Synthesis and Performance Evaluation of Novel Bentonite-Supported Nanoscale Zero Valent Iron for Remediation of Arsenic Contaminated Water and Soil
Abstract
:1. Introduction
2. Results and Discussion
2.1. Product Characterization: Morphology and Chemical Properties
2.1.1. Morphological Features
2.1.2. Chemical Properties
2.2. Sorption Kinetics
2.3. Sorption Isotherm
2.4. Non-Linear Regression Modeling of Sorption Isotherm and Kinetic Models
2.5. Error Analysis for Testing Model Validation
2.6. Factors Affecting As Removal
2.6.1. Effect of pH
2.6.2. Effect of Adsorbent Dose
2.6.3. Effect of Ageing
2.7. Application of ZVI Products for As Remediation in Soil
2.7.1. Effect on Olsen-Extractable As Content in Soil
2.7.2. Effect on As Fraction in Soil
3. Materials and Methods
3.1. Chemicals
3.2. Synthesis of Bentonite-Supported Nano Zero-Valent Iron
3.3. Characterization of nZVI Products
3.4. Sorption of As by nZVI Products
3.5. Sorption Kinetic Study
3.5.1. Pseudo-First Order Kinetic Model
3.5.2. Pseudo-Second Order Kinetic Model
3.5.3. Elovich Model
3.5.4. Intra-Particle Diffusion Model
3.6. Effect of pH on Arsenic Removal
3.7. Optimization of Adsorbent Dose for Arsenic Removal
3.8. Soil Sampling and Characterization
3.9. Effect of ZVI Dose on Extractable As and As Fractions in Soil
3.10. Error Analysis and Data Presentation
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Majhi, P.K.; Raza, B.; Behera, P.P.; Singh, S.K.; Shiv, A.; Mogali, S.C.; Bhoi, T.K.; Patra, B.; Behera, B. Future-Proofing Plants Against Climate Change: A Path to Ensure Sustainable Food Systems. In Biodiversity, Functional Ecosystems and Sustainable Food Production; Galanakis, C.M., Ed.; Springer International Publishing: Cham, Switzerland, 2022; pp. 73–116. [Google Scholar]
- Sanyal, S.K.; Nasar, S.K.T. Arsenic Contamination of Ground Water in West Bengal (India)-Build-Up in Soil Crop Systems; National Institute of Hydrology: Roorkee, India, 2002. [Google Scholar]
- Das, N.; Das, A.; Sarma, K.P.; Kumar, M. Provenance, Prevalence and Health Perspective of Co-occurrences of Arsenic, Fluoride and Uranium in the Aquifers of the Brahmaputra River Floodplain. Chemosphere 2018, 194, 755–772. [Google Scholar] [CrossRef]
- Hughes, M.F. Arsenic Toxicity and Potential Mechanisms of Action. Toxicol. Lett. 2002, 133, 1–16. [Google Scholar] [CrossRef] [Green Version]
- Shaji, E.; Santosh, M.; Sarath, K.V.; Prakash, P.; Deepchand, V.; Divya, B.V. Arsenic Contamination of Groundwater: A Global Synopsis with Focus on the Indian Peninsula. Geosci. Front. 2021, 12, 101079. [Google Scholar] [CrossRef]
- CGWB. Ground Water Quality in Shallow Aquifers of India; CGWB: Faridabad, India, 2018; pp. 18–21. [Google Scholar]
- Chakraborti, D.; Das, B.; Rahman, M.M.; Chowdhury, U.K.; Biswas, B.; Goswami, A.B.; Nayak, B.; Pal, A.; Sengupta, M.K.; Ahamed, S.; et al. Status of Groundwater Arsenic Contamination in the State of West Bengal, India: A 20-Year Study Report. Mol. Nutr. Food Res. 2009, 53, 542–551. [Google Scholar] [CrossRef]
