Geographic Differentiation of Essential Oil from Rhizome of Cultivated Atractylodes lancea by Using GC-MS and Chemical Pattern Recognition Analysis
Abstract
:1. Introduction
2. Results and Discussion
2.1. Fingerprints of RAL
2.2. HCA
2.3. PCA
2.4. Chemical Composition Analysis and ANOVA
2.5. OPLS-DA
3. Materials and Methods
3.1. Plants Materials
3.2. Solvents and Chemicals
3.3. Extraction of Volatile Oil and Preparation of Test Products
3.4. GC-MS Analysis Conditions
3.5. Data Analysis
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Sample Availability
References
- Jun, X.; Fu, P.; Lei, Y.; Cheng, P. Pharmacological effects of medicinal components of Atractylodes lancea (Thunb.) DC. Chin. Med. 2018, 13, 59. [Google Scholar] [CrossRef] [Green Version]
- Koonrungsesomboon, N.; Na-Bangchang, K.; Karbwang, J. Therapeutic potential and pharmacological activities of Atractylodes lancea (Thunb.) DC. Asian Pac. J. Trop. Med. 2014, 7, 421–428. [Google Scholar] [CrossRef] [Green Version]
- Fu, M.; Zhu, D.; Fang, J.; Song, H.; Yang, B.; Xiong, Y. Advances in chemistry, molecular biology and pharmacological of Cangzhu. China J. Chin. Mater. Medica. 2009, 34, 2669–2672. (In Chinese) [Google Scholar]
- Xu, R.; Lu, J.; Wu, J.; Yu, D.; Chu, S.; Guan, F.; Liu, W.; Hu, J.; Peng, H.; Zha, L. Comparative analysis in different organs and tissue-specific metabolite profiling of Atractylodes lancea from four regions by GC-MS and laser microdissection. J. Sep. Sci. 2022, 45, 1067–1079. [Google Scholar] [CrossRef]
- Huang, Y.; Gou, M.J.; Jiang, K.; Wang, L.J.; Yin, G.; Wang, J.; Wang, P.; Tu, J.S.; Wang, T.J. Recent quantitative research of near infrared spectroscopy in traditional Chinese medicine analysis. Appl. Spectrosc. Rev. 2019, 54, 653–672. [Google Scholar] [CrossRef]
- Guo, L.P.; Liu, J.Y.; Ji, L.; Huang, L.Q. The naphtha composing characteristics of geoherbs of Atractylodes lancea. China J. Chin. Mater. Med. 2002, 27, 814–819. (In Chinese) [Google Scholar]
- Takeda, O.; Miki, E.; Terabayashi, S.; Okada, M.; Lu, Y.; He, H.S.; He, S.A. Variation of essential oil components of Atractylodes lancea growing in China. Nat. Med. 1995, 49, 18–23. (In Japanese) [Google Scholar]
- Zhang, W.J.; Zhao, Z.Y.; Chang, L.K.; Cao, Y.; Wang, S.; Kang, C.Z.; Wang, H.Y.; Zhou, L.; Huang, L.Q.; Guo, L.P. Atractylodis Rhizoma: A review of its traditional uses, phytochemistry, pharmacology, toxicology and quality control. J. Ethnopharmacol. 2021, 266, 113415. [Google Scholar] [CrossRef]
- Guo, W.; Liu, S.; Ju, X.; Du, J.; Xu, B.; Yuan, H.; Qin, F.; Li, L. The antitumor effect of hinesol, extract from Atractylodes lancea (Thunb.) DC. by proliferation, inhibition, and apoptosis induction via MEK/ERK and NF-κB pathway in non-small cell lung cancer cell lines A549 and NCI-H1299. J. Cell. Biochem. 2019, 120, 18600–18607. [Google Scholar] [CrossRef]
