Advances in Ultra-High-Resolution Mass Spectrometry for Pharmaceutical Analysis
Abstract
:1. Introduction
2. Principles and Comparison of Orbitrap and FTICR Analyzers
2.1. Orbitrap Technology
2.2. FTICR Technology
2.3. Comparison of the Two Techniques
2.4. Activation Methods Using FTICR and Orbitrap
2.5. Considerations about Sample Preparation for Orbitrap and FTICR-MS Analyses
3. Ultra-High-Resolution Mass Spectrometry for Drug Discovery and Structural Characterization
3.1. Small Molecules Drugs
3.2. Proteins and Antibodies
3.3. Nucleic Acids and Other Systems of Pharmaceutical Interest
4. Ultra-High-Resolution Mass Spectrometry for Drug Formulation Studies
5. Ultra-High-Resolution Mass Imaging (MSI) in Pharmaceutical Research
Quantitative MSI-FTICR
6. Ultra-High Resolution for Untargeted Proteomics and Metabolomics
Analytical Developments
7. Ultra-High Resolution for Environmental Analysis
7.1. Pollution in the Environment
7.2. Wastewater Treatment Plant (WWTP) Effluents
7.3. Novel Technologies for (Bio)Remediation
8. Conclusions and Perspectives
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Tivert, A.M.; Vessman, J. Pharmaceutical Analysis|Overview. In Encyclopedia of Analytical Science, 2nd ed.; Worsfold, P., Townshend, A., Poole, C., Eds.; Elsevier: Oxford, UK, 2005; pp. 78–89. [Google Scholar]
- Darrow, J.J.; Avorn, J.; Kesselheim, A.S. FDA Approval and Regulation of Pharmaceuticals, 1983–2018. JAMA 2020, 323, 164–176. [Google Scholar] [CrossRef]
- Panteli, D.; Arickx, F.; Cleemput, I.; Dedet, G.; Eckhardt, H.; Fogarty, E.; Gerkens, S.; Henschke, C.; Hislop, J.; Jommi, C.; et al. Pharmaceutical regulation in 15 European countries review. Health Syst. Transit. 2016, 18, 1–122. [Google Scholar]
- Holčapek, M.; Jirásko, R.; Lísa, M. Recent developments in liquid chromatography–mass spectrometry and related techniques. J. Chromatogr. A 2012, 1259, 3–15. [Google Scholar] [CrossRef]
- Beccaria, M.; Cabooter, D. Current developments in LC-MS for pharmaceutical analysis. Analyst 2020, 145, 1129–1157. [Google Scholar] [CrossRef]
- Géhin, C.; Holman, S.W. Advances in high-resolution mass spectrometry applied to pharmaceuticals in 2020: A whole new age of information. Anal. Sci. Adv. 2021, 2, 142–156. [Google Scholar] [CrossRef]
- Boland, L.; Carrara, L.; Chanu, L.; Willeman, T. Interest of high-resolution mass spectrometry in analytical toxicology: Focus on pharmaceuticals. Toxicol. Anal. Clin. 2022, 34, 19–28. [Google Scholar] [CrossRef]
- Barrow, M.P.; Burkitt, W.I.; Derrick, P.J. Principles of Fourier transform ion cyclotron resonance mass spectrometry and its application in structural biology. Analyst 2005, 130, 18–28. [Google Scholar] [CrossRef]
- Dias, D.A.; Jones, O.A.H.; Beale, D.J.; Boughton, B.A.; Benheim, D.; Kouremenos, K.A.; Wolfender, J.-L.; Wishart, D.S. Current and Future Perspectives on the Structural Identification of Small Molecules in Biological Systems. Metabolites 2016, 6, 46. [Google Scholar] [CrossRef]
- Makarov, A. Electrostatic Axially Harmonic Orbital Trapping: A High-Performance Technique of Mass Analysis. Anal. Chem. 2000, 72, 1156–1162. [Google Scholar] [CrossRef]
- Hardman, M.; Makarov, A.A. Interfacing the Orbitrap Mass Analyzer to an Electrospray Ion Source. Anal. Chem. 2003, 75, 1699–1705. [Google Scholar] [CrossRef]
- Perry, R.H.; Cooks, R.G.; Noll, R.J. Orbitrap mass spectrometry: Instrumentation, ion motion and applications. Mass Spectrom. Rev. 2008, 27, 661–699. [Google Scholar] [CrossRef]
- Michalski, A.; Damoc, E.; Lange, O.; Denisov, E.; Nolting, D.; Müller, M.; Viner, R.; Schwartz, J.; Remes, P.; Belford, M.; et al. Ultra high resolution linear ion trap Orbitrap mass spectrometer (Orbitrap Elite) facilitates top down LC MS/MS and versatile peptide fragmentation modes. Mol. Cell. Proteom. MCP 2012, 11, O111.013698. [Google Scholar] [CrossRef] [Green Version]
- Hauschild, J.-P.; Peterson, A.C.; Couzijn, E.; Denisov, E.; Chernyshev, D.; Hock, C.; Stewart, H.; Hartmer, R.; Grinfeld, D.; Thoeing, C.; et al. A Novel Family of Quadrupole-Orbitrap Mass Spectrometers for a Broad Range of Analytical Applications. Preprints 2020, 2020060111. [Google Scholar] [CrossRef]
