Application of Biomass Materials in Zinc-Ion Batteries
Abstract
:1. Introduction
2. Zinc-Ion Battery
2.1. Charge Storage Mechanism of Zn Anode
2.2. Charge Storage Mechanism of Cathode
3. Biomass for Electrodes
3.1. Pure Biomass for Organic Electrode Materials
3.2. Biomass with Surface Modification for Electrode Materials
3.3. Biomass Derived Carbon for Electrode Materials
4. Biomass Used in Electrolytes
4.1. Single Biomass Electrolyte
4.2. Biomass Mixed Electrolyte
4.3. Biomass-PAM Copolymer Electrolyte
5. Biomass for Separator
5.1. Biomass Modified Commercial Separator
5.2. Biomass Modified Nafion Membrane
5.3. Biomass Directly Used as Separators
6. Biomass Used in Binders
7. Conclusions and Foresight
- (1)
- Biomass polymers can be directly extracted from biomass. The functional groups of biomass polymers have an important influence on their applications. Grafting modification or modification with active compounds can improve their mechanical properties, hydrophilicity, and flexibility. The structure of biochar plays an important role in its application. The preparation of biochar can inherit the original structure of biomass and can also be restructured. Plants with high cellulose content, such as bamboo, can effectively retain their original structure and system by carbonization. In order to improve the porosity and better retain the original structure, it can be chemically activated to remove impurities. In addition, the template method can be adopted to better control its pore structure. Biological/ice templates can be introduced to effectively reduce the cost, complexity and danger of the template method. Biochar used in the field of energy storage can improve its conductivity by heteroatom doping. Protein, as an important part of all organisms, has been widely used to synthesize nitrogen-containing biochar.
- (2)
- The energy density and energy storage effect of biomass-based energy storage devices are much lower than those of traditional metal-based energy storage devices and more efforts are needed to increase conductivity. The key problem to be solved when biomass and its derived materials are used as electrode materials is that biomass itself is not conductive and has limited functions; thus, biomass materials are usually prepared into carbon materials for battery electrodes or conductive additives. In addition, heteroatoms can also effectively increase the active sites and improve the coulombic efficiency of the electrode. The introduction of biomass molecules with redox active groups, the application of dynamic and adaptive coatings, and the design of complex three-dimensional hierarchical porous structures are all effective control strategies to construct advanced biomass materials for zinc-ion battery electrodes.
- (3)
- According to the unique features and characteristics of biomass, more efforts should be devoted to achieving the organic combination of biomass and ZIBs components. For example, a gel electrolyte can be obtained by adding biomass materials to the electrolyte, which can effectively inhibit the growth of zinc dendrites and the passivation of zinc-ion battery anode. However, the application of biomass in the electrolyte leads to the lower stability of zinc-ion batteries; in addition, the wide temperature range is also a challenge for its commercial application. Antifreeze compounds, such as ethylene glycol and Zn(ClO4)2, can be applied to reduce the freezing point of water electrolyte. The copolymerization of biomass and PAM can enrich the network structure of the electrolyte, improve the conductivity, and accelerate the commercialization of the biomass electrolyte.
- (4)
- The application of water-based biomass in the separator focuses on controlling the thickness and porosity of the separator. Modification with biomass is an excellent method to regulate the thickness and porosity of the separator. The modification of commercial glass fiber physical separator by biomass can improve its hydrophilicity and flexibility, increase the porosity and ion exchange rate of Nafion membrane. However, the organic combination of low cost, high ion exchange rate, excellent mechanical properties and toughness is still a challenge for biomass-derived zinc-ion battery separators. In addition, some key drawbacks of adhesives must be overcome, such as variable mass, weak adhesion, and hardness at low temperatures. Biomass, including sodium carboxymethyl cellulose and sodium alginate, have good water-based adhesion, and their high solubility still needs to be copolymerized with polymers.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Koohi-Fayegh, S.; Rosen, M.A. A review of energy storage types, applications and recent developments. J. Energy Storage 2020, 27, 101047. [Google Scholar] [CrossRef]