- Chakraborti, D.; Rahman, M.M.; Das, B.; Chatterjee, A.; Das, D.; Nayak, B.; Pal, A.; Chowdhury, U.K.; Ahmed, S.; Biswas, B.K.; et al. Groundwater Arsenic Contamination and Its Health Effects in India. Hydrogeol. J. 2017, 25, 1165–1181. [Google Scholar] [CrossRef]
- Smith, A.H.; Lingas, E.O.; Rahman, M. Contamination of Drinking-Water by Arsenic in Bangladesh: A Public Health Emergency. Bull. World Health Organ. 2000, 78, 1093–1103. [Google Scholar]
- Raman, C.D.; Kanmani, S. Textile Dye Degradation Using Nano Zero Valent Iron: A Review. J. Environ. Manag. 2016, 177, 341–355. [Google Scholar] [CrossRef]
- Zou, Y.; Wang, X.; Khan, A.; Wang, P.; Liu, Y.; Alsaedi, A.; Hayat, T.; Wang, X. Environmental Remediation and Application of Nanoscale Zero-Valent Iron and Its Composites for the Removal of Heavy Metal Ions: A Review. Environ. Sci. Technol. 2016, 50, 7290–7304. [Google Scholar] [CrossRef]
- Li, X.; Huang, L.; Fang, H.; He, G.; Reible, D.; Wang, C. Immobilization of Phosphorus in Sediments by Nano Zero-Valent Iron (nZVI) from the View of Mineral Composition. Sci. Total Environ. 2019, 694, 133695. [Google Scholar] [CrossRef]
- Owija, N.Y.; Kosa, S.A.; Abdel Salam, M.A. Removal of Cadmium Ions from Aqueous Solution by Zero Valent Iron Nanoparticles: Equilibrium and Thermodynamic Studies. J. Mol. Liq. 2021, 342, 117462. [Google Scholar] [CrossRef]
- Zahoor, M.; Mahramanlioglu, M. Removal of 2, 4-D from Water, Using Various Adsorbents in Combination with Ultrafiltration. Fresenius Environ. Bull. 2011, 20, 2508–2513. [Google Scholar]
- Zahoor, M. Magnetic Adsorbent Used in Combination with Ultrafiltration Membrane for the Removal of Surfactants from Water. Desalin. Water Treat. 2014, 52, 3104–3114. [Google Scholar] [CrossRef]
- Zahoor, M.; Wahab, M.; Salman, S.M.; Sohail, A.; Ali, E.A.; Ullah, R. Removal of Doxycycline from Water Using Dalbergia sissoo Waste Biomass Based Activated Carbon and Magnetic Oxide/Activated Bioinorganic Nanocomposite in Batch Adsorption and Adsorption/Membrane Hybrid Processes. Bioinorg. Chem. Appl. 2022, 2022, 2694487. [Google Scholar] [CrossRef]
- Gil-Díaz, M.; Alonso, J.; Rodríguez-Valdés, E.; Pinilla, P.; Lobo, M.C. Reducing the Mobility of Arsenic in Brownfield Soil Using Stabilised Zero-Valent Iron Nanoparticles. J. Environ. Sci. Health A Tox. Hazard Subst. Environ. Eng. 2014, 49, 1361–1369. [Google Scholar] [CrossRef]
- Yadav, R.; Sharma, A.K.; Babu, J.N. Sorptive Removal of Arsenite [As(III)] and Arsenate [As(V)] by Fuller’s Earth Immobilized Nanoscale Zero-Valent Iron Nanoparticles (F-nZVI): Effect of Fe0 Loading on Adsorption Activity. J. Environ. Chem. Eng. 2016, 4, 681–694. [Google Scholar] [CrossRef]
