A High-Performance Liquid Chromatography—Mass Spectrometry Method for Simultaneous Determination of Vancomycin, Meropenem, and Valproate in Patients with Post-Craniotomy Infection
Abstract
:1. Introduction
2. Results and Discussion
2.1. LC–MS/MS Conditions
2.2. Sample Preparation
2.3. Assay Performance and Validation
2.4. Clinical Application
3. Materials and Methods
3.1. Chemicals and Reagents
3.2. LC Conditions
3.3. MS Conditions
3.4. Preparation of Calibration Standards and QC Samples
3.5. Sample Preparation
3.6. Assay Validation
3.7. Clinical Assessment
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Sample Availability
References
- Suthar, R.; Sankhyan, N. Bacterial Infections of the Central Nervous System. Indian J. Pediatr. 2019, 86, 60–69. [Google Scholar] [CrossRef]
- Luque-Paz, D.; Revest, M. Ventriculitis: A Severe Complication of Central Nervous System Infections. Open Forum Infect. Dis. 2021, 8, ofab216. [Google Scholar] [CrossRef]
- Tseng, Y.Y.; Wang, Y.C. Biodegradable vancomycin-eluting poly[(d,l)-lactide-co-glycolide] nanofibres for the treatment of postoperative central nervous system infection. Sci. Rep. 2015, 5, 7849. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schneider, F.; Gessner, A. Efficacy of Vancomycin and Meropenem in Central Nervous System Infections in Children and Adults: Current Update. Antibiotics 2022, 11, 173. [Google Scholar] [CrossRef]
- Saletti, P.G.; Ali, I. In search of antiepileptogenic treatments for post-traumatic epilepsy. Neurobiol. Dis. 2019, 123, 86–99. [Google Scholar] [CrossRef] [PubMed]
- Monostory, K.; Nagy, A. Relevance of CYP2C9 Function in Valproate Therapy. Curr. Neuropharmacol. 2019, 17, 99–106. [Google Scholar] [CrossRef] [PubMed]
- Mekonnen, S. Valproate Poisoning. J. Emerg. Nurs. 2019, 45, 98–100. [Google Scholar] [CrossRef] [PubMed]
- Fawley, J.; Napolitano, L.M. Vancomycin Enema in the Treatment of Clostridium difficile Infection. Surg. Infect. 2019, 20, 311–316. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mortensen, J.S.; Jensen, B.P. Preanalytical Stability of Piperacillin, Tazobactam, Meropenem, and Ceftazidime in Plasma and Whole Blood Using Liquid Chromatography-Tandem Mass Spectrometry. Ther. Drug Monit. 2019, 41, 538–543. [Google Scholar] [CrossRef] [PubMed]
- Deng, Z.W.; Wang, J. A case report of intraventricular and intrathecal tigecycline infusions for an extensively drug-resistant intracranial Acinetobacter baumannii infection. Medicine 2019, 98, e15139. [Google Scholar] [CrossRef]
- Blassmann, U.; Roehr, A.C. Cerebrospinal fluid penetration of meropenem in neurocritical care patients with proven or suspected ventriculitis: A prospective observational study. Crit. Care 2016, 20, 343. [Google Scholar] [CrossRef] [Green Version]
