Reconversion of Parahydrogen Gas in Surfactant-Coated Glass NMR Tubes
Abstract
:1. Introduction
2. Experimental
2.1. Parahydrogen Generator
2.2. Surfactants
2.3. Raman Spectroscopy
3. Results and Discussion
3.1. Measuring Tρ
3.2. Comparing Tρ across Surfactants
3.3. Utilizing Surfactants for Hyperpolarized Media
3.4. Raman Measurements of Hydrogen Spin Isomers
3.5. Comparison with Previous Tρ Measurements
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Farkas, A. Orthohydrogen, Parahydrogen and Heavy Hydrogen; Cambridge University Press: London, UK, 1935. [Google Scholar]
- Pravdivtsev, A.; Barskiy, D.A.; Hovener, J.-B.; Koptyug, I.V. Symmetry Constraints on Spin Order Transfer in Parahydrogen-Induced Polarization (PHIP). Symmetry 2022, 14, 530. [Google Scholar] [CrossRef]
- Leachman, J.; Jacobsen, R.; Penoncello, S.; Lemmon, E. Fundamental Equations of State for Parahydrogen, Normal Hydrogen, and Orthohydrogen. J. Phys. Chem. 2009, 38, 721–748. [Google Scholar] [CrossRef]
- Buljubasich, L.; Franzoni, M.; Munnemann, K. paraHydrogen Induced Polarization by Homogenous Catalysis: Theory and Applications. Top Curr. Chem. 2013, 338, 33–74. [Google Scholar]
- Green, R.; Adams, R.W.; Duckett, S.B.; Mewis, R.E.; Williamson, D.C.; Green, G.G. The Theory and Practice of Hyperpolarization in Magnetic Resonance using Parahydrogen. Prog. Nucl. Magn. Reson. Spectrosc. 2012, 67, 1–48. [Google Scholar] [CrossRef]
- Buntkowsky, G.; Theiss, F.; Lins, J.; Miloslavina, Y.; Wienands, L.; Kiryutin, A.; Yurkovskaya, A. Recent Advances in the Application of Parahydrogen in Catalysis and Biochemistry. Rsc Adv. 2022, 12, 12477–12506. [Google Scholar] [CrossRef]
- Goldman, M.; Johannesson, H.; Axelsson, O.; Karlsson, M. Design and Implementation of 13C Hyperpolarization from Para-Hydrogen, for New MRI Contrast Agents. Comptes Rendus Chim. 2006, 9, 357–363. [Google Scholar] [CrossRef]
- Barskiy, D.A.; Knecht, S.; Yurkovskaya, A.; Ivanov, A.V. SABRE: Chemical Kinetics and Spin Dynamics of the Formation of Hyperpolarization. Prog. Nucl. Magn. Reson. Spectrosc. 2018, 114, 33–70. [Google Scholar] [CrossRef]
- Essler, J.; Haberstroh, C. Performance of an Ortho-Para Concentration Measurement Cryostat for Hydrogen. In AIP Conference Proceedings; American Institute of Physics: College Park, MD, USA, 2012; pp. 1865–1872. [Google Scholar]
- Ellermann, F.; Pravdivtsev, A.; Hovener, J.-B. Open-Source, Partially 3D-Printed, High-Pressure (50-bar) Liquid-Nitrogen-Cooled Parahydrogen Generator. Magn. Reson. 2020, 2, 49–62. [Google Scholar] [CrossRef]
- Gamliel, A.; Allouche-Arnon, H.; Nalbandian, R.; Barzilay, C.; Gomori, J.; Katz-Brull, R. An Apparatus for Production of Isotopically and Spin-Enriched Hydrogen for Induced Polarization Studies. Appl. Magn. Reson. 2010, 39, 329–345. [Google Scholar] [CrossRef]
- Chapman, B.; Joalland, B.; Meersman, C.; Ettedgui, J.; Swenson, R.; Krishna, M.; Nikolaou, P.; Kovtunov, K.V.; Salnikov, O.G.; Koptyug, I.V.; et al. Low-Cost High-Pressure Clinical-Scale 50% Parahydrogen Generator Using Liquid Nitrogen at 77 K. Anal. Chem. 2021, 93, 8476–8483. [Google Scholar] [CrossRef]
- Hovener, J.-B.; Chekmenev, E.Y.; Harris, K.; Perman, W.; Robertson, L.; Ross, B.D.; Bhattacharya, P.K. PASADENA Hyperpolarization of 13C Biomolecules: Equipment Design and Installation. Magn. Reson. Mater. Phys. Biol. Med. 2009, 22, 111–121. [Google Scholar] [CrossRef] [Green Version]