- Comisarow, M.B.; Marshall, A.G. Resolution-enhanced Fourier transform ion cyclotron resonance spectroscopy. J. Chem. Phys. 1975, 62, 293–295. [Google Scholar] [CrossRef]
- Nikolaev, E.N.; Kostyukevich, Y.I.; Vladimirov, G.N. Fourier transform ion cyclotron resonance (FT ICR) mass spectrometry: Theory and simulations. Mass Spectrom. Rev. 2016, 35, 219–258. [Google Scholar] [CrossRef]
- Nikolaev, E.; Lioznov, A. Evaluation of major historical ICR cell designs using electric field simulations. Mass Spectrom. Rev. 2022, 41, 262–283. [Google Scholar] [CrossRef]
- Marshall, A.G.; Chen, T. 40 years of Fourier transform ion cyclotron resonance mass spectrometry. Int. J. Mass Spectrom. 2015, 377, 410–420. [Google Scholar] [CrossRef]
- Marshall, A.G.; Hendrickson, C.L.; Jackson, G.S. Fourier transform ion cyclotron resonance mass spectrometry: A primer. Mass Spectrom. Rev. 1998, 17, 1–35. [Google Scholar] [CrossRef]
- Scigelova, M.; Hornshaw, M.; Giannakopulos, A.; Makarov, A. Fourier transform mass spectrometry. Mol. Cell. Proteom. MCP 2011, 10, M111.009431. [Google Scholar] [CrossRef] [Green Version]
- Nikolaev, E.N.; Boldin, I.A.; Jertz, R.; Baykut, G. Initial Experimental Characterization of a New Ultra-High Resolution FTICR Cell with Dynamic Harmonization. J. Am. Soc. Mass Spectrom. 2011, 22, 1125–1133. [Google Scholar] [CrossRef] [Green Version]
- Tiquet, M.; La Rocca, R.; Kirnbauer, S.; Zoratto, S.; Van Kruining, D.; Quinton, L.; Eppe, G.; Martinez-Martinez, P.; Marchetti-Deschmann, M.; De Pauw, E.; et al. FT-ICR Mass Spectrometry Imaging at Extreme Mass Resolving Power Using a Dynamically Harmonized ICR Cell with 1ω or 2ω Detection. Anal. Chem. 2022, 94, 9316–9326. [Google Scholar] [CrossRef]
- Ge, J.; Ma, C.; Qi, Y.; Wang, X.; Wang, W.; Hu, M.; Hu, Q.; Yi, Y.-B.; Shi, D.; Yue, F.-J.; et al. Quadrupole detection FT-ICR mass spectrometry offers deep profiling of residue oil: A systematic comparison of 2ω 7 Tesla versus 15 Tesla instruments. Anal. Sci. Adv. 2021, 2, 272–278. [Google Scholar] [CrossRef]
- Maillard, J.; Ferey, J.; Rüger, C.P.; Schmitz-Afonso, I.; Bekri, S.; Gautier, T.; Carrasco, N.; Afonso, C.; Tebani, A. Optimization of ion trajectories in a dynamically harmonized Fourier-transform ion cyclotron resonance cell using a design of experiments strategy. Rapid Commun. Mass Spectrom. 2020, 34, e8659. [Google Scholar] [CrossRef]
- Zhang, J.; McCombie, G.; Guenat, C.; Knochenmuss, R. FT-ICR mass spectrometry in the drug discovery process. Drug Discov. Today 2005, 10, 635–642. [Google Scholar] [CrossRef]
- Zubarev, R.A.; Makarov, A. Orbitrap Mass Spectrometry. Anal. Chem. 2013, 85, 5288–5296. [Google Scholar] [CrossRef]
- Vladimirov, G.; Hendrickson, C.L.; Blakney, G.T.; Marshall, A.G.; Heeren, R.M.A.; Nikolaev, E.N. Fourier Transform Ion Cyclotron Resonance Mass Resolution and Dynamic Range Limits Calculated by Computer Modeling of Ion Cloud Motion. J. Am. Soc. Mass Spectrom. 2012, 23, 375–384. [Google Scholar] [CrossRef] [Green Version]
- Werner, T.; Sweetman, G.; Savitski, M.F.; Mathieson, T.; Bantscheff, M.; Savitski, M.M. Ion Coalescence of Neutron Encoded TMT 10-Plex Reporter Ions. Anal. Chem. 2014, 86, 3594–3601. [Google Scholar] [CrossRef]
- Qi, Y.; Volmer, D.A. Electron-based fragmentation methods in mass spectrometry: An overview. Mass Spectrom. Rev. 2017, 36, 4–15. [Google Scholar] [CrossRef]
- Qi, Y.; Volmer, D.A. Structural analysis of small to medium-sized molecules by mass spectrometry after electron-ion fragmentation (ExD) reactions. Analyst 2016, 141, 794–806. [Google Scholar] [CrossRef]
- Sleno, L.; Volmer, D.A. Ion activation methods for tandem mass spectrometry. J. Mass Spectrom. 2004, 39, 1091–1112. [Google Scholar] [CrossRef]
- Brodbelt, J.S. Ultraviolet Photodissociation Mass Spectrometry for Analysis of Biological Molecules. Chem. Rev. 2020, 120, 3328–3380. [Google Scholar] [CrossRef]