- Barco, S.; Mesini, A. A liquid chromatography-tandem mass spectrometry platform for the routine therapeutic drug monitoring of 14 antibiotics: Application to critically ill pediatric patients. J. Pharm. Biomed. Anal. 2022, 186, 113273. [Google Scholar] [CrossRef] [PubMed]
- Milla, P.; Ferrari, F. Validation of a simple and economic HPLC-UV method for the simultaneous determination of vancomycin, meropenem, piperacillin and tazobactam in plasma samples. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 2020, 1148, 122151. [Google Scholar] [CrossRef] [PubMed]
- Lipska, K.; Gumieniczek, A. HPLC-UV and GC-MS Methods for Determination of Chlorambucil and Valproic Acid in Plasma for Further Exploring a New Combined Therapy of Chronic Lymphocytic Leukemia. Molecules 2021, 26, 2903. [Google Scholar] [CrossRef] [PubMed]
- Ye, G.; Cai, X. Simultaneous determination of vancomycin and ceftazidime in cerebrospinal fluid in craniotomy patients by high-performance liquid chromatography. J. Pharm. Biomed. Anal. 2008, 48, 860–865. [Google Scholar] [CrossRef] [PubMed]
- Lu, W.; Pan, M. An LC-MS/MS method for the simultaneous determination of 18 antibacterial drugs in human plasma and its application in therapeutic drug monitoring. Front. Pharmacol. 2022, 13, 1044234. [Google Scholar] [CrossRef]
- Reiber, H. External quality assessment in clinical neurochemistry: Survey of analysis for cerebrospinal fluid (CSF) proteins based on CSF/serum quotients. Clin. Chem. 1995, 41, 256–263. [Google Scholar] [CrossRef]
- Steffens, N.A.; Zimmermann, E.S. Meropenem use and therapeutic drug monitoring in clinical practice: A literature review. J. Clin. Pharm. Ther. 2021, 46, 610–621. [Google Scholar] [CrossRef]
- Wu, Y.; Kang, J. Drug concentrations in the serum and cerebrospinal fluid of patients treated with norvancomycin after craniotomy. Eur. J. Clin. Microbiol. Infect. Dis. 2017, 36, 305–311. [Google Scholar] [CrossRef] [Green Version]
- Bentué-Ferrer, D.; Tribut, O.; Verdier, M.C. Therapeutic drug monitoring of valproate. Therapie 2010, 65, 233–240. [Google Scholar] [CrossRef]
- Chen, K.; Wu, Y. The methodology and pharmacokinetics study of intraventricular administration of vancomycin in patients with intracranial infections after craniotomy. J. Crit. Care 2015, 30, 218.e211-215. [Google Scholar] [CrossRef] [PubMed]
- Nau, R.; Sörgel, F. Penetration of drugs through the blood-cerebrospinal fluid/BBB for treatment of central nervous system infections. Clin. Microbiol. Rev. 2010, 23, 858–883. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ng, K.; Mabasa, V.H. Systematic review of efficacy, pharmacokinetics, and administration of intraventricular vancomycin in adults. Neurocrit. Care 2014, 20, 158–171. [Google Scholar] [CrossRef] [PubMed]
- Bioanalytical Method Validation Guidance for Industry. Available online: https://www.fda.gov/regulatory-information/search-fda-guidance-documents/bioanalytical-method-validation-guidance-industry (accessed on 24 May 2018).
