Analytical Method Cluster Development for Comprehensive Characterisation of Suberinic Acids Derived from Birch Outer Bark
Abstract
:1. Introduction
2. Results and Discussion
2.1. SA Sample Characteristics
2.2. Suberin Monomers from Birch Bark
2.3. Molar Mass Distribution in SA Samples
2.4. Fluorescence of the SA Samples
2.5. MALDI-Tof Analysis of the SA Samples
3. Materials and Methods
3.1. Materials and Reagents
3.2. Suberinic Acid Isolation
3.3. SA Characterisation with Potentiometric Titration Methods
3.3.1. Acid Number Determination
3.3.2. Epoxy Group Content Determination
3.4. Total Phenolic Content (TPC)
3.5. FTIR Analysis
3.6. GC-MS Analysis of the SA Samples
- (1)
- diols (1,8-octanediol)
- (2)
- fatty acids and their corresponding esters (myristic acid)
- (3)
- hydroxy acids and their corresponding esters (2-hydroxyoctanoic acid)
- (4)
- diacids and their corresponding esters (dodecanedioic acid)
- (5)
- extractives (betulin and lupeol)
- (6)
- aromatics (ferulic acid)
- (7)
- carbohydrates (D-glucouronic acid)
- (8)
- other
3.7. GPC-MALS-RID Analysis with Infrared Three-Angle Light Scattering Detector
3.8. GPC-MALS-RID Analysis with Infrared 18-Angle Light Scattering Detector
3.9. MALDI-TOF Analysis
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- Stegmann, P.; Londo, M.; Junginger, M. The circular bioeconomy: Its elements and role in European bioeconomy clusters. Resour. Conserv. Recycl. X 2020, 6, 100029. [Google Scholar] [CrossRef]
- Daioglou, V.; Doelman, J.C.; Wicke, B.; Faaij, A.; van Vuuren, D.P. Integrated assessment of biomass supply and demand in climate change mitigation scenarios. Glob. Environ. Chang. 2019, 54, 88–101. [Google Scholar] [CrossRef] [Green Version]
- Mawhood, R.; Gazis, E.; de Jong, S.; Hoefnagels, R.; Slade, R. Production pathways for renewable jet fuel: A review of commercialization status and future prospects. Biofuels Bioprod. Biorefin. 2016, 10, 462–484. [Google Scholar] [CrossRef]
- Godiņa, D.; Paze, A.; Rizhikovs, J.; Stankus, K.; Virsis, I.; Nakurte, I. Stability Studies of Bioactive Compounds from Birch Outer Bark Ethanolic Extracts. Key Eng. Mater. 2018, 762, 152–157. [Google Scholar] [CrossRef]
- Rizhikovs, J.; Zandersons, J.; Dobele, G.; Paze, A. Isolation of triterpene-rich extracts from outer birch bark by hot water and alkaline pre-treatment or the appropriate choice of solvents. Ind. Crops Prod. 2015, 76, 209–214. [Google Scholar] [CrossRef]
- Kumar, A.; Korpinen, R.; Möttönen, V.; Verkasalo, E. Suberin Fatty Acid Hydrolysates from Outer Birch Bark for Hydrophobic Coating on Aspen Wood Surface. Polymers 2022, 14, 832. [Google Scholar] [CrossRef]
- Ferreira, R.; Garcia, H.; Sousa, A.F.; Freire, C.S.R.; Silvestre, A.J.D.; Rebelo, L.P.N.; Silva Pereira, C. Isolation of suberin from birch outer bark and cork using ionic liquids: A new source of macromonomers. Ind. Crops Prod. 2013, 44, 520–527. [Google Scholar] [CrossRef]
- Graça, J. Suberin: The biopolyester at the frontier of plants. Front. Chem. 2015, 3, 62. [Google Scholar] [CrossRef]
- De Oliveira, H.; Yoon, B.; Michaud, V.; Nam, J.-D.; Suhr, J. All natural cork composites with suberin-based polyester and lignocellulosic residue. Ind. Crops Prod. 2017, 109, 843–849. [Google Scholar] [CrossRef]