- Hovener, J.-B.; Bar, S.; Leupold, J.; Jenne, K.; Leibfritz, D.; Hennig, J.; Duckett, S.B.; von Elverfeldt, D. A Continuous-Flow, High-Throughput, High-Pressure Parahydrogen Converter for Hyperpolarization in a Clinical Setting. Nmr Biomed. 2013, 26, 124–131. [Google Scholar] [CrossRef]
- Nantogma, S.; Joalland, B.; Wilkens, K.; Chekmenev, E.Y. Clinical-Scale Production of Nearly Pure (>98.5%) Parahydrogen and Quantification by Benchtop NMR Spectroscopy. Anal. Chem. 2021, 93, 3594–3601. [Google Scholar] [CrossRef]
- Mhaske, Y.; Sutter, E.; Daley, J.; Mahoney, C.; Whiting, N. 65% Parahydrogen from a Liquid Nitrogen Cooled Generator. J. Magn. Reson. 2022, 341, 107249. [Google Scholar] [CrossRef]
- Birchall, J.; Coffey, A.M.; Goodson, B.M.; Chekmenev, E.Y. High-Pressure Clinical-Scale 87% Parahydrogen Generator. Anal. Chem. 2020, 92, 15280–15284. [Google Scholar] [CrossRef]
- Ilisca, E. Ortho-Para Conversion of Hydrogen Molecules Physisorbed on Surfaces. Prog. Surf. Sci. 1992, 41, 217–335. [Google Scholar] [CrossRef]
- Schmidt, A.; Bowers, C.R.; Buckenmaier, K.; Chekmenev, E.Y.; de Maissin, H.; Eills, J.; Ellermann, F.; Gloggler, S.; Gordon, J.; Knecht, S.; et al. Instrumentation for Hydrogenative Parahydrogen-Based Hyperpolarization Techniques. Anal. Chem. 2022, 94, 479–502. [Google Scholar] [CrossRef]
- Coffey, A.M.; Shchepin, R.; Truong, M.L.; Wilkens, K.; Pham, W.; Chekmenev, E.Y. Open-Source Automated Parahydrogen Hyperpolarizer for Molecular Imaging Using 13C Metabolic Contrast Agents. Anal. Chem. 2016, 88, 8279–8288. [Google Scholar] [CrossRef]
- Bowers, C.R.; Weitekamp, D.P. Parahydrogen and Synthesis Allow Dramatically Enhanced Nuclear Alignment. J. Am. Chem. Soc. 1987, 109, 5541–5542. [Google Scholar] [CrossRef] [Green Version]
- Adams, R.W.; Aguilar, J.A.; Atkinson, K.D.; Cowley, M.J.; Elliott, P.I.P.; Duckett, S.B.; Green, G.G.; Khazal, I.G.; Lopez-Serrano, J.; Williamson, D.C. Reversible Interactions with para-Hydrogen Enhance NMR Sensitivity by Polarization Transfer. Science 2009, 323, 1708–1711. [Google Scholar] [CrossRef] [Green Version]
- Cowley, M.J.; Adams, R.W.; Atkinson, K.D.; Cockett, M.C.R.; Duckett, S.B.; Green, G.G.; Lohman, J.A.B.; Kerssebaum, R.; Kilgour, D.; Mewis, R.E. Iridium N-Heterocyclic Carbene Complexes as Efficient Catalysts for Magnetization Transfer from Para-Hydrogen. J. Am. Chem. Soc. 2011, 133, 6134–6137. [Google Scholar] [CrossRef] [Green Version]
- Duckett, S.B.; Newell, C.L.; Eisenberg, R. More than INEPT: Parahydrogen and INEPT+ Give Unprecedented Resonance Enhancement to Carbon-13 by Direct Proton Polarization Transfer. J. Am. Chem. Soc. 1993, 115, 1156–1157. [Google Scholar] [CrossRef]
- Truong, M.L.; Theis, T.; Coffey, A.M.; Shchepin, R.; Waddell, K.W.; Shi, F.; Goodson, B.M.; Warren, W.S.; Chekmenev, E.Y. 15N Hyperpolarization by Reversible Exchange Using SABRE-SHEATH. J. Phys. Chem. C 2015, 119, 8786–8797. [Google Scholar] [CrossRef] [Green Version]
- Kuhn, L.; Bommerich, U.; Bargon, J. Transfer of Parahydrogen-Induced Hyperpolarization to 19F. J. Phys. Chem. A 2006, 110, 3521–3526. [Google Scholar] [CrossRef]
- Ellena, S.; Viale, A.; Gobetto, R.; Aime, S. Para-Hydrogen Induced Polarization of Si-29 NMR Resonances as a Potentially Useful Tool for Anayltical Applications. Magn. Reson. Chem. 2012, 50, 529–533. [Google Scholar] [CrossRef]