- van Agthoven, M.A.; Lam, Y.P.Y.; O’Connor, P.B.; Rolando, C.; Delsuc, M.-A. Two-dimensional mass spectrometry: New perspectives for tandem mass spectrometry. Eur. Biophys. J. 2019, 48, 213–229. [Google Scholar] [CrossRef] [Green Version]
- Ganisl, B.; Valovka, T.; Hartl, M.; Taucher, M.; Bister, K.; Breuker, K. Electron detachment dissociation for top-down mass spectrometry of acidic proteins. Contemp. Hypn. 2011, 17, 4460–4469. [Google Scholar] [CrossRef] [Green Version]
- Gauthier, J.W.; Trautman, T.R.; Jacobson, D.B. Sustained off-resonance irradiation for collision-activated dissociation involving Fourier transform mass spectrometry. Collision-activated dissociation technique that emulates infrared multiphoton dissociation. Anal. Chim. Acta 1991, 246, 211–225. [Google Scholar] [CrossRef]
- Price, W.D.; Schnier, P.D.; Williams, E.R. Tandem mass spectrometry of large biomolecule ions by blackbody infrared radiative dissociation. Anal Chem 1996, 68, 859–866. [Google Scholar] [CrossRef]
- Olsen, J.V.; Macek, B.; Lange, O.; Makarov, A.; Horning, S.; Mann, M. Higher-energy C-trap dissociation for peptide modification analysis. Nat. Methods 2007, 4, 709–712. [Google Scholar] [CrossRef]
- Frese, C.K.; Altelaar, A.F.M.; van den Toorn, H.; Nolting, D.; Griep-Raming, J.; Heck, A.J.R.; Mohammed, S. Toward Full Peptide Sequence Coverage by Dual Fragmentation Combining Electron-Transfer and Higher-Energy Collision Dissociation Tandem Mass Spectrometry. Anal. Chem. 2012, 84, 9668–9673. [Google Scholar] [CrossRef]
- Tang, K.; Page, J.S.; Smith, R.D. Charge competition and the linear dynamic range of detection in electrospray ionization mass spectrometry. J. Am. Soc. Mass Spectrom. 2004, 15, 1416–1423. [Google Scholar] [CrossRef] [Green Version]
- Annesley, T.M. Ion suppression in mass spectrometry. Clin. Chem. 2003, 49, 1041–1044. [Google Scholar] [CrossRef] [Green Version]
- Perkons, I.; Rusko, J.; Zacs, D.; Bartkevics, V. Rapid determination of pharmaceuticals in wastewater by direct infusion HRMS using target and suspect screening analysis. Sci. Total Environ. 2021, 755, 142688. [Google Scholar] [CrossRef]
- Gan, S.; Wu, P.; Song, Y.; Guo, P.; Cai, N.; Yuan, F.; Yang, Q.; Wu, Y.; Liu, N.; Pan, J. Non-targeted characterization of dissolved organic matter from a wastewater treatment plant by FT-ICR-MS: A case study of hospital sewage. J. Water Process Eng. 2022, 48, 102834. [Google Scholar] [CrossRef]
- Xiao, X.; He, K.; Hou, Y.-J.; Xiang, Z.; Yang, Y. Rapid and sensitive analysis of trace β-blockers by magnetic solid-phase extraction coupled with Fourier transform ion cyclotron resonance mass spectrometry. J. Pharm. Anal. 2022, 12, 293–300. [Google Scholar] [CrossRef]
- Narayanam, M.; Handa, T.; Sharma, P.; Jhajra, S.; Muthe, P.K.; Dappili, P.K.; Shah, R.P.; Singh, S. Critical practical aspects in the application of liquid chromatography–mass spectrometric studies for the characterization of impurities and degradation products. J. Pharm. Biomed. Anal. 2014, 87, 191–217. [Google Scholar] [CrossRef]
- Amstalden van Hove, E.R.; Smith, D.F.; Heeren, R.M. A concise review of mass spectrometry imaging. J. Chromatogr. A 2010, 1217, 3946–3954. [Google Scholar] [CrossRef]
- Almeida, C.M.M. Overview of Sample Preparation and Chromatographic Methods to Analysis Pharmaceutical Active Compounds in Waters Matrices. Separations 2021, 8, 16. [Google Scholar] [CrossRef]
- Ferreira, L.G.; Dos Santos, R.N.; Oliva, G.; Andricopulo, A.D. Molecular docking and structure-based drug design strategies. Molecules 2015, 20, 13384–13421. [Google Scholar] [CrossRef] [Green Version]
- Szymański, P.; Markowicz, M.; Mikiciuk-Olasik, E. Adaptation of High-Throughput Screening in Drug Discovery—Toxicological Screening Tests. Int. J. Mol. Sci. 2012, 13, 427–452. [Google Scholar] [CrossRef] [Green Version]
- Lebedev, A.T.; Vasileva, I.D.; Samgina, T.Y. FT-MS in the de novo top-down sequencing of natural nontryptic peptides. Mass Spectrom. Rev. 2022, 41, 284–313. [Google Scholar] [CrossRef]
- Cao, H.; Zhang, A.; Zhang, H.; Sun, H.; Wang, X. The application of metabolomics in traditional Chinese medicine opens up a dialogue between Chinese and Western medicine. Phytother. Res. 2015, 29, 159–166. [Google Scholar] [CrossRef]