- Suazo-Hernández, J.; Sepúlveda, P.; Manquián-Cerda, K.; Ramírez-Tagle, R.; Rubio, M.A.; Bolan, N.; Sarkar, B.; Arancibia-Miranda, N. Synthesis and Characterization of Zeolite-Based Composites Functionalized with Nanoscale Zero-Valent Iron for Removing Arsenic in the Presence of Selenium from Water. J. Hazard. Mater. 2019, 373, 810–819. [Google Scholar] [CrossRef]
- Selvan, B.K.; Thiyagarajan, K.; Das, S.; Jaya, N.; Jabasingh, S.A.; Saravanan, P.; Rajasimman, M.; Vasseghian, Y. Synthesis and Characterization of Nano Zerovalent Iron-Kaolin Clay (nZVI-Kaol) Composite Polyethersulfone (PES) Membrane for the Efficacious As2O3 Removal from Potable Water Samples. Chemosphere 2022, 288, 132405. [Google Scholar] [CrossRef]
- Bhowmick, S.; Chakraborty, S.; Mondal, P.; Van Renterghem, W.; Van den Berghe, S.; Roman-Ross, G.; Chatterjee, D.; Iglesias, M. Montmorillonite-Supported Nanoscale Zero-Valent Iron for Removal of Arsenic from Aqueous Solution: Kinetics and Mechanism. Chem. Eng. J. 2014, 243, 14–23. [Google Scholar] [CrossRef]
- Pandey, S.; Ramontja, J. Natural Bentonite Clay and Its Composites for Dye Removal: Current State and Future Potential. Am. J. Chem. Appl. 2016, 3, 8–19. [Google Scholar]
- Prabhu, P.P.; Prabhu, B. A Review on Removal of Heavy Metal Ions from Waste Water Using Natural/Modified Bentonite. MATEC Web Conf. 2018, 144, 02021. [Google Scholar] [CrossRef]
- Datta, S.P.; Golui, D.; Sanyal, S.K. Assessing Potential Threats of Soil Pollutant Elements in Relation to Food-Chain Contamination with Suggested Remedial Measures. In Proceedings of the Souvenir of 82nd Annual Convention and National Seminar of Indian Society of Soil Science, New Delhi at Amity University, Kolkata, India; 2017; pp. 137–150. [Google Scholar]
- Bhattacharya, P.; Samal, A.C.; Majumdar, J.; Santra, S.C. Arsenic Contamination in Rice, Wheat, Pulses, and Vegetables: A Study in an Arsenic Affected Area of West Bengal, India. Water Air Soil Pollut. 2010, 213, 3–13. [Google Scholar] [CrossRef]
- Rahaman, S.; Sinha, A.C.; Pati, R.; Mukhopadhyay, D. Arsenic Contamination: A Potential Hazard to the Affected Areas of West Bengal, India. Environ. Geochem. Health 2013, 35, 119–132. [Google Scholar] [CrossRef]
- Hartley, W.; Lepp, N.W. Effect of In Situ Soil Amendments on Arsenic Uptake in Successive Harvests of Ryegrass (Lolium perenne cv Elka) Grown in Amended As-Polluted Soils. Environ. Pollut. 2008, 156, 1030–1040. [Google Scholar] [CrossRef] [PubMed]
- Pigna, M.; Cozzolino, V.; Giandonato Caporale, A.; Mora, M.L.; Di Meo, V.; Jara, A.A.; Violante, A. Effects of Phosphorus Fertilization on Arsenic Uptake by Wheat Grown in Polluted Soils. J. Soil Sci. Plant Nutr. 2010, 10, 428–442. [Google Scholar] [CrossRef] [Green Version]
- Sciau, P.H. Transmission Electron Microscopy: Emerging Investigations for Cultural Heritage Materials. Adv. Imaging Electron Phys. 2016, 198, 43–67. [Google Scholar]