- Cheng, Y.; Chen, T.; Yang, X.; Xue, J.; Chen, J. Atractylon induces apoptosis and suppresses metastasis in hepatic cancer cells and inhibits growth in vivo. Cancer Manag. Res. 2019, 11, 5883–5894. [Google Scholar] [CrossRef] [Green Version]
- Chen, L.-G.; Jan, Y.-S.; Tsai, P.-W.; Norimoto, H.; Michihara, S.; Murayama, C.; Wang, C.-C. Anti-inflammatory and Antinociceptive Constituents of Atractylodes japonica Koidzumi. J. Agric. Food Chem. 2016, 64, 2254–2262. [Google Scholar] [CrossRef]
- Cheng, Y.; Mai, J.-Y.; Hou, T.-L.; Ping, J.; Chen, J.-J. Antiviral activities of atractylon from Atractylodis Rhizoma. Mol. Med. Rep. 2016, 14, 3704–3710. [Google Scholar] [CrossRef] [Green Version]
- Tshering, G.; Pimtong, W.; Plengsuriyakarn, T.; Na-Bangchang, K. Anti-angiogenic effects of beta-eudesmol and atractylodin in developing zebrafish embryos. Comp. Biochem. Physiol. C Toxicol. Pharmacol. 2021, 243, 108980. [Google Scholar] [CrossRef]
- Satoh, K.; Nagai, F.; Kano, I. Inhibition of H+,K+-ATPase by hinesol, a major component of So-jutsu, by interaction with enzyme in the E1 state. Biochem. Pharmacol. 2000, 59, 881–886. [Google Scholar] [CrossRef]
- Ye, S.; Si, W.; Qin, W.; Yang, L.; Luo, Z.; Li, Z.; Xie, Y.; Pan, H.; Li, X.; Huang, Z.; et al. Atractylodes lancea volatile oils target ADAR2-miR-181a-5p signaling to mesenchymal stem cell chondrogenic differentiation. Anat. Rec. 2022, 10, 1002. [Google Scholar] [CrossRef]
- Yu, M.; Wang, X.; Ling, F.; Wang, H.; Zhang, P.; Shao, S. Atractylodes lancea volatile oils attenuated helicobacter pylori NCTC11637 growth and biofilm. Microb. Pathog. 2019, 135, 103641. [Google Scholar] [CrossRef]
- Chen, Y.-H.; Bi, J.-H.; Xie, M.; Zhang, H.; Shi, Z.-Q.; Guo, H.; Yin, H.-B.; Zhang, J.-N.; Xin, G.-Z.; Song, H.-P. Classification-based strategies to simplify complex traditional Chinese medicine (TCM) researches through liquid chromatography-mass spectrometry in the last decade (2011–2020): Theory, technical route and difficulty. J. Chromatogr. A 2021, 1651, 462307. [Google Scholar] [CrossRef]
- Zoccali, M.; Tranchida, P.Q.; Mondello, L. Fast gas chromatography-mass spectrometry: A review of the last decade. Trac. Trends Anal. Chem. 2019, 118, 444–452. [Google Scholar] [CrossRef]
- Xie, P.; Chen, S.; Liang, Y.-Z.; Wang, X.; Tian, R.; Upton, R. Chromatographic fingerprint analysis—A rational approach for quality assessment of traditional Chinese herbal medicine. J. Chromatogr. A 2006, 1112, 171–180. [Google Scholar] [CrossRef]
- World Health Organization. Guidelines for the Assessment of Herbal Medicines; World Health Organization: Geneva, Switzerland, 1991.