- Fang, G.; Zhou, J.; Pan, A.; Liang, S. Recent Advances in Aqueous Zinc-Ion Batteries. ACS Energy Lett. 2018, 3, 2480–2501. [Google Scholar] [CrossRef]
- Kim, T.; Song, W.; Son, D.-Y.; Ono, L.K.; Qi, Y. Lithium-ion batteries: Outlook on present, future, and hybridized technologies. J. Mater. Chem. A 2019, 7, 2942–2964. [Google Scholar] [CrossRef]
- Abbasi, T.; Abbasi, S.A. Biomass energy and the environmental impacts associated with its production and utilization. Renew. Sust. Energ. Rev. 2010, 14, 919–937. [Google Scholar] [CrossRef]
- Luo, X.; Chen, S.; Hu, T.; Chen, Y.; Li, F. Renewable biomass-derived carbons for electrochemical capacitor applications. SusMat 2021, 1, 211–240. [Google Scholar] [CrossRef]
- Sun, Y.; Shi, X.L.; Yang, Y.L.; Suo, G.; Zhang, L.; Lu, S.; Chen, Z.G. Biomass-Derived Carbon for High-Performance Batteries: From Structure to Properties. Adv. Funct. Mater. 2022, 32, 2201584. [Google Scholar] [CrossRef]
- Hao, Y.; Feng, D.; Hou, L.; Li, T.; Jiao, Y.; Wu, P. Gel Electrolyte Constructing Zn (002) Deposition Crystal Plane Toward Highly Stable Zn Anode. Adv. Sci. 2022, 9, e2104832. [Google Scholar] [CrossRef] [PubMed]
- Huang, Y.; Zhang, J.; Liu, J.; Li, Z.; Jin, S.; Li, Z.; Zhang, S.; Zhou, H. Flexible and stable quasi-solid-state zinc ion battery with conductive guar gum electrolyte. Mater. Today Energy 2019, 14, 100349. [Google Scholar] [CrossRef]
- Yuan, D.; Manalastas, W., Jr.; Zhang, L.; Chan, J.J.; Meng, S.; Chen, Y.; Srinivasan, M. Lignin@Nafion Membranes Forming Zn Solid-Electrolyte Interfaces Enhance the Cycle Life for Rechargeable Zinc-Ion Batteries. ChemSusChem 2019, 12, 4889–4900. [Google Scholar] [CrossRef] [PubMed]
- Chang, H.J.; Rodríguez-Pérez, I.A.; Fayette, M.; Canfield, N.L.; Pan, H.; Choi, D.; Li, X.; Reed, D. Effects of water—Based binders on electrochemical performance of manganese dioxide cathode in mild aqueous zinc batteries. Carbon Energy 2020, 3, 473–481. [Google Scholar] [CrossRef]
- Jaikrajang, N.; Kao-Ian, W.; Muramatsu, T.; Chanajaree, R.; Yonezawa, T.; Al Balushi, Z.Y.; Kheawhom, S.; Cheacharoen, R. Impact of Binder Functional Groups on Controlling Chemical Reactions to Improve Stability of Rechargeable Zinc-Ion Batteries. ACS Appl. Energy Mater. 2021, 4, 7138–7147. [Google Scholar] [CrossRef]
- Chen, D.; Lu, M.; Cai, D.; Yang, H.; Han, W. Recent advances in energy storage mechanism of aqueous zinc-ion batteries. J. Energy Chem. 2021, 54, 712–726. [Google Scholar] [CrossRef]
- Liu, C.; Xie, X.; Lu, B.; Zhou, J.; Liang, S. Electrolyte Strategies toward Better Zinc-Ion Batteries. ACS Energy Lett. 2021, 6, 1015–1033. [Google Scholar] [CrossRef]
- Huang, S.; Zhu, J.; Tian, J.; Niu, Z. Recent Progress in the Electrolytes of Aqueous Zinc-Ion Batteries. Chemistry 2019, 25, 14480–14494. [Google Scholar] [CrossRef]
- Liu, Y.; Huang, M.; Xiong, F.; Zhu, J.; An, Q. Improved zinc-ion storage performance of the metal-free organic anode by the effect of binder. Chem. Eng. J. 2022, 428, 131092. [Google Scholar] [CrossRef]
- Li, H.; Han, C.; Huang, Y.; Huang, Y.; Zhu, M.; Pei, Z.; Xue, Q.; Wang, Z.; Liu, Z.; Tang, Z.; et al. An extremely safe and wearable solid-state zinc ion battery based on a hierarchical structured polymer electrolyte. Energy Environ. Sci. 2018, 11, 941–951. [Google Scholar] [CrossRef]
- Wu, B.; Wu, Y.; Lu, Z.; Zhang, J.; Han, N.; Wang, Y.; Li, X.-m.; Lin, M.; Zeng, L. A cation selective separator induced cathode protective layer and regulated zinc deposition for zinc ion batteries. J. Mater. Chem. A 2021, 9, 4734–4743. [Google Scholar] [CrossRef]
- Zhang, Y.; Li, X.; Fan, L.; Shuai, Y.; Zhang, N. Ultrathin and super-tough membrane for anti-dendrite separator in aqueous zinc-ion batteries. Cell Rep. Phys. Sci. 2022, 3, 100824. [Google Scholar] [CrossRef]
- Yu, P.; Zeng, Y.; Zhang, H.; Yu, M.; Tong, Y.; Lu, X. Flexible Zn-Ion Batteries: Recent Progresses and Challenges. Small 2019, 15, e1804760. [Google Scholar] [CrossRef]
- Ming, J.; Guo, J.; Xia, C.; Wang, W.; Alshareef, H.N. Zinc-ion batteries: Materials, mechanisms, and applications. Mater. Sci. Eng. R Rep. 2019, 135, 58–84. [Google Scholar] [CrossRef]
- Tang, B.; Shan, L.; Liang, S.; Zhou, J. Issues and opportunities facing aqueous zinc-ion batteries. Energy Environ. Sci. 2019, 12, 3288–3304. [Google Scholar] [CrossRef]
- Zhang, Q.; Luan, J.; Tang, Y.; Ji, X.; Wang, H. Interfacial Design of Dendrite-Free Zinc Anodes for Aqueous Zinc-Ion Batteries. Angew. Chem. Int. Ed. Engl. 2020, 59, 13180–13191. [Google Scholar] [CrossRef]
- Cui, J.; Guo, Z.; Yi, J.; Liu, X.; Wu, K.; Liang, P.; Li, Q.; Liu, Y.; Wang, Y.; Xia, Y.; et al. Organic Cathode Materials for Rechargeable Zinc Batteries: Mechanisms, Challenges, and Perspectives. ChemSusChem 2020, 13, 2160–2185. [Google Scholar] [CrossRef]
- Zhou, T.; Zhu, L.; Xie, L.; Han, Q.; Yang, X.; Chen, L.; Wang, G.; Cao, X. Cathode materials for aqueous zinc-ion batteries: A mini review. J. Colloid Interface Sci. 2022, 605, 828–850. [Google Scholar] [CrossRef]