- Maveyraud, L.; Mourey, L. Protein X-ray Crystallography and Drug Discovery. Molecules 2020, 25, 1030. [Google Scholar] [CrossRef] [Green Version]
- Zhao, L.; Ciallella, H.L.; Aleksunes, L.M.; Zhu, H. Advancing computer-aided drug discovery (CADD) by big data and data-driven machine learning modeling. Drug Discov. Today 2020, 25, 1624–1638. [Google Scholar] [CrossRef]
- Orlov, A.A.; Zherebker, A.; Eletskaya, A.A.; Chernikov, V.S.; Kozlovskaya, L.I.; Zhernov, Y.V.; Kostyukevich, Y.; Palyulin, V.A.; Nikolaev, E.N.; Osolodkin, D.I.; et al. Examination of molecular space and feasible structures of bioactive components of humic substances by FTICR MS data mining in ChEMBL database. Sci. Rep. 2019, 9, 12066. [Google Scholar] [CrossRef] [Green Version]
- Dos Santos, N.A.; Macrino, C.J.; Allochio Filho, J.F. Exploring the chemical profile of designer drugs by ESI(+) and PSI(+) mass spectrometry-An approach on the fragmentation mechanisms and chemometric analysis. J. Mass Spectrom. 2020, 55, e4596. [Google Scholar] [CrossRef]
- Mamun, M.A.; Gonzalez, T.V.; Islam, A.; Sato, T.; Sato, S.; Ito, T.K.; Horikawa, M.; Yamazaki, F.; Alarcon, R.C.; Ido, T.; et al. Analysis of potential anti-aging beverage Pru, a traditional Cuban refreshment, by desorption electrospray ionization-mass spectrometry and FTICR tandem mass spectrometry. J. Food Drug Anal. 2019, 27, 833–840. [Google Scholar] [CrossRef] [Green Version]
- Kill, J.B.; Oliveira, I.F.; Tose, L.V.; Costa, H.B.; Kuster, R.M.; Machado, L.F.; Correia, R.M.; Rodrigues, R.R.T.; Vasconcellos, G.A.; Vaz, B.G.; et al. Chemical characterization of synthetic cannabinoids by electrospray ionization FT-ICR mass spectrometry. Forensic Sci. Int. 2016, 266, 474–487. [Google Scholar] [CrossRef]
- de Souza, L.S.; Puziol, L.C.; Tosta, C.L.; Bittencourt, M.L.F.; Ardisson, J.S.; Kitagawa, R.R.; Filgueiras, P.R.; Kuster, R.M. Analytical methods to access the chemical composition of an Euphorbia tirucalli anticancer latex from traditional Brazilian medicine. J. Ethnopharmacol. 2019, 237, 255–265. [Google Scholar] [CrossRef]
- Yang, B.; Feng, Y.J.; Vu, H.; McCormick, B.; Rowley, J.; Pedro, L.; Crowther, G.J.; Van Voorhis, W.C.; Forster, P.I.; Quinn, R.J. Bioaffinity Mass Spectrometry Screening. J. Biomol. Screen. 2016, 21, 194–200. [Google Scholar] [CrossRef] [Green Version]
- Vu, H.; Pedro, L.; Mak, T.; McCormick, B.; Rowley, J.; Liu, M.; Di Capua, A.; Williams-Noonan, B.; Pham, N.B.; Pouwer, R.; et al. Fragment-Based Screening of a Natural Product Library against 62 Potential Malaria Drug Targets Employing Native Mass Spectrometry. ACS Infect. Dis. 2018, 4, 431–444. [Google Scholar] [CrossRef]
- Nakabayashi, R.; Sawada, Y.; Aoyagi, M.; Yamada, Y.; Hirai, M.Y.; Sakurai, T.; Kamoi, T.; Rowan, D.D.; Saito, K. Chemical Assignment of Structural Isomers of Sulfur-Containing Metabolites in Garlic by Liquid Chromatography−Fourier Transform Ion Cyclotron Resonance−Mass Spectrometry. J. Nutr. 2016, 146, 397S–402S. [Google Scholar] [CrossRef] [Green Version]
- Elshafie, H.S.; Viggiani, L.; Mostafa, M.S.; El-Hashash, M.A.; Camele, I.; Bufo, S.A. Biological activity and chemical identification of ornithine lipid produced by Burkholderia gladioli pv. agaricicola ICMP 11096 using LC-MS and NMR analyses. J. Biol. Res.-Boll. Della Soc. Ital. Di Biol. Sper. 2018, 90, 96–103. [Google Scholar] [CrossRef]
- Lelario, F.; Scrano, L.; De Franchi, S.; Bonomo, M.G.; Salzano, G.; Milan, S.; Milella, L.; Bufo, S.A. Identification and antimicrobial activity of most representative secondary metabolites from different plant species. Chem. Biol. Technol. Agric. 2018, 5, 13. [Google Scholar] [CrossRef] [Green Version]
- Han, F.; Liu, T.; Yin, R.; Zhang, X.; Ma, L.; Xu, R.; Wu, Y. UHPLC-FT-ICR-MS combined with serum pharmacochemistry for bioactive compounds discovery of Zhi-Zi-Da-Huang-decoction against alcohol-induced hepatotoxicity in rats. RSC Adv. 2016, 6, 108917–108927. [Google Scholar] [CrossRef]