- Cavallari, E.; Carrera, C.; Aime, S.; Reineri, F. 13C MR Hyperpolarization of Lactate by Using ParaHydrogen and Metabolic Transformation In Vitro. Chem. A Eur. J. 2017, 23, 1200–1204. [Google Scholar] [CrossRef] [Green Version]
- Golman, K.; Axelsson, O.; Johannesson, H.; Mansson, S.; Olofsson, C.; Petersson, J.S. Parahydrogen-Induced Polarization in Imaging: Subsecond 13C Angiography. Magn. Reson. Med. 2001, 46, 1–5. [Google Scholar] [CrossRef]
- Goodson, B.M. Nuclear Magnetic Resonance of Laser-Polarized Noble Gases in Molecules, Materials, and Organisms. J. Magn. Reson. 2002, 155, 157–216. [Google Scholar] [CrossRef] [Green Version]
- Golman, K.; Zandt, R.; Thaning, M. Real-Time Metabolic Imaging. Proc. Natl. Acad. Sci. USA 2006, 103, 11270–11275. [Google Scholar] [CrossRef] [Green Version]
- Buntkowsky, G.; Walaszek, B.; Adamczyk, A.; Xu, Y.; Limbach, H.-H.; Chaudret, B. Mechanism of Nuclear Spin Initiated Para-H2 to Ortho-H2 Conversion. Phys. Chem. Chem. Phys. 2006, 8, 1929–1935. [Google Scholar] [CrossRef]
- Feng, B.; Coffey, A.M.; Colon, R.; Chekmenev, E.Y.; Waddell, K.W. A Pulsed Injection Parahydrogen Generator and Techniques for Quantifying Enrichment. J. Magn. Reson. 2012, 214, 258–262. [Google Scholar] [CrossRef] [Green Version]
- Teshigawara, M.; Harada, M.; Tatsumoto, H.; Aso, T.; Ohtsu, K.; Takada, H.; Futakawa, M.; Ikeda, Y. Experimental Verification of Equilibrium Para-Hydrogen Levels in Hydrogen Moderators Irradiated by Spallation Neutron at J-PARC. Nucl. Instrum. Methods Phys. Res. B 2016, 368, 66–70. [Google Scholar] [CrossRef]
- Bonfanti, S.; Jug, G. On the Paramagnetic Impurity Concentration of Silicate Glasses from Low-Temperature Physics. J. Low Temp. Phys. 2015, 180, 214–237. [Google Scholar] [CrossRef] [Green Version]
- Miyoshi, H.; Chen, D.; Akai, T. Distribution of Paramagnetic Co and Cr Ions in Phase Separated Alkali Borosilicate Glass Observed by Leaching Behavior and 29Si NMR Relaxation. Phys. Chem. Glasses 2005, 46, 157–160. [Google Scholar]
- Fitzsimmons, W.; Tankersley, L.; Walters, G. Nature of Surface-Induced Nuclear Spin Relaxation of Gaseous He3. Phys. Rev. 1969, 179, 156–165. [Google Scholar] [CrossRef]
- Driehuys, B.; Cates, G.; Happer, W. Surface Relaxation Mechanisms of Laser-Polarized 129Xe. Phys. Rev. Lett. 1995, 74, 4943–4946. [Google Scholar] [CrossRef]
- Tom, B.; Bhasker, S.; Miyamoto, Y.; Momose, T.; McCall, B. Producing and Quantifying Enriched Para-H2. Rev. Sci. Instrum. 2009, 80, 016108. [Google Scholar] [CrossRef] [Green Version]
- Parrott, A.; Dallin, P.; Andrews, J.; Richardson, P.M.; Semenova, O.; Halse, M.; Duckett, S.B.; Nordon, A. Quantitative In Situ Monitoring of Parahydrogen Fraction Using Raman Spectroscopy. Appl. Spectrosc. 2019, 73, 88–97. [Google Scholar] [CrossRef] [Green Version]
- Wagner, S. Conversion Rate of Para-Hydrogen to Ortho-Hydrogen by Oxygen: Implications for PHIP Gas Storage and Utilization. Magn. Reson. Mater. Phys. Biol. Med. 2014, 27, 195–199. [Google Scholar] [CrossRef]
- Hovener, J.-B.; Pravdivtsev, A.; Kidd, B.; Bowers, C.R.; Gloggler, S.; Kovtunov, K.V.; Plaumann, M.; Katz-Brull, R.; Buckenmaier, K.; Jerschow, A.; et al. Parahydrogen-Based Hyperpolarization for Biomedicine. Agnewandte Chem. 2018, 57, 11140–11162. [Google Scholar] [CrossRef]
- Fleury, P.; McTague, J. Molecular Interactions in the Condensed Phases of Ortho-Para Hydrogen Mixtures. Phys. Rev. A 1975, 12, 317–326. [Google Scholar] [CrossRef]