- Tanboonchuy, V.; Grisdanurak, N.; Liao, C.H. Background Species Effect on Aqueous Arsenic Removal by Nano Zero-Valent Iron Using Fractional Factorial Design. J. Hazard. Mater. 2012, 205, 40–46. [Google Scholar] [CrossRef]
- Shao, J.; Yu, X.; Zhou, M.; Cai, X.; Yu, C. Nanoscale Zero-Valent Iron Decorated on Bentonite/Graphene Oxide for Removal of Copper Ions from Aqueous Solution. Materials 2018, 11, 945. [Google Scholar] [CrossRef] [Green Version]
- Yıldırım, G.M.; Bayrak, B. The Synthesis of Biochar-Supported Nano Zero-Valent Iron Composite and Its Adsorption Performance in Removal of Malachite Green. Biomass Conv. Bioref. 2021, 12, 4785–4797. [Google Scholar] [CrossRef]
- Sarkar, S.; Datta, S.C.; Biswas, D.R. Using Nanoclay Polymer Composite for Efficient Delivery of N and P to Pearl Millet Grown in a Smectite Dominant Soil in a Greenhouse Experiment. Clay Res. 2013, 32, 102–113. [Google Scholar]
- Sánchez, R.M.T.; Volzone, C.; Curt, E.M. Zero Point of Charge Determination of Monoionic Montmorillonites by Transport Number Method. Z. Pflanzenernaehr. Bodenk. 1992, 155, 77–79. [Google Scholar] [CrossRef]
- Mohajeri, P.; Smith, C.; Selamat, M.R.; Abdul Aziz, H.A. Enhancing the Adsorption of Lead (II) by Bentonite Enriched with pH-Adjusted Meranti Sawdust. Water 2018, 10, 1875. [Google Scholar] [CrossRef] [Green Version]
- Naghizadeh, A.; Gholami, K. Bentonite and Montmorillonite Nanoparticles Effectiveness in Removal of Fluoride from Water Solutions. J. Water Health 2017, 15, 555–565. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, Y. New Insights into Pseudo-Second-Order Kinetic Equation for Adsorption. Colloids Surf. A Physicochem. Eng. Asp. 2008, 320, 275–278. [Google Scholar] [CrossRef]
- Wang, J.; Guo, X. Adsorption Kinetic Models: Physical Meanings, Applications, and Solving Methods. J. Hazard. Mater. 2020, 390, 122156. [Google Scholar] [CrossRef]
- Wu, F.C.; Tseng, R.L.; Huang, S.C.; Juang, R.S. Characteristics of Pseudo-Second-Order Kinetic Model for Liquid-Phase Adsorption: A Mini-Review. Chem. Eng. J. 2009, 151, 1–9. [Google Scholar] [CrossRef]
- Liakos, E.V.; Mone, M.; Lambropoulou, D.A.; Bikiaris, D.N.; Kyzas, G.Z. Adsorption Evaluation for the Removal of Nickel, Mercury, and Barium Ions from Single-Component and Mixtures of Aqueous Solutions by Using an Optimized Biobased Chitosan Derivative. Polymers 2021, 13, 232. [Google Scholar] [CrossRef]
- Peers, A.M. Elovich Adsorption Kinetics and the Heterogeneous Surface. J. Catal. 1965, 4, 499–503. [Google Scholar] [CrossRef]
- Liu, L.; Liu, X.; Wang, D.; Lin, H.; Huang, L. Removal and Reduction of Cr(Ⅵ) in Simulated Wastewater Using Magnetic Biochar Prepared by Co-pyrolysis of Nano-zero-Valent Iron and Sewage Sludge. J. Clean. Prod. 2020, 257, 120562. [Google Scholar] [CrossRef]
- Abdelfatah, A.M.; Fawzy, M.; El-Khouly, M.E.; Eltaweil, A.S. Efficient Adsorptive Removal of Tetracycline from Aqueous Solution Using Phytosynthesized Nano-zero Valent Iron. J. Saudi Chem. Soc. 2021, 25, 101365. [Google Scholar] [CrossRef]