- Menager, C.; Guigo, N.; Vincent, L.; Sbirrazzuoli, N. Suberin from Cork as a Tough Cross-Linker in Bioepoxy Resins. ACS Appl. Polym. Mater. 2021, 3, 6090–6101. [Google Scholar] [CrossRef]
- Gandini, A.; Pascoal Neto, C.; Silvestre, A.J.D. Suberin: A promising renewable resource for novel macromolecular materials. Prog. Polym. Sci. 2006, 31, 878–892. [Google Scholar] [CrossRef]
- Graça, J.; Santos, S. Suberin: A Biopolyester of Plants’ Skin. Macromol. Biosci. 2007, 7, 128–135. [Google Scholar] [CrossRef]
- Graça, J.; Pereira, H. Methanolysis of bark suberins: Analysis of glycerol and acid monomers. Phytochem. Anal. 2000, 11, 45–51. [Google Scholar] [CrossRef]
- Bernards, M.A.; Razem, F.A. The poly(phenolic) domain of potato suberin: A non-lignin cell wall bio-polymer. Phytochemistry 2001, 57, 1115–1122. [Google Scholar] [CrossRef]
- Bernards, M.A.; Lewis, N.G. The macromolecular aromatic domain in suberized tissue: A changing paradigm. Phytochemistry 1998, 47, 915–933. [Google Scholar] [CrossRef]
- Rizikovs, J.; Godina, D.; Makars, R.; Paze, A.; Abolins, A.; Fridrihsone, A.; Meile, K.; Kirpluks, M. Suberinic Acids as a Potential Feedstock for Polyol Synthesis: Separation and Characterization. Polymers 2021, 13, 4380. [Google Scholar] [CrossRef]
- Hussin, M.H.; Abd Latif, N.H.; Hamidon, T.S.; Idris, N.N.; Hashim, R.; Appaturi, J.N.; Brosse, N.; Ziegler-Devin, I.; Chrusiel, L.; Fatriasari, W.; et al. Latest advancements in high-performance bio-based wood adhesives: A critical review. J. Mater. Res. Technol. 2022, 21, 3909–3946. [Google Scholar] [CrossRef]
- Tupciauskas, R.; Rizhikovs, J.; Grinins, J.; Paze, A.; Andzs, M.; Brazdausks, P.; Puke, M.; Plavniece, A. Investigation of suberinic acids-bonded particleboard. Eur. Polym. J. 2019, 113, 176–182. [Google Scholar] [CrossRef]
- Swamy, N.K.; Singh, P.; Sarethy, I.P. Precipitation of phenols from paper industry wastewater using ferric chloride. Rasayan J. Chem. 2011, 4, 452–456. [Google Scholar]
- Stephenson, R.J.; Duff, S.J.B. Coagulation and precipitation of a mechanical pulping effluent—I. Removal of carbon, colour and turbidity. Water Res. 1996, 30, 781–792. [Google Scholar] [CrossRef]
- Zinovyev, G.; Sulaeva, I.; Podzimek, S.; Rössner, D.; Kilpeläinen, I.; Sumerskii, I.; Rosenau, T.; Potthast, A. Getting Closer to Absolute Molar Masses of Technical Lignins. ChemSusChem 2018, 11, 3259–3268. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rizhikovs, J.; Brazdausks, P.; Paze, A.; Tupciauskas, R.; Grinins, J.; Puke, M.; Plavniece, A.; Andzs, M.; Godina, D.; Makars, R. Characterization of suberinic acids from birch outer bark as bio-based adhesive in wood composites. Int. J. Adhes. Adhes. 2022, 112, 102989. [Google Scholar] [CrossRef]
- Pittman, Z.A.; McCarthy, M.E.; Birtwistle, M.R.; Kitchens, C.L. Method for Improved Fluorescence Corrections for Molar Mass Characterization by Multiangle Light Scattering. Biomacromolecules 2022, 23, 3743–3751. [Google Scholar] [CrossRef] [PubMed]
- The European Commission: Guidance Document on Analytical Quality Control and Method Validation Procedures for Pesticide Residues and Analysis in Food and Feed. Available online: http://www.crl-pesticides.eu/docs/public/tmplt_article.asp?CntID=727&LabID=100&Lang=EN. (accessed on 26 December 2022).