- Nakabayashi, R.; Yang, Z.; Nishizawa, T.; Mori, T.; Saito, K. Top-down Targeted Metabolomics Reveals a Sulfur-Containing Metabolite with Inhibitory Activity against Angiotensin-Converting Enzyme in Asparagus officinalis. J. Nat. Prod. 2015, 78, 1179–1183. [Google Scholar] [CrossRef]
- Pedro, L.Q.R.J.T.I. Native Mass Spectrometry in Fragment-Based Drug Discovery. Molecules 2016, 21, 984. [Google Scholar] [CrossRef] [Green Version]
- Dafun, A.S.; Marcoux, J. Structural mass spectrometry of membrane proteins. Biochim. Et Biophys. Acta (BBA)-Proteins Proteom. 2022, 1870, 140813. [Google Scholar] [CrossRef]
- Tucholski, T.; Ge, Y. Fourier-transform ion cyclotron resonance mass spectrometry for characterizing proteoforms. Mass Spectrom. Rev. 2022, 41, 158–177. [Google Scholar] [CrossRef]
- Neagu, A.-N.; Jayathirtha, M.; Baxter, E.; Donnelly, M.; Petre, B.A.; Darie, C.C. Applications of Tandem Mass Spectrometry (MS/MS) in Protein Analysis for Biomedical Research. Molecules 2022, 27, 2411. [Google Scholar] [CrossRef]
- Gavriilidou, A.F.M.; Sokratous, K.; Yen, H.-Y.; De Colibus, L. High-Throughput Native Mass Spectrometry Screening in Drug Discovery. Front. Mol. Biosci. 2022, 9, 1–15. [Google Scholar] [CrossRef]
- Shaw, J.B.; Lin, T.Y.; Leach, F.E., 3rd; Tolmachev, A.V.; Tolić, N.; Robinson, E.W.; Koppenaal, D.W.; Paša-Tolić, L. 21 Tesla Fourier Transform Ion Cyclotron Resonance Mass Spectrometer Greatly Expands Mass Spectrometry Toolbox. J. Am. Soc. Mass Spectrom. 2016, 27, 1929–1936. [Google Scholar] [CrossRef]
- Li, H.; Nguyen, H.H.; Ogorzalek Loo, R.R.; Campuzano, I.D.G.; Loo, J.A. An integrated native mass spectrometry and top-down proteomics method that connects sequence to structure and function of macromolecular complexes. Nat. Chem. 2018, 10, 139–148. [Google Scholar] [CrossRef]
- Liu, R.; Xia, S.; Li, H. Native top-down mass spectrometry for higher-order structural characterization of proteins and complexes. Mass Spectrom. Rev. 2022, e21793. [Google Scholar] [CrossRef]
- Deighan, W.I.; Winton, V.J.; Melani, R.D.; Anderson, L.C.; McGee, J.P.; Schachner, L.F.; Barnidge, D.; Murray, D.; Alexander, H.D.; Gibson, D.S.; et al. Development of novel methods for non-canonical myeloma protein analysis with an innovative adaptation of immunofixation electrophoresis, native top-down mass spectrometry, and middle-down de novo sequencing. Clin. Chem. Lab. Med. 2021, 59, 653–661. [Google Scholar] [CrossRef]
- Paris, J.; Morgan, T.E.; Marzullo, B.P.; Wootton, C.A.; Barrow, M.P.; O’Hara, J.; O’Connor, P.B. Two-Dimensional Mass Spectrometry Analysis of IgG1 Antibodies. J. Am. Soc. Mass Spectrom. 2021, 32, 1716–1724. [Google Scholar] [CrossRef]
- Theisen, A.; Wootton, C.A.; Haris, A.; Morgan, T.E.; Lam, Y.P.Y.; Barrow, M.P.; O’Connor, P.B. Enhancing Biomolecule Analysis and 2DMS Experiments by Implementation of (Activated Ion) 193 nm UVPD on a FT-ICR Mass Spectrometer. Anal. Chem. 2022, 94, 15631–15638. [Google Scholar] [CrossRef]
- Jin, L. Differentiation and verification of monoclonal antibody therapeutics by integrating accurate mass analyses at intact, subunit and subdomain levels for forensic investigation. Forensic Chem. 2022, 30, 100434. [Google Scholar] [CrossRef]
- Muste, C.; Gu, C. BTK-inhibitor drug covalent binding to lysine in human serum albumin using LC-MS/MS. Drug Metab. Pharmacokinet. 2022, 42, 100433. [Google Scholar] [CrossRef]
- Yang, W.; Tu, Z.; Wang, H.; Zhang, L.; Kaltashov, I.A.; Zhao, Y.; Niu, C.; Yao, H.; Ye, W. The mechanism of reduced IgG/IgE-binding of β-lactoglobulin by pulsed electric field pretreatment combined with glycation revealed by ECD/FTICR-MS. Food Funct. 2018, 9, 417–425. [Google Scholar] [CrossRef]
- Larson, E.J.; Zhu, Y.; Wu, Z.; Chen, B.; Zhang, Z.; Zhou, S.; Han, L.; Zhang, Q.; Ge, Y. Rapid Analysis of Reduced Antibody Drug Conjugate by Online LC-MS/MS with Fourier Transform Ion Cyclotron Resonance Mass Spectrometry. Anal. Chem. 2020, 92, 15096–15103. [Google Scholar] [CrossRef]
- Watts, E.; Thyer, R.; Ellington, A.D.; Brodbelt, J.S. Integrated Top-Down and Bottom-Up Mass Spectrometry for Characterization of Diselenide Bridging Patterns of Synthetic Selenoproteins. Anal. Chem. 2022, 94, 11175–11184. [Google Scholar] [CrossRef]