- Ayawei, N.; Ebelegi, A.N.; Wankasi, D. Modelling and Interpretation of Adsorption Isotherms. J. Chem. 2017, 2017, 3039817. [Google Scholar] [CrossRef] [Green Version]
- Soliemanzadeh, A.; Fekri, M. The Application of Green Tea Extract to Prepare Bentonite-Supported Nanoscale Zero-Valent Iron and Its Performance on Removal of Cr(VI): Effect of Relative Parameters and Soil Experiments. Micropor. Mesopor. Mater. 2017, 239, 60–69. [Google Scholar] [CrossRef]
- Das, T.K.; Sakthivel, T.S.; Jeyaranjan, A.; Seal, S.; Bezbaruah, A.N. Ultra-high Arsenic Adsorption by Graphene Oxide Iron Nanohybrid: Removal Mechanisms and Potential Applications. Chemosphere 2020, 253, 126702. [Google Scholar] [CrossRef]
- Weber, T.W.; Chakravorti, R.K. Pore and Solid Diffusion Models for Fixed-Bed Adsorbers. AIChE J. 1974, 20, 228–238. [Google Scholar] [CrossRef]
- Boparai, H.K.; Joseph, M.; O’Carroll, D.M. Kinetics and Thermodynamics of Cadmium Ion Removal by Adsorption onto Nano Zerovalent Iron Particles. J. Hazard. Mater. 2011, 186, 458–465. [Google Scholar] [CrossRef] [PubMed]
- Foo, K.Y.; Hameed, B.H. Insights into the Modeling of Adsorption Isotherm Systems. Chem. Eng. J. 2010, 156, 2–10. [Google Scholar] [CrossRef]
- Sheha, R.R.; Metwally, E. Equilibrium Isotherm Modeling of Cesium Adsorption onto Magnetic Materials. J. Hazard. Mater. 2007, 143, 354–361. [Google Scholar] [CrossRef]
- Simonin, J.P. On the Comparison of Pseudo-First Order and Pseudo-Second Order Rate Laws in the Modeling of Adsorption Kinetics. Chem. Eng. J. 2016, 300, 254–263. [Google Scholar] [CrossRef] [Green Version]
- Revellame, E.D.; Fortela, D.L.; Sharp, W.; Hernandez, R.; Zappi, M.E. Adsorption Kinetic Modeling Using Pseudo-First Order and Pseudo-Second Order Rate Laws: A Review. Clean. Eng. Technol. 2020, 1, 100032. [Google Scholar] [CrossRef]
- Parks, G.A.; Bruyn, P.L.D. The Zero Point of Charge of oxides. J. Phys. Chem. 1962, 66, 967–973. [Google Scholar] [CrossRef]
- Parker, J.C.; Zelazny, L.W.; Sampath, S.; Harris, W.G. A Critical Evaluation of the Extension of Zero Point of Charge (ZPC) Theory to Soil Systems. Soil Sci. Soc. Am. J. 1979, 43, 668–674. [Google Scholar] [CrossRef]
- Golui, D.; Guha Mazumder, D.N.; Sanyal, S.K.; Datta, S.P.; Ray, P.; Patra, P.K.; Sarkar, S.; Bhattacharya, K. Safe Limit of Arsenic in Soil in Relation to Dietary Exposure of Arsenicosis Patients from Malda District, West Bengal-A Case Study. Ecotoxicol. Environ. Saf. 2017, 144, 227–235. [Google Scholar] [CrossRef]
- Furukawa, Y.; Kim, J.W.; Watkins, J.; Wilkin, R.T. Formation of Ferrihydrite and Associated Iron Corrosion Products in Permeable Reactive Barriers of Zero-Valent Iron. Environ. Sci. Technol. 2002, 36, 5469–5475. [Google Scholar] [CrossRef] [PubMed]