- Guo, J.; Chen, Q.; Wang, C.; Qiu, H.; Liu, B.; Jiang, Z.-H.; Zhang, W. Comparison of two exploratory data analysis methods for classification of Phyllanthus chemical fingerprint: Unsupervised vs. supervised pattern recognition technologies. Anal. Bioanal. Chem. 2015, 407, 1389–1401. [Google Scholar] [CrossRef]
- Guo, L.; Duan, L.; Liu, K.; Liu, E.-H.; Li, P. Chemical comparison of Tripterygium wilfordii and Tripterygium hypoglaucum based on quantitative analysis and chemometrics methods. J. Pharm. Biomed. Anal. 2014, 95, 220–228. [Google Scholar] [CrossRef] [PubMed]
- Li, P.; Zeng, S.L.; Duan, L.; Ma, X.D.; Dou, L.L.; Wang, L.J.; Li, P.; Bi, Z.M.; Liu, E.H. Comparison of Aurantii Fructus Immaturus and Aurantii Fructus based on multiple chromatographic analysis and chemometrics methods. J. Chromatogr. A 2016, 1469, 96–107. [Google Scholar] [CrossRef] [PubMed]
- Li, S.M.; Huang, Y.; Zhang, F.; Ao, H.; Chen, L. Comparison of Volatile Oil between the Ligusticum sinese Oliv. and Ligusticum jeholense Nakai et Kitag. Based on GC-MS and Chemical Pattern Recognition Analysis. Molecules 2022, 27, 5325. [Google Scholar] [CrossRef] [PubMed]
- Ibourki, M.; Gharby, S.; Sakar, E.H.; El Hani, O.; Digua, K.; Amine, A.; Ahmed, M.N.; Charrouf, Z.; Guillaume, D.; El Hammadi, A. Elemental profiling and geographical differentiation of saffron (Crocus sativus L.) using inductively coupled plasma-optical emission spectroscopy (ICP-OES) and principal component analysis. Chem. Data Collect. 2022, 41, 100937. [Google Scholar] [CrossRef]
- Bouzid, H.A.; Sakar, E.H.; Bijla, L.; Ibourki, M.; Zeroual, A.; Gagour, J.; Koubachi, J.; Majourhat, K.; Gharby, S. Physical Fruit Traits, Proximate Composition, Antioxidant Activity, and Profiling of Fatty Acids and Minerals of Wild Jujube (Ziziphus lotus L. (Desf.)) Fruits from Eleven Moroccan Origins. J. Food Qual. 2022, 2022, 9362366. [Google Scholar] [CrossRef]
- Liu, Q.T.; Zhang, S.S.; Yang, X.H.; Wang, R.L.; Guo, W.Y.; Kong, W.J.; Yang, M.H. Differentiation of essential oils in Atractylodes lancea and Atractylodes koreana by gas chromatography with mass spectrometry. J. Sep. Sci. 2016, 39, 4773–4780. [Google Scholar] [CrossRef]
- Zhou, J.; Fang, L.; Wang, X.; Zhang, J.; Guo, L.P.; Huang, L.Q. Comparison of the volatile compounds of crude and processed Atractylodis rhizome analyzed by GC-MS. Afr. J. Pharm. Pharm. 2012, 6, 2155–2160. [Google Scholar] [CrossRef]
- Cao, X.; You, G.; Li, H.; Li, D.; Wang, M.; Ren, X. Comparative Investigation for Rotten Xylem (kuqin) and Strip Types (tiaoqin) of Scutellaria baicalensis Georgi Based on Fingerprinting and Chemical Pattern Recognition. Molecules 2019, 24, 2431. [Google Scholar] [CrossRef] [Green Version]
- Ma, X.H.; Liu, Y.; Jiang, H.L.; Wang, S.S.; Kang, Y.J.; Chen, Y.L.; Cao, L.J. HPLC fingerprint of Euodia rutaecarpa and processed E. rutaecarpa based on cluster analysis and principal component analysis. Chin. Tradit. Herb. Drugs 2022, 53, 3171–3177. (In Chinese) [Google Scholar] [CrossRef]