- Sun, W.; Wang, F.; Hou, S.; Yang, C.; Fan, X.; Ma, Z.; Gao, T.; Han, F.; Hu, R.; Zhu, M.; et al. Zn/MnO2 Battery Chemistry With H+ and Zn2+ Coinsertion. J. Am. Chem. Soc. 2017, 139, 9775–9778. [Google Scholar] [CrossRef]
- Nam, K.W.; Kim, H.; Beldjoudi, Y.; Kwon, T.W.; Kim, D.J.; Stoddart, J.F. Redox-Active Phenanthrenequinone Triangles in Aqueous Rechargeable Zinc Batteries. J. Am. Chem. Soc. 2020, 142, 2541–2548. [Google Scholar] [CrossRef]
- Khayum, M.A.; Ghosh, M.; Vijayakumar, V.; Halder, A.; Nurhuda, M.; Kumar, S.; Addicoat, M.; Kurungot, S.; Banerjee, R. Zinc ion interactions in a two-dimensional covalent organic framework based aqueous zinc ion battery. Chem. Sci. 2019, 10, 8889–8894. [Google Scholar] [CrossRef] [Green Version]
- Nam, K.W.; Park, S.S.; Dos Reis, R.; Dravid, V.P.; Kim, H.; Mirkin, C.A.; Stoddart, J.F. Conductive 2D metal-organic framework for high-performance cathodes in aqueous rechargeable zinc batteries. Nat. Commun. 2019, 10, 4948. [Google Scholar] [CrossRef] [Green Version]
- Guo, Z.; Ma, Y.; Dong, X.; Huang, J.; Wang, Y.; Xia, Y. An Environmentally Friendly and Flexible Aqueous Zinc Battery Using an Organic Cathode. Angew. Chem. Int. Ed. Engl. 2018, 57, 11737–11741. [Google Scholar] [CrossRef] [PubMed]
- Pan, H.; Shao, Y.; Yan, P.; Cheng, Y.; Han, K.S.; Nie, Z.; Wang, C.; Yang, J.; Li, X.; Bhattacharya, P.; et al. Reversible aqueous zinc/manganese oxide energy storage from conversion reactions. Nat. Energy 2016, 1, 16039. [Google Scholar] [CrossRef]
- Qiu, W.; Tian, Y.; Lin, Z.; Lin, S.; Geng, Z.; Huang, K.; Lei, A.; Huang, F.; Feng, H.; Ding, F.; et al. High rate and ultralong life flexible all-solid-state zinc ion battery based on electron density modulated NiCo2O4 nanosheets. J. Energy Chem. 2022, 70, 283–291. [Google Scholar] [CrossRef]
- Zhang, N.; Cheng, F.; Liu, J.; Wang, L.; Long, X.; Liu, X.; Li, F.; Chen, J. Rechargeable aqueous zinc-manganese dioxide batteries with high energy and power densities. Nat. Commun. 2017, 8, 405. [Google Scholar] [CrossRef] [Green Version]
- Wang, F.; Hu, E.; Sun, W.; Gao, T.; Ji, X.; Fan, X.; Han, F.; Yang, X.-Q.; Xu, K.; Wang, C. A rechargeable aqueous Zn2+-battery with high power density and a long cycle-life. Energy Environ. Sci. 2018, 11, 3168–3175. [Google Scholar] [CrossRef]
- Zhang, L.; Chen, L.; Zhou, X.; Liu, Z. Towards High-Voltage Aqueous Metal-Ion Batteries Beyond 1.5 V: The Zinc/Zinc Hexacyanoferrate System. Adv. Energy Mater. 2015, 5, 1400930. [Google Scholar] [CrossRef]
- Ma, L.; Chen, S.; Long, C.; Li, X.; Zhao, Y.; Liu, Z.; Huang, Z.; Dong, B.; Zapien, J.A.; Zhi, C. Achieving High-Voltage and High-Capacity Aqueous Rechargeable Zinc Ion Battery by Incorporating Two-Species Redox Reaction. Adv. Energy Mater. 2019, 9, 1902446. [Google Scholar] [CrossRef]
- Liang, H.; Cao, Z.; Ming, F.; Zhang, W.; Anjum, D.H.; Cui, Y.; Cavallo, L.; Alshareef, H.N. Aqueous Zinc-Ion Storage in MoS2 by Tuning the Intercalation Energy. Nano Lett. 2019, 19, 3199–3206. [Google Scholar] [CrossRef]
- He, X.; Zhang, H.; Zhao, X.; Zhang, P.; Chen, M.; Zheng, Z.; Han, Z.; Zhu, T.; Tong, Y.; Lu, X. Stabilized Molybdenum Trioxide Nanowires as Novel Ultrahigh-Capacity Cathode for Rechargeable Zinc Ion Battery. Adv. Sci. 2019, 6, 1900151. [Google Scholar] [CrossRef] [Green Version]
- Tan, L.; Wei, C.; Zhang, Y.; An, Y.; Xiong, S.; Feng, J. Long-life and dendrite-free zinc metal anode enabled by a flexible, green and self-assembled zincophilic biomass engineered MXene based interface. Chem. Eng. J. 2022, 431, 134277. [Google Scholar] [CrossRef]
- Zhao, Q.; Huang, W.; Luo, Z.; Liu, L.; Lu, Y.; Li, Y.; Li, L.; Hu, J.; Ma, H.; Chen, J. High-capacity aqueous zinc batteries using sustainable quinone electrodes. Sci. Adv. 2018, 4, eaao1761. [Google Scholar] [CrossRef] [Green Version]
- Kleinnijenhuis, A.J.; van Holthoon, F.L.; Herregods, G. Validation and theoretical justification of an LC-MS method for the animal species specific detection of gelatin. Food Chem. 2018, 243, 461–467. [Google Scholar] [CrossRef]
- Lizundia, E.; Kundu, D. Advances in natural biopolymer-based electrolytes and separators for battery applications. Adv. Funct. Mater. 2021, 31, 2005646. [Google Scholar] [CrossRef]
- Wu, K.; Huang, J.; Yi, J.; Liu, X.; Liu, Y.; Wang, Y.; Zhang, J.; Xia, Y. Recent Advances in Polymer Electrolytes for Zinc Ion Batteries: Mechanisms, Properties, and Perspectives. Adv. Energy Mater. 2020, 10, 1903977. [Google Scholar] [CrossRef]
- Liu, C.; Li, R.; Liu, W.; Shen, G.; Chen, D. Chitosan-Assisted Fabrication of a Network C@V2O5 Cathode for High-Performance Zn-Ion Batteries. ACS Appl. Mater. Interfaces 2021, 13, 37194–37200. [Google Scholar] [CrossRef]