- Zhou, M.; Yan, J.; Romano, C.A.; Tebo, B.M.; Wysocki, V.H.; Paša-Tolić, L. Surface Induced Dissociation Coupled with High Resolution Mass Spectrometry Unveils Heterogeneity of a 211 kDa Multicopper Oxidase Protein Complex. J. Am. Soc. Mass Spectrom. 2018, 29, 723–733. [Google Scholar] [CrossRef]
- Johnson, K.A.; Verhagen, M.F.; Brereton, P.S.; Adams, M.W.; Amster, I.J. Probing the stoichiometry and oxidation states of metal centers in iron-sulfur proteins using electrospray FTICR mass spectrometry. Anal. Chem. 2000, 72, 1410–1418. [Google Scholar] [CrossRef]
- Lermyte, F.; Everett, J. Metal Ion Binding to the Amyloid β Monomer Studied by Native Top-Down FTICR Mass Spectrometry. J. Am. Soc. Mass Spectrom. 2019, 30, 2123–2134. [Google Scholar] [CrossRef]
- Ross, J.; Lambert, T.; Piergentili, C.; He, D.; Waldron, K.J.; Mackay, C.L.; Marles-Wright, J.; Clarke, D.J. Mass spectrometry reveals the assembly pathway of encapsulated ferritins and highlights a dynamic ferroxidase interface. Chem. Commun. 2020, 56, 3417–3420. [Google Scholar] [CrossRef]
- Wang, B.; Qin, Q.; Chang, M.; Li, S.; Shi, X.; Xu, G. Molecular interaction study of flavonoids with human serum albumin using native mass spectrometry and molecular modeling. Anal. Bioanal. Chem. 2018, 410, 827–837. [Google Scholar] [CrossRef]
- Nagornov, K.O.; Kozhinov, A.N.; Gasilova, N.; Menin, L.; Tsybin, Y.O. Transient-Mediated Simulations of FTMS Isotopic Distributions and Mass Spectra to Guide Experiment Design and Data Analysis. J. Am. Soc. Mass Spectrom. 2020, 31, 1927–1942. [Google Scholar] [CrossRef]
- Nagornov, K.O.; Kozhinov, A.N.; Gasilova, N.; Menin, L.; Tsybin, Y.O. Characterization of the Time-Domain Isotopic Beat Patterns of Monoclonal Antibodies in Fourier Transform Mass Spectrometry. J. Am. Soc. Mass Spectrom. 2022, 33, 1113–1125. [Google Scholar] [CrossRef]
- Wu, Q.; Gorshkov, M.V.; Paša-Tolić, L. Towards increasing the performance of FTICR-MS with signal detection at frequency multiples: Signal theory and numerical study. Int. J. Mass Spectrom. 2021, 469, 116669. [Google Scholar] [CrossRef]
- Shaw, J.B.; Gorshkov, M.V.; Wu, Q.; Paša-Tolić, L. High Speed Intact Protein Characterization Using 4X Frequency Multiplication, Ion Trap Harmonization, and 21 Tesla FTICR-MS. Anal. Chem. 2018, 90, 5557–5562. [Google Scholar] [CrossRef]
- Ganem, B.; Li, Y.T.; Henion, J.D. Observation of noncovalent enzyme-substrate and enzyme-product complexes by ion-spray mass spectrometry. J. Am. Chem. Soc. 1991, 113, 7818–7819. [Google Scholar] [CrossRef]
- Xu, Y.; Afonso, C.; Wen, R.; Tabet, J.C. Investigation of double-stranded DNA/drug interaction by ESI/FT ICR: Orientation of dissociations relates to stabilizing salt bridges. J. Mass Spectrom. JMS 2008, 43, 1531–1544. [Google Scholar] [CrossRef]
- Wan, C.; Cui, M.; Song, F.; Liu, Z.; Liu, S. A study of the non-covalent interaction between flavonoids and DNA triplexes by electrospray ionization mass spectrometry. Int. J. Mass Spectrom. 2009, 283, 48–55. [Google Scholar] [CrossRef]
- Turner, K.B.; Hagan, N.A.; Kohlway, A.S.; Fabris, D. Mapping noncovalent ligand binding to stemloop domains of the HIV-1 packaging signal by tandem mass spectrometry. J. Am. Soc. Mass Spectrom. 2006, 17, 1402–1411. [Google Scholar] [CrossRef] [Green Version]
- Wootton, C.A.; Sanchez-Cano, C.; Liu, H.-K.; Barrow, M.P.; Sadler, P.J.; O’Connor, P.B. Binding of an organo–osmium(ii) anticancer complex to guanine and cytosine on DNA revealed by electron-based dissociations in high resolution Top–Down FT-ICR mass spectrometry. Dalton Trans. 2015, 44, 3624–3632. [Google Scholar] [CrossRef] [Green Version]
- Zeng, W.; Zhang, Y.; Zheng, W.; Luo, Q.; Han, J.; Liu, J.a.; Zhao, Y.; Jia, F.; Wu, K.; Wang, F. Discovery of Cisplatin Binding to Thymine and Cytosine on a Single-Stranded Oligodeoxynucleotide by High Resolution FT-ICR Mass Spectrometry. Molecules 2019, 24, 1852. [Google Scholar] [CrossRef] [Green Version]