Analyte | Matrix | Concentration (μg/mL) | Precision (RSD %) | Accuracy (RE %) | ||
---|---|---|---|---|---|---|
Nominal | Mean Found | Intra-Day | Inter-Day | |||
VAN | Serum | 0.1 | 0.11 | 6.5 | 3.6 | 5.6 |
0.16 | 0.16 | 4.6 | 4.4 | −1.0 | ||
1.5 | 1.45 | 4.8 | 4.0 | −3.0 | ||
8 | 7.98 | 3.1 | 5.7 | −0.2 | ||
MER | 0.005 | 0.005 | 5.3 | 5.5 | 2.9 | |
0.008 | 0.008 | 5.7 | 8.3 | 3.9 | ||
0.075 | 0.075 | 3.8 | 4.0 | −6.1 | ||
0.400 | 0.387 | 2.0 | 3.7 | −3.3 | ||
VPA | 1 | 1.06 | 4.0 | 2.0 | 6.3 | |
1.6 | 1.66 | 3.0 | 4.5 | 3.5 | ||
15 | 14.46 | 4.2 | 13.3 | −3.6 | ||
80 | 82.42 | 3.7 | 9.3 | 3.0 | ||
VAN | CSF | 1 | 1.06 | 2.9 | 7.6 | 5.3 |
1.6 | 1.69 | 4.7 | 6.7 | 5.5 | ||
15 | 15.19 | 5.6 | 7.2 | 1.3 | ||
80 | 77.63 | 1.1 | 7.5 | −3.0 | ||
MER | 0.050 | 0.050 | 7.4 | 6.4 | 0.8 | |
0.080 | 0.080 | 3.0 | 13.9 | −0.1 | ||
0.750 | 0.745 | 2.3 | 11.1 | −0.7 | ||
4.000 | 3.753 | 1.8 | 3.0 | −6.2 | ||
VPA | 2 | 2.07 | 6.5 | 11.1 | 3.5 | |
3.2 | 3.33 | 4.5 | 9.1 | 3.9 | ||
30 | 30.47 | 3.7 | 14.1 | 1.6 | ||
160 | 165.40 | 6.4 | 3.3 | 3.4 |
Analyte | Matrix | Matrix Effects (%) | Recovery (%) | ||||
---|---|---|---|---|---|---|---|
Low QC | Medium QC | High QC | Low QC | Medium QC | High QC | ||
VAN | Serum | 86.0 ± 3.0 | 76.7 ± 2.6 | 74.0 ± 3.6 | 74.6 ± 1.4 | 74.2 ± 1.2 | 72.4 ± 5.3 |
MER | 88.5 ± 12.0 | 80.3 ± 3.9 | 86.6 ± 9.4 | 85.6 ± 5.2 | 76.6 ± 13.3 | 79.2 ± 7.6 | |
VPA | 78.3 ± 1.9 | 82.8 ± 1.6 | 75.1 ± 1.6 | 72.1 ± 3.2 | 76.7 ± 1.1 | 74.4 ± 3.0 | |
VAN | CSF | 84.7 ± 9.4 | 70.8 ± 4.4 | 74.7 ± 1.6 | 73.8 ± 6.7 | 86.1 ± 14.0 | 73.0 ± 4.4 |
MER | 83.8 ± 5.1 | 82.7 ± 2.9 | 85.1 ± 2.4 | 95.4 ± 2.4 | 89.6 ± 6.1 | 96.8 ± 3.6 | |
VPA | 79.4 ± 8.8 | 75.0 ± 4.7 | 72.4 ± 1. 8 | 95.9 ± 6.2 | 93.8 ± 2.0 | 85.5 ± 2.0 |
Analyte | Matrix | Nominal Concentration (ng/mL) | At RT for 6 h | In the Autosampler for 6 h | Processed Samples at RT for 6 h | Three Freeze–Thaw Cycles | At −20 °C for 30 Days | |||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
RSD (%) | RE (%) | RSD (%) | RE (%) | RSD (%) | RE (%) | RSD (%) | RE (%) | RSD (%) | RE (%) | |||
VAN | Serum | 160 | 6.3 | −2.7 | 6.3 | −1.7 | 6.3 | 0.4 | 6.7 | −7.3 | 6.3 | −0.4 |
8000 | 1.7 | 2.0 | 5.0 | −4.9 | 5.7 | −3.2 | 2.9 | 4.8 | 1.1 | −12.4 | ||
MER | 8 | 3.6 | 5.2 | 5.4 | 4.0 | 6.7 | 0.8 | 6.6 | −2.0 | 9.2 | 0.8 | |
400 | 1.2 | 6.6 | 4.6 | −5.3 | 1.4 | 0.2 | 7.0 | −12.8 | 5.5 | 0.8 | ||
VPA | 1600 | 3.0 | 5.6 | 3.6 | 3.3 | 2.3 | 9.4 | 5.3 | 6.9 | 5.2 | −4.0 | |
80,000 | 5.9 | 4.1 | 4.6 | 3.7 | 5.4 | 6.5 | 1.3 | 3.3 | 1.4 | 9.4 | ||
VAN | CSF | 1600 | 3.7 | 1.7 | 4.6 | 8.1 | 3.5 | 6.0 | 3.4 | 10.0 | 7.3 | 2.3 |
80,000 | 2.0 | 0.0 | 1.0 | 5.9 | 2.1 | 0.5 | 4.7 | 1.9 | 11.6 | −1.6 | ||
MER | 80 | 2.9 | −10.1 | 5.4 | 3.0 | 0.4 | 9.3 | 6.7 | 4.8 | 2.0 | −4.4 | |