- Cui, H.; Pan, N.; Fan, W.; Liu, C.; Li, Y.; Xia, Y.; Sui, K. Ultrafast Fabrication of Gradient Nanoporous All-Polysaccharide Films as Strong, Superfast, and Multiresponsive Actuators. Adv. Funct. Mater. 2019, 29, 1807692. [Google Scholar] [CrossRef]
- Guerin, S.; Thompson, D. Restriction boosts piezoelectricity. Nat. Mater. 2021, 20, 574–575. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, T.P.; Easley, A.D.; Kang, N.; Khan, S.; Lim, S.M.; Rezenom, Y.H.; Wang, S.; Tran, D.K.; Fan, J.; Letteri, R.A.; et al. Polypeptide organic radical batteries. Nature 2021, 593, 61–66. [Google Scholar] [CrossRef] [PubMed]
- Lu, Y.; Zhang, Q.; Li, L.; Niu, Z.; Chen, J. Design Strategies toward Enhancing the Performance of Organic Electrode Materials in Metal-Ion Batteries. Chem 2018, 4, 2786–2813. [Google Scholar] [CrossRef] [Green Version]
- Chen, Q.; Tan, X.; Liu, Y.; Liu, S.; Li, M.; Gu, Y.; Zhang, P.; Ye, S.; Yang, Z.; Yang, Y. Biomass-derived porous graphitic carbon materials for energy and environmental applications. J. Mater. Chem. A 2020, 8, 5773–5811. [Google Scholar] [CrossRef]
- Gao, Y.; Li, G.; Wang, F.; Chu, J.; Yu, P.; Wang, B.; Zhan, H.; Song, Z. A high-performance aqueous rechargeable zinc battery based on organic cathode integrating quinone and pyrazine. Energy Storage Mater. 2021, 40, 31–40. [Google Scholar] [CrossRef]
- Rodriguez-Perez, I.A.; Yuan, Y.; Bommier, C.; Wang, X.; Ma, L.; Leonard, D.P.; Lerner, M.M.; Carter, R.G.; Wu, T.; Greaney, P.A.; et al. Mg-Ion Battery Electrode: An Organic Solid’s Herringbone Structure Squeezed upon Mg-Ion Insertion. J. Am. Chem. Soc. 2017, 139, 13031–13037. [Google Scholar] [CrossRef]
- Pan, B.; Huang, J.; Feng, Z.; Zeng, L.; He, M.; Zhang, L.; Vaughey, J.T.; Bedzyk, M.J.; Fenter, P.; Zhang, Z.; et al. Polyanthraquinone-Based Organic Cathode for High-Performance Rechargeable Magnesium-Ion Batteries. Adv. Energy Mater. 2016, 6, 1600140. [Google Scholar] [CrossRef]
- Kim, H.; Kwon, J.E.; Lee, B.; Hong, J.; Lee, M.; Park, S.Y.; Kang, K. High Energy Organic Cathode for Sodium Rechargeable Batteries. Chem. Mater. 2015, 27, 7258–7264. [Google Scholar] [CrossRef] [Green Version]
- Wu, W.; Shi, H.-Y.; Lin, Z.; Yang, X.; Li, C.; Lin, L.; Song, Y.; Guo, D.; Liu, X.-X.; Sun, X. The controlled quinone introduction and conformation modification of polyaniline cathode materials for rechargeable aqueous zinc-polymer batteries. Chem. Eng. J. 2021, 419, 129659. [Google Scholar] [CrossRef]
- Zhang, Y.; Liang, Y.; Dong, H.; Wang, X.; Yao, Y. Charge Storage Mechanism of a Quinone Polymer Electrode for Zinc-ion Batteries. J. Electrochem. Soc. 2020, 167, 070558. [Google Scholar] [CrossRef]
- Li, Y.; Lu, Y.; Ni, Y.; Zheng, S.; Yan, Z.; Zhang, K.; Zhao, Q.; Chen, J. Quinone Electrodes for Alkali-Acid Hybrid Batteries. J. Am. Chem. Soc. 2022, 144, 8066–8072. [Google Scholar] [CrossRef] [PubMed]
- Chan, C.Y.; Wang, Z.; Li, Y.; Yu, H.; Fei, B.; Xin, J.H. Single-Ion Conducting Double-Network Hydrogel Electrolytes for Long Cycling Zinc-Ion Batteries. ACS Appl. Mater. Interfaces 2021, 13, 30594–30602. [Google Scholar] [CrossRef]
- Zuo, L.; Sun, H.; Yuan, X.; Wen, J.; Chen, X.; Zhou, S.; Wu, Y.; van Ree, T. Agar Acts as Cathode Microskin to Extend the Cycling Life of Zn//alpha-MnO2 Batteries. Materials 2021, 14, 4895. [Google Scholar] [CrossRef]
- Wang, A.; Zhou, W.; Huang, A.; Chen, M.; Chen, J.; Tian, Q.; Xu, J. Modifying the Zn anode with carbon black coating and nanofibrillated cellulose binder: A strategy to realize dendrite-free Zn-MnO2 batteries. J. Colloid Interf. Sci. 2020, 577, 256–264. [Google Scholar] [CrossRef]
- Zeng, Y.; Liang, J.; Zheng, J.; Huang, Z.; Zhang, X.; Zhu, G.; Wang, Z.; Liang, H.; Zhang, Y.-Z. Recent progress in advanced flexible zinc ion battery design. Appl. Phys. Rev. 2022, 9, 021304. [Google Scholar] [CrossRef]
- Chen, A.; Zhao, C.; Guo, Z.; Lu, X.; Liu, N.; Zhang, Y.; Fan, L.; Zhang, N. Fast-growing multifunctional ZnMoO4 protection layer enable dendrite-free and hydrogen-suppressed Zn anode. Energy Storage Mater. 2022, 44, 353–359. [Google Scholar] [CrossRef]
- Liu, Y.; Zhi, J.; Hoang, T.K.; Zhou, M.; Han, M.; Wu, Y.; Shi, Q.; Xing, R.; Chen, P. Paraffin Based Cathode–Electrolyte Interface for Highly Reversible Aqueous Zinc-Ion Battery. ACS Appl. Energy Mater. 2022, 5, 4840–4849. [Google Scholar] [CrossRef]
- Gao, Q.-L.; Li, D.-S.; Liu, X.-M.; Wang, Y.-F.; Liu, W.-L.; Ren, M.-M.; Kong, F.-G.; Wang, S.-J.; Zhou, R.-C. Biomass-derived mesoporous carbons materials coated by α-Mn3O4 with ultrafast zinc-ion diffusion ability as cathode for aqueous zinc ion batteries. Electrochim. Acta 2020, 335, 135642. [Google Scholar] [CrossRef]
- Zhao, J.; Wu, W.; Jia, X.; Xia, T.; Li, Q.; Zhang, J.; Wang, Q.; Zhang, W.; Lu, C. High-value utilization of biomass waste: From garbage floating on the ocean to high-performance rechargeable Zn–MnO2 batteries with superior safety. J. Mater. Chem. A 2020, 8, 18198–18206. [Google Scholar] [CrossRef]