- Rao, P.; Mak, M.S.; Liu, T.; Lai, K.C.; Lo, I.M. Effects of Humic Acid on Arsenic (V) Removal by Zero-Valent Iron from Groundwater with Special References to Corrosion Products Analyses. Chemosphere 2009, 75, 156–162. [Google Scholar] [CrossRef] [PubMed]
- Kumpiene, J.; Ore, S.; Renella, G.; Mench, M.; Lagerkvist, A.; Maurice, C. Assessment of Zerovalent Iron for Stabilization of Chromium, Copper, and Arsenic in Soil. Environ. Pollut. 2006, 144, 62–69. [Google Scholar] [CrossRef]
- Kim, K.R.; Lee, B.T.; Kim, K.W. Arsenic Stabilization in Mine Tailings Using Nano-Sized Magnetite and Zero Valent Iron with the Enhancement of Mobility by Surface Coating. J. Geochem. Explor. 2012, 113, 124–129. [Google Scholar] [CrossRef]
- Komárek, M.; Vaněk, A.; Ettler, V. Chemical Stabilization of Metals and Arsenic in Contaminated Soils Using Oxides–A Review. Environ. Pollut. 2013, 172, 9–22. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Zhang, Y.; Wang, F.; Wang, L.; Liu, J.; Hashimoto, Y.; Hosomi, M. Arsenic Immobilization and Removal in Contaminated Soil Using Zero-Valent Iron or Magnetic Biochar Amendment Followed by Dry Magnetic Separation. Sci. Total Environ. 2021, 768, 144521. [Google Scholar] [CrossRef]
- Wenzel, W.W.; Kirchbaumer, N.; Prohaska, T.; Stingeder, G.; Lombi, E.; Adriano, D.C. Arsenic Fractionation in Soils Using an Improved Sequential Extraction Procedure. Anal. Chim. Acta 2001, 436, 309–323. [Google Scholar] [CrossRef]
- Wan, X.; Dong, H.; Feng, L.; Lin, Z.; Luo, Q. Comparison of Three Sequential Extraction Procedures for Arsenic Fractionation in Highly Polluted Sites. Chemosphere 2017, 178, 402–410. [Google Scholar] [CrossRef]
- Du, X.; Gao, L.; Xun, Y.; Feng, L. Comparison of Different Sequential Extraction Procedures to Identify and Estimate Bioavailability of Arsenic Fractions in Soil. J. Soils Sediments 2020, 20, 3656–3668. [Google Scholar] [CrossRef]
- Hove, M.; van Hille, R.P.; Lewis, A.E. Iron Solids Formed from Oxidation Precipitation of Ferrous Sulfate Solutions. AIChE J. 2007, 53, 2569–2577. [Google Scholar] [CrossRef]
- Caldwell, D.H.; Adams, R.B. Colorimetric Determination of Iron in Water with o-Phenanthroline. J. Am. Water Works Assoc. 1946, 38, 727–730. [Google Scholar] [CrossRef]
- Noh, J.S.; Schwarz, J.A. Estimation of the Point of Zero Charge of Simple Oxides by Mass Titration. J. Colloid Interface Sci. 1989, 130, 157–164. [Google Scholar] [CrossRef]
- Lagergren, S.K. About the Theory of So-Called Adsorption of Soluble Substances. Sven Vetensk. Handingarl 1898, 24, 1–39. [Google Scholar]
- Ho, Y.S.; McKay, G. Sorption of Dye from Aqueous Solution by Peat. Chem. Eng. J. 1998, 70, 115–124. [Google Scholar] [CrossRef]
- Elovich, S.Y.; Larinov, O.G. Theory of Adsorption from Solutions of Non-electrolytes on Solid (I). Equation Adsorption from Solutions and the Analysis of Its Simplest Form, (II) verification of the equation of adsorption isotherm from solutions. Izv. Akad. Nauk. SSSR Otd. Khim. Nauk 1962, 2, 209–216. [Google Scholar]