- Zakaria, S.R.; Saim, N.; Osman, R.; Haiyee, Z.A.; Juahir, H. Combination of Sensory, Chromatographic, and Chemometrics Analysis of Volatile Organic Compounds for the Discrimination of Authentic and Unauthentic Harumanis Mangoes. Molecules 2018, 23, 2365. [Google Scholar] [CrossRef] [Green Version]
- Tsusaka, T.; Makino, B.; Ohsawa, R.; Ezura, H. Genetic and environmental factors influencing the contents of essential oil compounds in Atractylodes lancea. PLoS ONE 2019, 14, e0217522. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Ouyang, Z.; Zhao, M.; Wang, P.; Fang, J. Simultaneous determination of atractylone, hinesol, β-eudesmol, atrctylodin in Atractylodes lancea and hierarchical cluster analysis. China J. Chin. Mater. Med. 2010, 35, 725–728. (In Chinese) [Google Scholar] [CrossRef]
- Guo, L.; Huang, L.; Hu, J.; Shao, A. Variation rules and Chemotype classification of Atractylodes lancea essential oil based on bio-information science. Resour. Sci. 2008, 30, 770–777. (In Chinese) [Google Scholar]
- Takeda, O.; Miki, E.; Terabayashi, S.; Okada, M.; Lu, Y.; He, H.S.; He, S.A. Variation of essential oil components of Atractylodes lancea growing in Mt. Maoshan area in Jiangsu Province, China. Nat. Med. 1994, 48, 11–17. (In Japanese) [Google Scholar]
- Ouyang, Z.; Zhang, L.; Zhao, M.; Wang, P.X.; Wei, Y.; Fang, J. Identification and quantification of sesquiterpenes and polyacetylenes in Atractylodes lancea from various geographical origins using GC-MS analysis. Rev. Bras. Farm. 2012, 22, 957–963. [Google Scholar] [CrossRef] [Green Version]
- Guo, L.P.; Huang, L.Q. Genuine Regional Drug in China-Atractlodis Rhizoma; Shanghai Scientific & Technical Publishers: Shanghai, China, 2019; pp. 136–137. (In Chinese) [Google Scholar]
- Li, H.; Wang, F.; Zhou, Z.; Jiang, X.; Li, F.; Feng, Y.; Liu, C.; Zhang, Y.; Fan, S.; Wu, X.; et al. Atractylon, a novel dopamine 2 receptor agonist, ameliorates Parkinsonian like motor dysfunctions in MPTP-induced mice. Neurotoxicology 2022, 89, 121–126. [Google Scholar] [CrossRef]
- Wang, J.H.; Xue, B.Y.; Liang, A.H. Effects of beta-eudesmol, an active constituent from Rhizoma Atractylodis on small intestine movement in rats. Chin. Pharm. J. 2002, 37, 266–268. (In Chinese) [Google Scholar]
- Ma, E.-L.; Li, Y.-C.; Tsuneki, H.; Xiao, J.-F.; Xia, M.-Y.; Wang, M.-W.; Kimura, I. β-eudesmol suppresses tumour growth through inhibition of tumour neovascularisation and tumour cell proliferation. J. Asian Nat. Prod. Res. 2008, 10, 159–167. [Google Scholar] [CrossRef]
- Gao, Y.; Wang, Z.B.; Yang, C.J.; Wu, G.S.; Chen, Y.J.; Kuang, H.X. Analysis on the volatile components of Atractylodes lancea from different origins by GC-MS. Acta Chin. Med. Pharmacol. 2017, 45, 35–38. (In Chinese) [Google Scholar] [CrossRef]
NO. | Place of Origin | Sampling Time | Growth Years | Batch Code |