- Shin, J.; Lee, J.; Park, Y.; Choi, J.W. Aqueous zinc ion batteries: Focus on zinc metal anodes. Chem. Sci. 2020, 11, 2028–2044. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, L.; Yang, Z.; Cui, F.; Meng, J.; Jiang, Y.; Long, J.; Zeng, X. Ultrathin MnO2 nanoflakes grown on N-doped hollow carbon spheres for high-performance aqueous zinc ion batteries. Mater. Chem. Front. 2020, 4, 213–221. [Google Scholar] [CrossRef]
- Zhang, H.; Yao, Z.; Lan, D.; Liu, Y.; Ma, L.; Cui, J. N-doped carbon/V2O3 microfibers as high-rate and ultralong-life cathode for rechargeable aqueous zinc-ion batteries. J. Alloys Compd. 2021, 861, 158560. [Google Scholar] [CrossRef]
- Huo, Y.; Teng, Y.; Cai, K.; Chen, H. Honeycomb ZnO/N/C obtained from cornsilk and ZIF-8 dual induced method for long-life aqueous zinc-ion batteries. J. Alloys Compd. 2021, 855, 157398. [Google Scholar] [CrossRef]
- Naskar, S.; Deepa, M.J.B. ZnV2O4-Textured Carbon Composite Contacting a ZIF-8 MOF Layer for a High Performance Non-Aqueous Zinc-Ion Battery. Batter. Supercaps 2022, 5, e202100364. [Google Scholar] [CrossRef]
- Liu, J.; Song, H.; Wang, Z.; Zhang, J.; Zhang, J.; Ba, X. Stretchable, self-healable, and reprocessable chemical cross-linked ionogels electrolytes based on gelatin for flexible supercapacitors. J. Mater. Sci. 2019, 55, 3991–4004. [Google Scholar] [CrossRef]
- Lu, Y.; Zhu, T.; Xu, N.; Huang, K. A Semisolid Electrolyte for Flexible Zn-Ion Batteries. ACS Appl. Energy Mater. 2019, 2, 6904–6910. [Google Scholar] [CrossRef]
- Zhang, S.; Yu, N.; Zeng, S.; Zhou, S.; Chen, M.; Di, J.; Li, Q. An adaptive and stable bio-electrolyte for rechargeable Zn-ion batteries. J. Mater. Chem. A 2018, 6, 12237–12243. [Google Scholar] [CrossRef]
- Wang, D.; Wang, L.; Liang, G.; Li, H.; Liu, Z.; Tang, Z.; Liang, J.; Zhi, C. A Superior delta-MnO2 Cathode and a Self-Healing Zn-delta-MnO2 Battery. ACS Nano 2019, 13, 10643–10652. [Google Scholar] [CrossRef]
- Zhou, J.; Li, Y.; Xie, L.; Xu, R.; Zhang, R.; Gao, M.; Tian, W.; Li, D.; Qiao, L.; Wang, T.; et al. Humidity-sensitive, shape-controllable, and transient zinc-ion batteries based on plasticizing gelatin-silk protein electrolytes. Mater. Today Energy 2021, 21, 100712. [Google Scholar] [CrossRef]
- Liu, D.; Tang, Z.; Luo, L.; Yang, W.; Liu, Y.; Shen, Z.; Fan, X.-H. Self-Healing Solid Polymer Electrolyte with High Ion Conductivity and Super Stretchability for All-Solid Zinc-Ion Batteries. ACS Appl. Mater. Interfaces 2021, 13, 36320–36329. [Google Scholar] [CrossRef] [PubMed]
- Liao, H.; Guo, X.; Wan, P.; Yu, G. Conductive MXene Nanocomposite Organohydrogel for Flexible, Healable, Low-Temperature Tolerant Strain Sensors. Adv. Funct. Mater. 2019, 29, 1904507. [Google Scholar] [CrossRef]
- Han, Q.; Chi, X.; Zhang, S.; Liu, Y.; Zhou, B.; Yang, J.; Liu, Y. Durable, flexible self-standing hydrogel electrolytes enabling high-safety rechargeable solid-state zinc metal batteries. J. Mater. Chem. A 2018, 6, 23046–23054. [Google Scholar] [CrossRef]
- Cao, Z.; Zhuang, P.; Zhang, X.; Ye, M.; Shen, J.; Ajayan, P.M. Strategies for Dendrite-Free Anode in Aqueous Rechargeable Zinc Ion Batteries. Adv. Energy Mater. 2020, 10, 2001599. [Google Scholar] [CrossRef]
- Wang, D.; Li, Q.; Zhao, Y.; Hong, H.; Li, H.; Huang, Z.; Liang, G.; Yang, Q.; Zhi, C. Insight on Organic Molecules in Aqueous Zn-Ion Batteries with an Emphasis on the Zn Anode Regulation. Adv. Energy Mater. 2022, 12, 2102707. [Google Scholar] [CrossRef]
- Cao, F.; Wu, B.; Li, T.; Sun, S.; Jiao, Y.; Wu, P. Mechanoadaptive morphing gel electrolyte enables flexible and fast-charging Zn-ion batteries with outstanding dendrite suppression performance. Nano Res. 2021, 15, 2030–2039. [Google Scholar] [CrossRef]
- Zhang, X.; Li, J.; Liu, D.; Liu, M.; Zhou, T.; Qi, K.; Shi, L.; Zhu, Y.; Qian, Y. Ultra-long-life and highly reversible Zn metal anodes enabled by a desolvation and deanionization interface layer. Energy Environ. Sci. 2021, 14, 3120–3129. [Google Scholar] [CrossRef]
- Cao, J.; Zhang, D.; Gu, C.; Wang, X.; Wang, S.; Zhang, X.; Qin, J.; Wu, Z.S. Manipulating Crystallographic Orientation of Zinc Deposition for Dendrite-free Zinc Ion Batteries. Adv. Energy Mater. 2021, 11, 2101299. [Google Scholar] [CrossRef]
- Yang, Q.; Liang, G.; Guo, Y.; Liu, Z.; Yan, B.; Wang, D.; Huang, Z.; Li, X.; Fan, J.; Zhi, C. Do Zinc Dendrites Exist in Neutral Zinc Batteries: A Developed Electrohealing Strategy to In Situ Rescue In-Service Batteries. Adv. Mater. 2019, 31, e1903778. [Google Scholar] [CrossRef]
- Nguyen Thanh Tran, T.; Zhao, M.; Geng, S.; Ivey, D.G. Ethylene Glycol as an Antifreeze Additive and Corrosion Inhibitor for Aqueous Zinc-Ion Batteries. Batter. Supercaps 2022, 5, e202100420. [Google Scholar] [CrossRef]
- Wu, Y.; Deng, Y.; Zhang, K.; Qiu, J.; Wu, J.; Yan, L. Ultrahigh Conductive and Stretchable Eutectogel Electrolyte for High-Voltage Flexible Antifreeze Quasi-solid-state Zinc-Ion Hybrid Supercapacitor. ACS Appl. Energy Mater. 2022, 5, 3013–3021. [Google Scholar] [CrossRef]