- Sundararajan, K.; Sankaran, K.; Ramanathan, N.; Gopi, R. Production and Characterization of Para-Hydrogen Gas for Matrix Isolation Infrared Spectroscopy. J. Mol. Struct. 2016, 1117, 181–191. [Google Scholar] [CrossRef]
- Petitpas, G.; Aceves, S.; Matthews, M.; Smith, J. Para-H2 to Ortho-H2 Conversion in a Full-Scale Automotive Cryogenic Pressurized Hydrogen Storage up to 345 Bar. Int. J. Hydrog. Energy 2014, 39, 6533–6547. [Google Scholar] [CrossRef]
- Matthews, M.; Petitpas, G.; Aceves, S. A Study of Spin Isomer Conversion Kinetics in Supercritical Fluid Hydrogen for Cryogenic Fuel Storage Technologies. Appl. Phys. Lett. 2011, 99, 081906. [Google Scholar] [CrossRef]
- Sutherland, L.-M.; Knudson, J.; Mocko, M.; Renneke, R. Practical In Situ Determination of Ortho-Para Hydrogen Ratios Via Fiber-Optic Based Raman Spectroscopy. Nucl. Instrum. Methods Phys. Res. A 2016, 810, 182–185. [Google Scholar] [CrossRef] [Green Version]
- Breeze, S.; Lang, S.; Moudrakovski, I.; Ratcliffe, C.; Ripmeester, J.; Sanytr, G.; Simard, B.; Zuger, I. Coatings for Optical Pumping Cells and Short-Term Storage of Hyperpolarized Xenon. J. Appl. Phys. 2000, 87, 8013–8017. [Google Scholar] [CrossRef]
- Salhi, Z.; Babcock, E.; Pistel, P.; Ioffe, A. 3He Neutron Spin Filter Cell Development Program at JCNS. J. Phys. Conf. Ser. 2014, 528, 012015. [Google Scholar] [CrossRef] [Green Version]
- Kovtunov, K.V.; Koptyug, I.V.; Fekete, M.; Duckett, S.B.; Theis, T.; Joalland, B.; Chekmenev, E.Y. Parahydrogen-Induced Hyperpolarization of Gases. Angew. Chem. 2020, 59, 17788–17797. [Google Scholar] [CrossRef]
- National Institute of Standards and Technology. NIST Chemistry WebBook, SRD 69; U.S. Department of Commerce: Washington, DC, USA, 2022. [Google Scholar]
Acronym | Chemical Name | Chemical Formula | Classification |
---|---|---|---|
Control | ----------- | ------------- | Control |
DCS | Dichloromethylsilane | CH3SiHCl2 | Short |
GOTTS | (3-Glycidoxypropyl)trimethoxysilane | C9H20O5Si | Medium |
MAPTMS | 3-(Methacryloyloxy)propyltrimethoxysilane | C10H20O5Si | Medium |
OTS | n-Octadecyltrichlorosilane | C18H37Cl3Si | Long |
LTS | Lauryl triethoxysilane | C18H40O3Si | Long |
DOTTS | 1,7-Dichloro-octamethyltetrasiloxane | Cl[Si(CH3)2O]3Si(CH3)2Cl | Branched |
APTES | (3-Aminopropyl)-triethoxysilane | H2N(CH2)3Si(OC2H5)3 | Branched |
Sigmacote | Sigmacote | Proprietary | Commercial |
Tween-80 | Polyoxyethylene sorbitan monolaurate | C64H124O26 | Long, non-silane |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chimenti, R.V.; Daley, J.; Sack, J.; Necsutu, J.; Whiting, N. Reconversion of Parahydrogen Gas in Surfactant-Coated Glass NMR Tubes. Molecules 2023, 28, 2329. https://doi.org/10.3390/molecules28052329
Chimenti RV, Daley J, Sack J, Necsutu J, Whiting N. Reconversion of Parahydrogen Gas in Surfactant-Coated Glass NMR Tubes. Molecules. 2023; 28(5):2329. https://doi.org/10.3390/molecules28052329
Chicago/Turabian StyleChimenti, Robert V., James Daley, James Sack, Jennifer Necsutu, and Nicholas Whiting. 2023. "Reconversion of Parahydrogen Gas in Surfactant-Coated Glass NMR Tubes" Molecules 28, no. 5: 2329. https://doi.org/10.3390/molecules28052329
APA StyleChimenti, R. V., Daley, J., Sack, J., Necsutu, J., & Whiting, N. (2023). Reconversion of Parahydrogen Gas in Surfactant-Coated Glass NMR Tubes. Molecules, 28(5), 2329. https://doi.org/10.3390/molecules28052329