Sample | Acid Number, mmol·g−1 | Epoxy Groups, mmol·g−1 | TPC, % | Yield, % |
---|---|---|---|---|
SA_U | 1.566 ± 0.005 | 0.59 ± 0.16 | 2.3 ± 0.4 | 29.3 |
SA_T | 1.770 ± 0.005 | 0.66 ± 0.2 | 1.53 ± 0.10 | 24.7 |
Standard Group | Linearity Range, mg·mL−1 | LOD, mg·mL−1 | LOQ, mg·mL−1 | R2 | Calibration Equation |
---|---|---|---|---|---|
1 | 0.005–0.10 | 3.71·10−4 | 1.13·10−3 | 0.990 | y = 9·109x − 4·107 |
2 | 0.005–0.10 | 7.84·10−5 | 2.38·10−4 | 0.97 | y = 4·109x − 3·107 |
3 | 0.005–0.10 | 8.96·10−5 | 2.71·10−4 | 0.9990 | y = 4·109x − 6·106 |
4 | 0.005–0.10 | 4.71·10−5 | 1.43·10−4 | 0.991 | y = 5·109x − 3·107 |
5 | 0.02–1.00 | 9.54·10−3 | 2.89·10−2 | 0.997 | y = 1·109x − 5·107 |
6 | 0.005–0.10 | 1.54·10−3 | 4.67·10−3 | 0.993 | y = 3·108x − 2·106 |
7 | 0.005–0.10 | 4.47·10−4 | 1.36·10−3 | 0.94 | y = 9·109x − 6·106 |
Peak | Compound | tR, min | Mw | Group |
---|---|---|---|---|
4 | 1,2-Cyclooctanediol | 5.95 | 144.2 | 1 |
1 | 1-Octanecarboxylic acid | 3.86 | 144.2 | 2 |
3 | 1-Heptanecarboxylic acid | 5.27 | 140.2 | 2 |
6 | Hexadecanoic acid | 11.82 | 256.4 | 2 |
11 | Icosanoic acid | 15.74 | 312.5 | 2 |
16 | Docosanoic acid | 18.37 | 340.6 | 2 |
2 | Nonanoic acid ethyl ester | 4.25 | 186.3 | 2 |
14 | Hexadecanoic acid ethyl ester | 16.87 | 284.5 | 2 |
15 | Linoelaidic acid ethyl ester | 17.32 | 310.4 | 2 |
21 | Ethyl stearate | 21.8 | 312.5 | 2 |
20 | 20-Hydroxyeicosanoic acid | 20.82 | 328.5 | 3 |
22 | 2-Hydroxy-decanedioic acid | 22.59 | 218.3 | 3 |
23 | 22-Hydroxy-docosanoic acid | 24.81 | 356.6 | 3 |
24 | Dimethyl docosanedioate | 25.02 | 258.3 | 4 |
5 | Nonanedioic acid | 8.96 | 188.2 | 4 |
8 | Pentanedioic acid | 13.47 | 132.1 | 4 |
9 | Hexanedioic acid | 14.37 | 146.1 | 4 |
10 | Dodecanedioic acid | 15.25 | 230.3 | 4 |
12 | Hexadecanedioic acid | 16.27 | 286.4 | 4 |
13 | 9,12-Octadecadienoic acid | 16.72 | 280.4 | 4 |
17 | Octadecanedioic acid | 19.02 | 314.5 | 4 |
18 | 11,14-Eicosadienoic acid | 20.29 | 308.5 | 4 |
19 | 1,8-Octanedicarboxylic acid | 20.38 | 202.3 | 4 |
25 | Lupeol | 34.16 | 426.7 | 5 |
26 | Betulin | 38.39 | 442.7 | 5 |
7 | 3-(3-Hydroxy-4-methoxyphenyl)acrylic acid | 12.48 | 194.2 | 6 |
Carbohydrate derivatives | 7 |
Peak | Compound | Group | Amount, % | ||||
---|---|---|---|---|---|---|---|
Mw | Met. 1 | Met. 2 | Met.1 | Met. 2 | |||
SA_T | SA_U | ||||||
4 | 1.2-Cyclooctanediol | 144.2 | 1 | 0.07 | 0.04 | 0.06 | 0.03 |
Total | 0.07 | 0.04 | 0.06 | 0.03 | |||
1 | 1-Octanecarboxylic acid | 144.2 | 2 | 0.20 | 0.64 | 0.29 | 0.88 |
3 | 1-Heptanecarboxylic acid | 140.2 | 2 | 0.21 | 0.67 | 0.31 | 0.92 |
6 | Hexadecanoic acid | 256.4 | 2 | 0.21 | 0.68 | 0.31 | 0.93 |
11 | Icosanoic acid | 312.5 | 2 | 0.12 | 0.37 | 0.17 | 0.50 |
16 | Docosanoic acid | 340.6 | 2 | 0.23 | 0.75 | 0.34 | 1.02 |
2 | Nonanoic acid ethyl ester | 186.3 | 2 | 0.05 | 0.15 | 0.07 | 0.20 |
14 | Hexadecanoic acid ethyl ester | 284.5 | 2 | 0.34 | 1.07 | 0.49 | 1.48 |