- Wang, J.; Huang, Y.; Liu, B.; Li, Z.; Zhang, J.; Yang, G.; Hiralal, P.; Jin, S.; Zhou, H. Flexible and anti-freezing zinc-ion batteries using a guar-gum/sodium-alginate/ethylene-glycol hydrogel electrolyte. Energy Storage Mater. 2021, 41, 599–605. [Google Scholar] [CrossRef]
- Yang, G.; Huang, J.; Wan, X.; Zhu, Y.; Liu, B.; Wang, J.; Hiralal, P.; Fontaine, O.; Guo, Y.; Zhou, H. A low cost, wide temperature range, and high energy density flexible quasi-solid-state zinc-ion hybrid supercapacitors enabled by sustainable cathode and electrolyte design. Nano Energy 2021, 90, 106500. [Google Scholar] [CrossRef]
- Liu, Y.; Kang, Z.; Zhang, S.; Li, Y.; Wu, H.; Wu, J.; Wu, P.; Zhang, Z.; Liao, Q.; Zhang, Y. Ferroelectric polarization-enhanced charge separation in a vanadium-doped ZnO photoelectrochemical system. Inorg. Chem. Front. 2018, 5, 1533–1539. [Google Scholar] [CrossRef]
- Li, Y.; Kang, Z.; Yan, X.; Cao, S.; Li, M.; Guo, Y.; Huan, Y.; Wen, X.; Zhang, Y. A three-dimensional reticulate CNT-aerogel for a high mechanical flexibility fiber supercapacitor. Nanoscale 2018, 10, 9360–9368. [Google Scholar] [CrossRef] [PubMed]
- La Mattina, A.A.; Mariani, S.; Barillaro, G. Bioresorbable Materials on the Rise: From Electronic Components and Physical Sensors to In Vivo Monitoring Systems. Adv. Sci. 2020, 7, 1902872. [Google Scholar] [CrossRef] [Green Version]
- Biswal, D.R.; Singh, R.P. Characterisation of carboxymethyl cellulose and polyacrylamide graft copolymer. Carbohydr. Polym. 2004, 57, 379–387. [Google Scholar] [CrossRef]
- Gupta, B.; Agarwal, R.; Sarwar Alam, M. Preparation and characterization of polyvinyl alcohol-polyethylene oxide-carboxymethyl cellulose blend membranes. J. Appl. Polym. Sci. 2013, 127, 1301–1308. [Google Scholar] [CrossRef]
- Wang, Z.; Mo, F.; Ma, L.; Yang, Q.; Liang, G.; Liu, Z.; Li, H.; Li, N.; Zhang, H.; Zhi, C. Highly Compressible Cross-Linked Polyacrylamide Hydrogel-Enabled Compressible Zn-MnO2 Battery and a Flexible Battery-Sensor System. ACS Appl. Mater. Interfaces 2018, 10, 44527–44534. [Google Scholar] [CrossRef] [PubMed]
- Dong, H.; Li, J.; Zhao, S.; Jiao, Y.; Chen, J.; Tan, Y.; Brett, D.J.L.; He, G.; Parkin, I.P. Investigation of a Biomass Hydrogel Electrolyte Naturally Stabilizing Cathodes for Zinc-Ion Batteries. ACS Appl. Mater. Interfaces 2021, 13, 745–754. [Google Scholar] [CrossRef]
- Wang, Z.; Dong, L.; Huang, W.; Jia, H.; Zhao, Q.; Wang, Y.; Fei, B.; Pan, F. Simultaneously Regulating Uniform Zn2+ Flux and Electron Conduction by MOF/rGO Interlayers for High-Performance Zn Anodes. Nanomicro Lett. 2021, 13, 73. [Google Scholar] [CrossRef] [PubMed]
- Dueramae, I.; Okhawilai, M.; Kasemsiri, P.; Uyama, H.; Kita, R. Properties enhancement of carboxymethyl cellulose with thermo-responsive polymer as solid polymer electrolyte for zinc ion battery. Sci. Rep. 2020, 10, 12587. [Google Scholar] [CrossRef]
- Li, J.; Yu, P.; Zhang, S.; Wen, Z.; Wen, Y.; Zhou, W.; Dong, X.; Liu, Y.; Liang, Y. Mild synthesis of superadhesive hydrogel electrolyte with low interfacial resistance and enhanced ionic conductivity for flexible zinc ion battery. J. Colloid Interface Sci. 2021, 600, 586–593. [Google Scholar] [CrossRef]
- Tong, Q.; Xiao, Q.; Lim, L.-T. Effects of glycerol, sorbitol, xylitol and fructose plasticisers on mechanical and moisture barrier properties of pullulan-alginate-carboxymethylcellulose blend films. Int. J. Food Sci. Technol. 2013, 48, 870–878. [Google Scholar] [CrossRef]
- Manthiram, A.; Yu, X.; Wang, S. Lithium battery chemistries enabled by solid-state electrolytes. Nat. Rev. Mater. 2017, 2, 16103. [Google Scholar] [CrossRef]
- Xue, Z.; He, D.; Xie, X. Poly(ethylene oxide)-based electrolytes for lithium-ion batteries. J. Mater. Chem. A 2015, 3, 19218–19253. [Google Scholar] [CrossRef]
- Liu, S.; Zhang, H.; Yu, W. Simultaneously improved strength and toughness in kappa-carrageenan/polyacrylamide double network hydrogel via synergistic interaction. Carbohydr. Polym. 2020, 230, 115596. [Google Scholar] [CrossRef]
- Meziane, R.; Bonnet, J.-P.; Courty, M.; Djellab, K.; Armand, M. Single-ion polymer electrolytes based on a delocalized polyanion for lithium batteries. Electrochim. Acta 2011, 57, 14–19. [Google Scholar] [CrossRef]
- Zhang, Y.; Chen, Z.; Qiu, H.; Yang, W.; Zhao, Z.; Zhao, J.; Cui, G. Pursuit of reversible Zn electrochemistry: A time-honored challenge towards low-cost and green energy storage. NPG Asia Mater. 2020, 12, 4. [Google Scholar] [CrossRef] [Green Version]
- Ma, Q.; Zhang, H.; Zhou, C.; Zheng, L.; Cheng, P.; Nie, J.; Feng, W.; Hu, Y.S.; Li, H.; Huang, X.; et al. Single Lithium-Ion Conducting Polymer Electrolytes Based on a Super-Delocalized Polyanion. Angew. Chem. Int. Ed. 2016, 55, 2521–2525. [Google Scholar] [CrossRef] [PubMed]