- Chien, S.H.; Clayton, W.R. Application of Elovich Equation to the Kinetics of Phosphate Release and Sorption in Soils. Soil Sci. Soc. Am. J. 1980, 44, 265–268. [Google Scholar] [CrossRef]
- Weber, W.J., Jr.; Morris, J.C. Kinetics of Adsorption on Carbon from Solution. J. Sanit. Eng. Div. Proc. Am. Soc. Civ. Eng. 1963, 89, 31–59. [Google Scholar] [CrossRef]
- Datta, S.P.; Rao, A.S.; Ganeshamurthy, A.N. Effect of Electrolytes Coupled with Variable Stirring on Soil pH. J. Indian Soc. Soil Sci. 1997, 45, 185–187. [Google Scholar]
- Bouyoucos, G.J. Hydrometer Method Improved for Making Particle Size Analyses of Soils. Agron. J. 1962, 54, 464–465. [Google Scholar] [CrossRef]
- Brady, N.C.; Weil, R.R. The Nature and Properties of Soils, 13th ed.; Prentice Hall: Hoboken, NJ, USA, 2001; 960p. [Google Scholar]
- Walkley, A.; Black, I.A. An Examination of the Degtjareff Method for Determining Soil Organic Matter, and a Proposed Modification of the Chromic Acid Titration Method. Soil Sci. 1934, 37, 29–38. [Google Scholar] [CrossRef]
- Jackson, M.L. Soil Chemical Analysis; Prentice Hall of India Pvt, Ltd.: Delhi, India, 1973. [Google Scholar]
- Quevauviller, P. Operationally Defined Extraction Procedures for Soil and Sediment Analysis I. Standardization. TrAC Trends Anal. Chem. 1998, 17, 289–298. [Google Scholar] [CrossRef]
- Olsen, S.R. Estimation of Available Phosphorus in Soils by Extraction with Sodium Bicarbonate; United States Department of Agriculture: Washington, DC, USA, 1954; Volume 939. [Google Scholar]
Kinetic Model | Kinetic Parameters | Linear | Non-Linear * | ||
---|---|---|---|---|---|
nZVI-Bare | nZVI-Bento | nZVI-Bare | nZVI-Bento | ||
Pseudo-first-order | qe exp (mg g−1) | 19.9 | 19.8 | 19.9 | 19.8 |
qe (mg g−1) | 10.4 ± 1.3 | 10.9 ± 0.69 | 18.7 ± 0.59 | 18.3 ± 0.89 | |
K1 (min−1) | 0.004 ± 0.001 | 0.004 ± 0.0004 | 0.012 ± 0.002 | 0.013 ± 0.003 | |
R2 | 0.83 | 0.91 | 0.97 | 0.94 | |
Pseudo-second-order | qe exp (mg g−1) | 19.9 | 19.8 | 19.9 | 19.8 |
qe (mg g−1) | 20.5 ± 0.09 | 21.0 ± 0.42 | 20.3 ± 0.33 | 20.0 ± 0.72 | |
K2 (min−1) | 157.5 ± 17.7 | 95.2 ± 21.5 | 0.001 ± 0.0001 | 0.0001 ± 0.0002 | |
R2 | 0.99 | 0.99 | 0.99 | 0.97 | |
Rw | 1.4 × 10−7 | 2.3 × 10−7 | 0.02 | 0.18 | |
Elovich model | a (mg g−1 min−1) | 2.68 ± 0.34 | 1.72 ± 0.11 | 1.00 ± 0.32 | 0.65 ± 0.18 |
b (g mg−1) | 0.32 ± 0.003 | 0.32 ± 0.003 | 0.29 ± 0.03 | 0.26 ± 0.03 | |
R2 | 0.96 | 0.97 | 0.96 | 0.97 | |
Intra-particle diffusion model | Kint (mg g−1 min−0.5) | 0.43 ± 0.005 | 0.44 ± 0.008 | 0.43 ± 0.08 | 0.44 ± 0.07 |
Cint (mg g−1) | 4.69 ± 0.18 | 4.18 ± 0.48 | 4.69 ± 1.63 | 3.91 ± 1.49 | |
R2 | 0.76 | 0.80 | 0.76 | 0.80 |
Sorption Model | Adsorption Parameter | Linear | Non-Linear * | ||
---|---|---|---|---|---|
nZVI-Bare | nZVI-Bento | nZVI-Bare | nZVI-Bento | ||
Langmuir | qmax (mg g−1) | 288.5 ± 47.9 | 149.3 ± 61.2 | 354.3 ± 30.8 | 198.5 ± 34.4 |