- Flemmich, L.; Heel, S.; Moreno, S.; Breuker, K.; Micura, R. A natural riboswitch scaffold with self-methylation activity. Nat. Commun. 2021, 12, 3877. [Google Scholar] [CrossRef]
- Sun, L.; Huang, F.; Liu, W.; Lin, L.; Hong, Y.; Kong, X. Chiral differentiation of l- and d-penicillamine by β-cyclodextrin: Investigated by IRMPD spectroscopy and theoretical simulations. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2020, 241, 118653. [Google Scholar] [CrossRef]
- Thiabaud, G.; Harden-Bull, L.; Ghang, Y.J.; Sen, S.; Chi, X.; Bachman, J.L.; Lynch, V.M.; Siddik, Z.H.; Sessler, J.L. Platinum(IV)-Ferrocene Conjugates and Their Cyclodextrin Host-Guest Complexes. Inorg. Chem. 2019, 58, 7886–7894. [Google Scholar] [CrossRef]
- Uhlemann, T.; Berden, G.; Oomens, J. Preferred protonation site of a series of sulfa drugs in the gas phase revealed by IR spectroscopy. Eur. Phys. J. D 2021, 75, 23. [Google Scholar] [CrossRef]
- Lee, S.-S.; Lee, J.-u.; Oh, J.H.; Park, S.; Hong, Y.; Min, B.K.; Lee, H.H.L.; Kim, H.I.; Kong, X.; Lee, S.; et al. Chiral differentiation of d- and l-isoleucine using permethylated β-cyclodextrin: Infrared multiple photon dissociation spectroscopy, ion-mobility mass spectrometry, and DFT calculations. Phys. Chem. Chem. Phys. 2018, 20, 30428–30436. [Google Scholar] [CrossRef]
- Gao, D.; Lo, P.-C. Polymeric micelles encapsulating pH-responsive doxorubicin prodrug and glutathione-activated zinc(II) phthalocyanine for combined chemotherapy and photodynamic therapy. J. Control. Release 2018, 282, 46–61. [Google Scholar] [CrossRef]
- Fan, L.; Wang, X.; Cao, Q.; Yang, Y.; Wu, D. POSS-based supramolecular amphiphilic zwitterionic complexes for drug delivery. Biomater. Sci. 2019, 7, 1984–1994. [Google Scholar] [CrossRef]
- Feng, Q.; Wang, M.; Muhtar, E. Nanoparticles of a New Small-Molecule P-Selectin Inhibitor Attenuate Thrombosis, Inflammation, and Tumor Growth in Two Animal Models. Int. J. Nanomed. 2021, 16, 5777–5795. [Google Scholar] [CrossRef]
- Ramesh, V.R.N.S.K.; Yadav, H.; Sarheed, O. Safety of Pharmaceutical Excipients and Regulatory Issues. Appl. Clin. Res. Clin. Trials Regul. Aff. 2019, 6, 86–98. [Google Scholar] [CrossRef]
- Tabrez, S. Impurities Characterization in Pharmaceuticals: A Review. Int. J. Pharm. Pharm. Res. 2019, 15, 46–64. [Google Scholar]
- Zhang, K.; Pellett, J.D.; Narang, A.S.; Wang, Y.J.; Zhang, Y.T. Reactive impurities in large and small molecule pharmaceutical excipients—A review. TrAC Trends Anal. Chem. 2018, 101, 34–42. [Google Scholar] [CrossRef]
- Verma, A.; Singla, S.; Palia, P. The Development of Forced Degradation and Stability Indicating Studies of Drugs- A Review. Asian J. Pharm. Res. Dev. 2022, 10, 83–89. [Google Scholar] [CrossRef]
- Perez Hurtado, P.; Lam, P.Y.; Kilgour, D.; Bristow, A.; McBride, E.; O’Connor, P.B. Use of High Resolution Mass Spectrometry for Analysis of Polymeric Excipients in Drug Delivery Formulations. Anal. Chem. 2012, 84, 8579–8586. [Google Scholar] [CrossRef]
- Desport, J.S.; Frache, G.; Patiny, L. MSPolyCalc: A web-based App for polymer mass spectrometry data interpretation. The case study of a pharmaceutical excipient. Rapid Commun. Mass Spectrom. 2020, 34, e8652. [Google Scholar] [CrossRef]
- Zheng, H.; Yang, R.; Wang, Z.; Wang, J.; Zhang, J.; Sun, H. Characterization of pharmaceutic structured triacylglycerols by high-performance liquid chromatography/tandem high-resolution mass spectrometry and its application to structured fat emulsion injection. Rapid Commun. Mass Spectrom. 2020, 34, e8557. [Google Scholar] [CrossRef]
- Li, X.; Chu, X.; Wang, X.; Yin, R.; Zhang, X.; Zhao, Y.; Song, A.; Han, F. An available strategy for elemental composition determination of organic impurities in commercial preparations based on accurate mass and peak ratio of isotopic fine structures (IFSs) by dual mode combined-FT-ICR-MS and fraction collection technology. Anal. Chim. Acta 2018, 1039, 59–64. [Google Scholar] [CrossRef]
- Wu, C.S.; Tong, Y.F.; Wang, P.Y.; Wang, D.M.; Wu, S.; Zhang, J.L. Identification of impurities in methotrexate drug substances using high-performance liquid chromatography coupled with a photodiode array detector and Fourier transform ion cyclotron resonance mass spectrometry. Rapid Commun. Mass Spectrom. RCM 2013, 27, 971–978. [Google Scholar] [CrossRef]