- Ji, P.-Y.; Fang, J.; Zhang, Y.-Y.; Zhang, P.; Zhao, J.-B. Novel Single Lithium-Ion Conducting Polymer Electrolyte Based on Poly (hexafluorobutyl methacrylate-co-lithium allyl sulfonate) for Lithium-Ion Batteries. ChemElectroChem 2017, 4, 2352–2358. [Google Scholar] [CrossRef]
- Zhou, M.; Chen, Y.; Fang, G.; Liang, S. Electrolyte/electrode interfacial electrochemical behaviors and optimization strategies in aqueous zinc-ion batteries. Energy Storage Mater. 2021, 45, 618–646. [Google Scholar] [CrossRef]
- Latifi, M.; Ahmad, A.; Hassan, N.H.; Ben Youcef, H.; Kaddami, H. Towards the application of carboxymethyl chitin/ionic liquid blend as polymer electrolyte membrane for aqueous batteries. Carbohyd. Polym. 2021, 273, 118542. [Google Scholar] [CrossRef] [PubMed]
- Foroozan, T.; Yurkiv, V.; Sharifi-Asl, S.; Rojaee, R.; Mashayek, F.; Shahbazian-Yassar, R. Non-Dendritic Zn Electrodeposition Enabled by Zincophilic Graphene Substrates. ACS Appl. Mater. Interfaces 2019, 11, 44077–44089. [Google Scholar] [CrossRef]
- Meudre, C.; Ricq, L.; Hihn, J.-Y.; Moutarlier, V.; Monnin, A.; Heintz, O. Adsorption of gelatin during electrodeposition of copper and tin–copper alloys from acid sulfate electrolyte. Surf. Coat. Tech. 2014, 252, 93–101. [Google Scholar] [CrossRef]
- Ballesteros, J.C.; Chaînet, E.; Ozil, P.; Trejo, G.; Meas, Y. Initial stages of the electrocrystallization of copper from non-cyanide alkaline bath containing glycine. J. Electroanal. Chem. 2010, 645, 94–102. [Google Scholar] [CrossRef]
- Zhao, H.; Deng, N.; Kang, W.; Li, Z.; Wang, G.; Cheng, B. Highly multiscale structural Poly (vinylidene fluoridehexafluoropropylene)/poly-m-phenyleneisophthalamide separator with enhanced interface compatibility and uniform lithium-ion flux distribution for dendrite-proof lithium-metal batteries. Energy Storage Mater. 2020, 26, 334–348. [Google Scholar] [CrossRef]
- Mun, J.; Yim, T.; Gap Kwon, Y.; Jae Kim, K. Self-assembled nano-silica-embedded polyethylene separator with outstanding physicochemical and thermal properties for advanced sodium ion batteries. Chem. Eng. J. 2021, 405, 125844. [Google Scholar] [CrossRef]
- Zhou, W.; Chen, M.; Tian, Q.; Chen, J.; Xu, X.; Wong, C.-P. Cotton-derived cellulose film as a dendrite-inhibiting separator to stabilize the zinc metal anode of aqueous zinc ion batteries. Energy Storage Mater. 2022, 44, 57–65. [Google Scholar] [CrossRef]
- Luo, Y.; Yang, Y.; Tao, Y.; Huang, D.; Huang, B.; Chen, H. Directing the Preferred Crystal Orientation by a Cellulose Acetate/Graphene Oxide Composite Separator for Dendrite-Free Zn-Metal Anodes. ACS Appl. Energy Mater. 2021, 4, 14599–14607. [Google Scholar] [CrossRef]
- Cao, Z.; Zhu, X.; Xu, D.; Dong, P.; Chee, M.O.L.; Li, X.; Zhu, K.; Ye, M.; Shen, J. Eliminating Zn dendrites by commercial cyanoacrylate adhesive for zinc ion battery. Energy Storage Mater. 2021, 36, 132–138. [Google Scholar] [CrossRef]
- Bresser, D.; Buchholz, D.; Moretti, A.; Varzi, A.; Passerini, S. Alternative binders for sustainable electrochemical energy storage—The transition to aqueous electrode processing and bio-derived polymers. Energy Environ. Sci. 2018, 11, 3096–3127. [Google Scholar] [CrossRef] [Green Version]
- Muruganantham, R.; Hsieh, T.-H.; Lin, C.-H.; Liu, W.-R. Bio-oil derived hierarchical porous hard carbon from rubber wood sawdust via a template fabrication process as highly stable anode for sodium-ion batteries. Mater. Today Energy 2019, 14, 100346. [Google Scholar] [CrossRef]
- Zhang, L.; Liu, Z.; Cui, G.; Chen, L. Biomass-derived materials for electrochemical energy storages. Prog. Polym. Sci. 2015, 43, 136–164. [Google Scholar] [CrossRef]
- Cao, J.; Zhang, D.; Zhang, X.; Wang, S.; Han, J.; Zhao, Y.; Huang, Y.; Qin, J. Mechanochemical reactions of MnO2 and graphite nanosheets as a durable zinc ion battery cathode. Appl. Surf. Sci. 2020, 534, 147630. [Google Scholar] [CrossRef]
- Liu, Y.; Zhi, J.; Sedighi, M.; Han, M.; Shi, Q.; Wu, Y.; Chen, P. Mn2+ ions confined by electrode microskin for aqueous battery beyond intercalation capacity. Adv. Energy Mater. 2020, 10, 2002578. [Google Scholar] [CrossRef]
- Peng, X.; Zhang, L.; Chen, Z.; Zhong, L.; Zhao, D.; Chi, X.; Zhao, X.; Li, L.; Lu, X.; Leng, K.; et al. Hierarchically Porous Carbon Plates Derived from Wood as Bifunctional ORR/OER Electrodes. Adv. Mater. 2019, 31, e1900341. [Google Scholar] [CrossRef] [PubMed]
- Cao, P.; Zhou, H.; Zhou, X.; Du, Q.; Tang, J.; Yang, J. Stabilizing Zinc Anodes by a Cotton Towel Separator for Aqueous Zinc-Ion Batteries. Acs Sustain. Chem. Eng. 2022, 10, 8350–8359. [Google Scholar] [CrossRef]
Cathode Material | Anode Material | Device Configuration | Electrolyte | Capacity (mAh g−1) | Energy Density (Wh kg−1) | Power Density (kW kg−1) | Cycling Stability | Conductivity (mS cm−1) | Features | Ref |