---|---|---|---|---|
RAL01 | Yingshan, Huanggang, Hubei | 2021.11 | 3 | 2021M001 |
RAL02 | Yingshan, Huanggang, Hubei | 2021.11 | 3 | 2021M002 |
RAL03 | Yingshan, Huanggang, Hubei | 2021.11 | 3 | 2021M003 |
RAL04 | Yingshan, Huanggang, Hubei | 2021.11 | 3 | 2021M004 |
RAL05 | Luotian, Huanggang, Hubei | 2021.11 | 3 | 2021M005 |
RAL06 | Luotian, Huanggang, Hubei | 2021.11 | 3 | 2021M006 |
RAL07 | Shihe, Xinyang, Henan | 2021.11 | 3 | 2021M007 |
RAL08 | Huoshan, Lu’an, Anhui | 2021.11 | 3 | 2021M008 |
RAL09 | Yuexi, Anqing, Anhui | 2021.11 | 3 | 2021M009 |
RAL10 | Fangxian, Shiyan, Hubei | 2021.11 | 3 | 2021M010 |
RAL11 | Fangxian, Shiyan, Hubei | 2021.11 | 3 | 2021M011 |
RAL12 | Yunxi, Shiyan, Hubei | 2021.12 | 3 | 2021M012 |
RAL13 | Yunxi, Shiyan, Hubei | 2021.12 | 3 | 2021M013 |
RAL14 | Yunyang, Shiyan, Hubei | 2021.12 | 3 | 2021M014 |
RAL15 | Dengzhou, Nanyang, Henan | 2021.12 | 3 | 2021M015 |
RAL16 | Luonan, Shangluo, Shaanxi | 2021.11 | 3 | 2021M016 |
RAL17 | Luonan, Shangluo, Shaanxi | 2021.11 | 3 | 2021M017 |
RAL18 | Danfeng, Shangluo, Shaanxi | 2021.11 | 3 | 2021M018 |
RAL19 | Danfeng, Shangluo, Shaanxi | 2021.11 | 3 | 2021M019 |
RAL20 | Danfeng, Shangluo, Shaanxi | 2021.11 | 3 | 2021M020 |
RAL21 | Mao Mountain, Jiangsu | 2021.11 | 3 | 2021M021 |
RAL22 | Mao Mountain, Jiangsu | 2021.11 | 3 | 2021M022 |
RAL23 | Mao Mountain, Jiangsu | 2021.11 | 3 | 2021M023 |
RAL24 | Mao Mountain, Jiangsu | 2021.11 | 3 | 2021M024 |
RAL25 | Mao Mountain, Jiangsu | 2021.11 | 3 | 2021M025 |
RAL26 | Mao Mountain, Jiangsu | 2021.11 | 3 | 2021M026 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Song, B.; Wang, W.; Liu, R.; Cai, J.; Jiang, Y.; Tang, X.; Wu, H.; Ao, H.; Chen, L. Geographic Differentiation of Essential Oil from Rhizome of Cultivated Atractylodes lancea by Using GC-MS and Chemical Pattern Recognition Analysis. Molecules 2023, 28, 2216. https://doi.org/10.3390/molecules28052216
Song B, Wang W, Liu R, Cai J, Jiang Y, Tang X, Wu H, Ao H, Chen L. Geographic Differentiation of Essential Oil from Rhizome of Cultivated Atractylodes lancea by Using GC-MS and Chemical Pattern Recognition Analysis. Molecules. 2023; 28(5):2216. https://doi.org/10.3390/molecules28052216
Chicago/Turabian StyleSong, Baohong, Wei Wang, Ruipeng Liu, Jinjin Cai, Yuanyuan Jiang, Xuemei Tang, Hongfei Wu, Hui Ao, and Lu Chen. 2023. "Geographic Differentiation of Essential Oil from Rhizome of Cultivated Atractylodes lancea by Using GC-MS and Chemical Pattern Recognition Analysis" Molecules 28, no. 5: 2216. https://doi.org/10.3390/molecules28052216
APA StyleSong, B., Wang, W., Liu, R., Cai, J., Jiang, Y., Tang, X., Wu, H., Ao, H., & Chen, L. (2023). Geographic Differentiation of Essential Oil from Rhizome of Cultivated Atractylodes lancea by Using GC-MS and Chemical Pattern Recognition Analysis. Molecules, 28(5), 2216. https://doi.org/10.3390/molecules28052216