28(6):2566. https://doi.org/10.3390/molecules28062566
Chicago/Turabian StyleEspa, Davide, Luca Pilia, Flavia Artizzu, Angela Serpe, Paola Deplano, and Luciano Marchiò. 2023. "Near-IR Absorbers Based on Pt(II)-Dithiolene Donor–Acceptor Charge-Transfer (CT) Systems: A Structural Analysis to Highlight DA Interactions" Molecules 28, no. 6: 2566. https://doi.org/10.3390/molecules28062566
APA StyleEspa, D., Pilia, L., Artizzu, F., Serpe, A., Deplano, P., & Marchiò, L. (2023). Near-IR Absorbers Based on Pt(II)-Dithiolene Donor–Acceptor Charge-Transfer (CT) Systems: A Structural Analysis to Highlight DA Interactions. Molecules, 28(6), 2566. https://doi.org/10.3390/molecules28062566