---|---|---|---|---|---|---|---|---|---|---|
COG@MnO2 | COG@Zn | Sandwich structure | ZnSO4/MnSO4 | 369.73 | 420.1 | / | 95.2% capacity retention after 3000 cycles | / | Zn2+ insertion/ extraction | [63] |
MCM4@Mn3O4 | Zn foil | Sandwich structure | ZnSO4/MnSO4 | 275 | / | / | 80% capacity retention after 2000 cycles (0.6A g−1) | / | Zn2+ insertion/ extraction | [62] |
α-MnO2/agar | Zn foil | Sandwich structure | ZnSO4/ MnSO4 | 384.7 (0.25 A g−1) | / | / | 85.6% capacity retention after 500 cycles (0.25 A g−1) | / | Zn2+ insertion/ extraction | [57] |
C@V2O5 | Zn film | Sandwich structure | Zn(CF3SO3)2 | 361 (0.5 A g−1) | / | / | 71% capacity retention after 2000 cycles | / | Zn2+ insertion/ extraction | [43] |
CQ4 | Zn foil | Sandwich structure | Zn(CF3SO3)2 | 335 | 220 | / | 87% capacity retention after 1000 cycles (0.5 A g−1) | / | Zn2+ insertion/ extraction | [39] |
ZnO/N/C | Zn plate | Sandwich structure | ZnSO4 | 172.2 (0.3 A g−1) | 112.8 | 2.9 | 97% capacity retention after 8000 cycles (0.3 A g−1) | / | Zn2+ insertion/ extraction | [67] |
CH-EMS- MnO2 | Zn | Sandwich structure | ZnSO4/ MnSO4 | 415 (0.5 A g−1) | / | / | 90% capacity retention after 1000 cycles (0.5 A g−1) | / | Zn2+ insertion/ extraction | [119] |
Gelatin- MnO2 | Zn | Sandwich structure | ZnSO4/ MnSO4 | 330 (0.5 A g−1) | / | / | 80% capacity retention after 1000 cycles (0.5 A g−1) | / | Zn2+ insertion/ extraction | [61] |
N/E-HPC-900 | Zn foil | Sandwich structure | KOH/Zn(Ac)2 | 801 | 955 | / | / | Zn2+ insertion/ extraction | [120] | |
MnO2/CNT | Zn foil | cable-type | GSF | 311.7 | / | / | 94.6% capacity retention over 100 cycles | / | high capacity retention of 82.5% after 80 bends | [73] |
Na0.65Mn2O4 | Zinc paste | Sandwich structure | SA-PAM | 160 | / | / | 96% capacity retention 2000 cycles (2 A g−1) | / | Zn2+ insertion/ extraction | [93] |
MnO2/rGO | electroplated zinc | Sandwich structure | ZnSO4/MnSO4/guar gum | 308.2 (0.3 A g−1) | 416 | 7.8 | 100% capacity retention after 1900 cycles | 10.7 | 81.3% capacity retention after continuously bending to 180°for 1000 cycles | [8] |
V2O5/CNT | Zn foil | Sandwich structure | P(ICZn-AAM) SIHE | 266.9 (0.3 A g−1) | / | / | 110% capacity retention after 150 cycles | 21.5 | / | [56] |
MnO2 /Super P/PVDF | Zn foil | Sandwich structure | GG/SA/EG | 354.9 (0.15 A g−1) | 432.2 | 7.43 | 91.52% capacity retention after 1000 cycles. | 6.19 | 79.5% capacity retention after for 1000 cycles (a radius of 10 mm) (0.3 A g−1) | [17] |
fibrous PANI | fibrous metal Zn | cable-type | cellulose yarn | 152.2 | 153.2 | 0.16 | / | / | Zn2+ insertion/ extraction | [70] |
MnO2 | Zn | Sandwich structure | SL-PAM | / | / | / | / | 31.1 | Zn2+ insertion/ extraction | [5] |
MnO2 | Zn | Sandwich structure | PZIB | 120.6 | / | / | / | 21.88 | Zn2+ insertion/ extraction | [7] |
Zn foil | Zn foil | Sandwich structure | CMChit_IL1_40 | / | / | / | / | 0.1 | Zn2+ insertion/ extraction | [106] |
β-MnO2 | Zn foil | Sandwich structure | ZnSO4 (Nafion mem- branes separator) | 236 (0.3 A g−1) | / | / | / | / | Zn2+ insertion/ extraction | [9] |
ZnMn1.71O4 | Zinc foil | Sandwich structure | ZnSO4/MnSO4 (g-AGM separator) | 103 | / | / | 91.3% capacity retention after 500 cycles, | / | Zn2+ insertion/ extraction | [63] |
MnO2/CNT | Zn-P | Sandwich structure | ZnSO4/MnSO4 (CT separator) | / | / | / | / | / | Zn2+ insertion/ extraction | [121] |
MnO2 | Zn | Sandwich structure | ZnSO4 (BCM separator) | 173.8 (0.6 A g−1) | / | / | / | / | Zn2+ insertion/ extraction | [18] |
Hydrated VO2/CC | Zn | Sandwich structure | Zn(CF3SO3)2 (rGO/CA separator) | / | / | / | / | / | Zn2+ insertion/ extraction | [113] |
α-MnO2 | Zn foil | Sandwich structure | ZnSO4/MnSO4 (CMC binder) | 93 (6 A g−1) | / | / | 73.6% capacity retention after 100 cycles | / | Zn2+ insertion/ extraction | [11] |
MnO2 | Zn foil | Sandwich structure | H2O (CMC binder) | 288 (0.1 A g−1) | / | / | / | / | Zn2+ insertion/ extraction | [10] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, Y.; Xu, M.; Jia, X.; Liu, F.; Yao, J.; Hu, R.; Jiang, X.; Yu, P.; Yang, H. Application of Biomass Materials in Zinc-Ion Batteries. Molecules 2023, 28, 2436. https://doi.org/10.3390/molecules28062436
Zhang Y, Xu M, Jia X, Liu F, Yao J, Hu R, Jiang X, Yu P, Yang H. Application of Biomass Materials in Zinc-Ion Batteries. Molecules. 2023; 28(6):2436. https://doi.org/10.3390/molecules28062436
Chicago/Turabian StyleZhang, Yu, Mengdie Xu, Xin Jia, Fangjun Liu, Junlong Yao, Ruofei Hu, Xueliang Jiang, Peng Yu, and Huan Yang. 2023. "Application of Biomass Materials in Zinc-Ion Batteries" Molecules 28, no. 6: 2436. https://doi.org/10.3390/molecules28062436
APA StyleZhang, Y., Xu, M., Jia, X., Liu, F., Yao, J., Hu, R., Jiang, X., Yu, P., & Yang, H. (2023). Application of Biomass Materials in Zinc-Ion Batteries. Molecules, 28(6), 2436. https://doi.org/10.3390/molecules28062436