4000 | 1.8 | −2.3 | 3.4 | −8.1 | 1.4 | −5.3 | 2.6 | −3.1 | 4.3 | 4.0 | ||
VPA | 3200 | 3.7 | 2.3 | 2.6 | 7.8 | 1.4 | 11.0 | 2.4 | 6.6 | 8.8 | −0.9 | |
160,000 | 0.8 | 10.3 | 4.2 | 7.5 | 6.7 | −0.4 | 4.0 | 4.4 | 3.5 | 7.4 |
Analyte | Concentration (μg/mL) | CSF Albumin (mg /L) | Serum Albumin (g/ L) | CSAR | |
---|---|---|---|---|---|
Serum | CSF | ||||
VAN (n = 9) | 2.44 | 6.24 | 1020 | 30.70 | 33.22 |
3.83 | 11.40 | 1990 | 30.00 | 66.33 | |
1.93 | 12.60 | 1860 | 30.40 | 61.18 | |
4.96 | 7.33 | 750 | 35.00 | 21.43 | |
2.51 | 2.57 | 500 | 35.30 | 14.16 | |
1.78 | 3.61 | 860 | 36.20 | 23.76 | |
1.31 | 3.21 | 1540 | 36.80 | 41.85 | |
1.30 | 4.56 | 920 | 31.10 | 29.58 | |
1.16 | 7.68 | 1830 | 27.20 | 67.28 | |
MER (n = 8) | 1.12 | 2.61 | 990 | 33.30 | 29.73 |
0.29 | 9.50 | 970 | 30.50 | 31.80 | |
0.92 | 12.10 | 660 | 27.70 | 23.83 | |
1.15 | 1.06 | 1020 | 30.70 | 33.22 | |
0.16 | 4.12 | 970 | 31.80 | 30.50 | |
0.55 | 7.33 | 1360 | 39.32 | 34.59 | |
0.66 | 1.34 | 750 | 35.00 | 21.43 | |
1.33 | 6.66 | 770 | 33.80 | 22.78 | |
VPA (n = 14) | 41.80 | 50.80 | 1460 | 31.80 | 45.91 |
40.40 | 77.20 | 1330 | 33.00 | 40.30 | |
10.60 | 15.70 | 750 | 35.00 | 21.43 | |
35.50 | 69.60 | 1260 | 35.30 | 35.69 | |
55.50 | 112.00 | 4070 | 37.30 | 109.12 | |
46.30 | 155.00 | 12,690 | 37.00 | 342.97 | |
34.60 | 78.90 | 10,650 | 37.00 | 287.84 | |
30.30 | 23.30 | 1240 | 36.80 | 33.70 | |
25.50 | 51.40 | 1540 | 36.80 | 41.85 | |
12.90 | 62.80 | 920 | 31.10 | 29.58 | |
9.61 | 26.40 | 2410 | 37.20 | 64.78 | |
31.80 | 46.40 | 880 | 30.90 | 28.48 | |
49.70 | 55.50 | 1710 | 42.60 | 40.14 | |
18.10 | 35.20 | 1830 | 27.20 | 67.28 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jin, Y.; Sun, Q.; Pei, Y.; Huang, J. A High-Performance Liquid Chromatography—Mass Spectrometry Method for Simultaneous Determination of Vancomycin, Meropenem, and Valproate in Patients with Post-Craniotomy Infection. Molecules 2023, 28, 2439. https://doi.org/10.3390/molecules28062439
Jin Y, Sun Q, Pei Y, Huang J. A High-Performance Liquid Chromatography—Mass Spectrometry Method for Simultaneous Determination of Vancomycin, Meropenem, and Valproate in Patients with Post-Craniotomy Infection. Molecules. 2023; 28(6):2439. https://doi.org/10.3390/molecules28062439
Chicago/Turabian StyleJin, Yuting, Qiang Sun, Yumei Pei, and Jing Huang. 2023. "A High-Performance Liquid Chromatography—Mass Spectrometry Method for Simultaneous Determination of Vancomycin, Meropenem, and Valproate in Patients with Post-Craniotomy Infection" Molecules 28, no. 6: 2439. https://doi.org/10.3390/molecules28062439
APA StyleJin, Y., Sun, Q., Pei, Y., & Huang, J. (2023). A High-Performance Liquid Chromatography—Mass Spectrometry Method for Simultaneous Determination of Vancomycin, Meropenem, and Valproate in Patients with Post-Craniotomy Infection. Molecules, 28(6), 2439. https://doi.org/10.3390/molecules28062439