Kl (L mg−1) | 0.017 ± 0.003 | 0.017 ± 0.008 | 0.007 ± 0.001 | 0.006 ± 0.002 | |
R2 | 0.87 | 0.84 | 0.97 | 0.90 | |
Freundlich | 1/n | 0.51 ± 0.06 | 0.35 ± 0.08 | 0.50 ± 0.03 | 0.48 ± 0.05 |
Kf (L g−1) | 13.1 ± 3.49 | 13.6 ± 4.9 | 13.5 ± 1.93 | 7.71 ± 2.03 | |
R2 | 0.98 | 0.92 | 0.98 | 0.94 |
Characteristics | Values |
---|---|
pH | 7.80 |
Electrical conductivity (dS m−1) | 0.88 |
Texture | Sandy clay |
Sand % | 43.6 |
Silt % | 8.50 |
Clay % | 47.9 |
Walkley–Black organic carbon (g kg−1) | 20.4 |
Cation exchange capacity (cmol (+) kg−1) | 27.8 |
Olsen-extractable As (mg kg−1) | 3.10 |
Total As (mg kg−1) | 32.2 |
Treatment | Dose | Arsenic Content (mg kg−1) (Mean ± SD) in Different Fractions in Soil | Recovery (%) | |||||
---|---|---|---|---|---|---|---|---|
F1 | F2 | F3 | F4 | F5 | Total | |||
Control | - | 0.24 ± 0.02 | 5.66 ± 0.29 | 9.98 ± 0.72 | 7.54 ± 0.27 | 9.84 ± 1.15 | 33.3 ± 2.21 | 103.3 |
nZVI-Bento | 1% | 0.018 | 1.50 ± 0.09 | 14.5 ± 0.43 | 7.45 ± 0.11 | 9.44 ± 0.44 | 32.9 ± 0.80 | 102.1 |
2% | 0.008 | 1.25 ± 0.03 | 16.4 ± 0.51 | 8.66 ± 0.27 | 7.34 ± 0.33 | 33.7 ± 0.63 | 104.7 | |
LSD (p ≤ 0.05) | 0.02 | 0.35 | 1.16 | 0.47 | 1.48 | NS | ||
nZVI-Bare | 1% | 0.004 | 1.58 ± 0.11 | 15.4 ± 0.52 | 8.06 ± 8.06 | 8.29 ± 0.20 | 33.3 ± 0.90 | 103.6 |
2% | 0.001 | 1.26 ± 0.08 | 17.3 ± 0.39 | 9.13 ± 0.14 | 6.85 ± 0.31 | 34.6 ± 0.14 | 107.3 | |
LSD (p ≤ 0.05) | 0.02 | 0.37 | 1.20 | 0.65 | 1.42 | NS |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Raza, M.B.; Datta, S.P.; Golui, D.; Barman, M.; Das, T.K.; Sahoo, R.N.; Upadhyay, D.; Rahman, M.M.; Behera, B.; Naveenkumar, A. Synthesis and Performance Evaluation of Novel Bentonite-Supported Nanoscale Zero Valent Iron for Remediation of Arsenic Contaminated Water and Soil. Molecules 2023, 28, 2168. https://doi.org/10.3390/molecules28052168
Raza MB, Datta SP, Golui D, Barman M, Das TK, Sahoo RN, Upadhyay D, Rahman MM, Behera B, Naveenkumar A. Synthesis and Performance Evaluation of Novel Bentonite-Supported Nanoscale Zero Valent Iron for Remediation of Arsenic Contaminated Water and Soil. Molecules. 2023; 28(5):2168. https://doi.org/10.3390/molecules28052168
Chicago/Turabian StyleRaza, Md Basit, Siba Prasad Datta, Debasis Golui, Mandira Barman, Tapas Kumar Das, Rabi Narayan Sahoo, Devi Upadhyay, Mohammad Mahmudur Rahman, Biswaranjan Behera, and A Naveenkumar. 2023. "Synthesis and Performance Evaluation of Novel Bentonite-Supported Nanoscale Zero Valent Iron for Remediation of Arsenic Contaminated Water and Soil" Molecules 28, no. 5: 2168. https://doi.org/10.3390/molecules28052168
APA StyleRaza, M. B., Datta, S. P., Golui, D., Barman, M., Das, T. K., Sahoo, R. N., Upadhyay, D., Rahman, M. M., Behera, B., & Naveenkumar, A. (2023). Synthesis and Performance Evaluation of Novel Bentonite-Supported Nanoscale Zero Valent Iron for Remediation of Arsenic Contaminated Water and Soil. Molecules, 28(5), 2168. https://doi.org/10.3390/molecules28052168