15 | Linoelaidic acid ethyl ester | 310.4 | 2 | 0.93 | 2.97 | 1.36 | 4.05 |
21 | Ethyl stearate | 312.5 | 2 | 2.66 | 4.81 | 2.60 | 5.98 |
Total | 4.95 | 12.11 | 5.94 | 15.96 | |||
20 | 20-Hydroxyeicosanoic acid | 328.5 | 3 | 0.89 | 1.61 | 0.87 | 2.00 |
22 | 2-Hydroxy-decanedioic acid | 218.3 | 3 | 5.04 | 9.10 | 4.93 | 11.32 |
23 | 22-Hydroxy-docosanoic acid | 356.6 | 3 | 2.59 | 4.68 | 2.54 | 5.82 |
Total | 8.52 | 15.40 | 8.34 | 19.14 | |||
24 | Dimethyl docosanedioate | 258.3 | 4 | 0.84 | 1.25 | 0.75 | 3.79 |
5 | Nonanedioic acid | 188.2 | 4 | 0.06 | 0.08 | 0.05 | 0.25 |
8 | Pentanedioic acid | 132.1 | 4 | 0.14 | 0.21 | 0.12 | 0.63 |
9 | Hexanedioic acid | 146.1 | 4 | 0.35 | 0.52 | 0.31 | 1.58 |
10 | Dodecanedioic acid | 230.3 | 4 | 0.14 | 0.20 | 0.12 | 0.61 |
12 | Hexadecanedioic acid | 286.4 | 4 | 0.21 | 0.31 | 0.19 | 0.95 |
13 | 9,12-Octadecadienoic acid | 280.4 | 4 | 0.87 | 1.30 | 0.77 | 3.92 |
17 | Octadecanedioic acid | 314.5 | 4 | 0.37 | 0.55 | 0.33 | 1.65 |
18 | 11,14-Eicosadienoic acid | 308.5 | 4 | 0.35 | 0.52 | 0.31 | 1.58 |
19 | 1,8-Octanedicarboxylic acid | 202.3 | 4 | 0.17 | 0.25 | 0.15 | 0.77 |
Total | 3.49 | 5.20 | 3.10 | 15.74 | |||
25 | Lupeol | 426.7 | 5 | 7.15 | 7.84 | 6.48 | 7.10 |
26 | Betulin | 442.7 | 5 | 25.80 | 28.28 | 23.38 | 25.64 |
Total | 32.95 | 36.12 | 29.86 | 32.74 | |||
7 | 3-(3-Hydroxy-4-methoxyphenyl)acrylic acid | 194.2 | 6 | 0.73 | 0.98 | 0.45 | 0.74 |
Total | 0.73 | 0.98 | 0.45 | 0.74 | |||
Carbohydrate derivatives | 7 | 6.23 | 7.57 | 5.74 | 6.87 | ||
Total | 6.23 | 7.57 | 5.74 | 6.87 | |||
Total per sample, % | 56.94 | 77.42 | 53.49 | 91.22 |
Sample | Molar Mass Range, Da | ||||||
---|---|---|---|---|---|---|---|
100–200 | 200–500 | 500–800 | 1000–2500 | 2500–3000 | 3000–5000 | >10,000 | |
Relative Area Percentage, % | |||||||
SA_U | 19 | 14 | 14 | 10 | 17 | 19 | 7 |
SA_T | 24 | 23 | 22 | 10 | 16 | 5 | - |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Godina, D.; Makars, R.; Paze, A.; Rizhikovs, J. Analytical Method Cluster Development for Comprehensive Characterisation of Suberinic Acids Derived from Birch Outer Bark. Molecules 2023, 28, 2227. https://doi.org/10.3390/molecules28052227
Godina D, Makars R, Paze A, Rizhikovs J. Analytical Method Cluster Development for Comprehensive Characterisation of Suberinic Acids Derived from Birch Outer Bark. Molecules. 2023; 28(5):2227. https://doi.org/10.3390/molecules28052227
Chicago/Turabian StyleGodina, Daniela, Raimonds Makars, Aigars Paze, and Janis Rizhikovs. 2023. "Analytical Method Cluster Development for Comprehensive Characterisation of Suberinic Acids Derived from Birch Outer Bark" Molecules 28, no. 5: 2227. https://doi.org/10.3390/molecules28052227
APA StyleGodina, D., Makars, R., Paze, A., & Rizhikovs, J. (2023). Analytical Method Cluster Development for Comprehensive Characterisation of Suberinic Acids Derived from Birch Outer Bark. Molecules, 28(5), 2227. https://doi.org/10.3390/molecules28052227