- Wu, P.; Ye, S.; Li, M.; Li, H.; Kan, Y.; Yang, Z. Impurity identification and quantification for arginine vasopressin by liquid chromatography/high-resolution mass spectrometry. Rapid Commun. Mass Spectrom. 2020, 34, e8799. [Google Scholar] [CrossRef]
- Heikkinen, E.M.; Auriola, S.; Ranta, V.-P.; Demarais, N.J.; Grey, A.C.; del Amo, E.M.; Toropainen, E.; Vellonen, K.-S.; Urtti, A.; Ruponen, M. Distribution of Small Molecular Weight Drugs into the Porcine Lens: Studies on Imaging Mass Spectrometry, Partition Coefficients, and Implications in Ocular Pharmacokinetics. Mol. Pharm. 2019, 16, 3968–3976. [Google Scholar] [CrossRef] [Green Version]
- Mori, N.; Mochizuki, T.; Yamazaki, F.; Takei, S.; Mano, H.; Matsugi, T.; Setou, M. MALDI imaging mass spectrometry revealed atropine distribution in the ocular tissues and its transit from anterior to posterior regions in the whole-eye of rabbit after topical administration. PLoS ONE 2019, 14, e0211376. [Google Scholar] [CrossRef] [Green Version]
- Vallianatou, T.; Strittmatter, N.; Nilsson, A.; Shariatgorji, M.; Hamm, G.; Pereira, M.; Källback, P.; Svenningsson, P.; Karlgren, M.; Goodwin, R.J.A.; et al. A mass spectrometry imaging approach for investigating how drug-drug interactions influence drug blood-brain barrier permeability. NeuroImage 2018, 172, 808–816. [Google Scholar] [CrossRef]
- Handler, A.M.; Eirefelt, S.; Lambert, M.; Johansson, F.; Hollesen Schefe, L.; Østergaard Knudsen, N.; Bodenlenz, M.; Birngruber, T.; Sinner, F.; Huss Eriksson, A.; et al. Characterizing Cutaneous Drug Delivery Using Open-Flow Microperfusion and Mass Spectrometry Imaging. Mol. Pharm. 2021, 18, 3063–3072. [Google Scholar] [CrossRef]
- Wang, N.; Dartois, V.; Carter, C.L. An optimized method for the detection and spatial distribution of aminoglycoside and vancomycin antibiotics in tissue sections by mass spectrometry imaging. J. Mass Spectrom. 2021, 56, e4708. [Google Scholar] [CrossRef]
- Ferey, J.; Larroque, M.; Schmitz-Afonso, I.; Le Maître, J.; Sgarbura, O.; Carrere, S.; Quenet, F.; Bouyssiere, B.; Enjalbal, C.; Mounicou, S.; et al. Imaging Matrix-Assisted Laser Desorption/Ionization Fourier Transform Ion Cyclotron Resonance Mass Spectrometry of oxaliplatin derivatives in human tissue sections. Talanta 2022, 237, 122915. [Google Scholar] [CrossRef]
- Zandanel, C.; Legouffe, R.; Trochon-Joseph, V.; Tomezyk, A.; Gaudin, M.; Bonnel, D.; Stauber, J.; Vasseur, B.; Bromet, N. Biodistribution of polycyanoacrylate nanoparticles encapsulating doxorubicin by Matrix-Assisted Laser Desorption Ionization (MALDI) Mass Spectrometry Imaging (MSI). J. Drug Deliv. Sci. Technol. 2018, 47, 55–61. [Google Scholar] [CrossRef]
- Lin, H.; Yuan, Y.; Hang, T.; Wang, P.; Lu, S.; Wang, H. Matrix-assisted laser desorption/ionization mass spectrometric imaging the spatial distribution of biodegradable vascular stents using a self-made semi-quantitative target plate. J. Pharm. Biomed. Anal. 2022, 219, 114888. [Google Scholar] [CrossRef]
- Liang, Z.; Giles, M.B.; Stenslik, M.J.; Marsales, M.; Ormes, J.D.; Seto, R.; Zhong, W. Direct visualization of the drug release process of non-conductive polymeric implants via molecular imaging. Anal. Chim. Acta 2022, 1230, 340395. [Google Scholar] [CrossRef]
- Palubeckaitė, I.; Crooks, L.; Smith, D.P.; Cole, L.M.; Bram, H.; Le Maitre, C.; Clench, M.R.; Cross, N.A. Mass spectrometry imaging of endogenous metabolites in response to doxorubicin in a novel 3D osteosarcoma cell culture model. J. Mass Spectrom. 2020, 55, e4461. [Google Scholar] [CrossRef]
- Chen, B.; Vavrek, M.; Gundersdorf, R.; Zhong, W.; Cancilla, M.T. Combining MALDI mass spectrometry imaging and droplet-base surface sampling analysis for tissue distribution, metabolite profiling, and relative quantification of cyclic peptide melanotan II. Anal Chim Acta 2020, 1125, 279–287. [Google Scholar] [CrossRef]
- Jones, E.E.; Quiason, C.; Dale, S.; Shahidi-Latham, S.K. Feasibility Assessment of a MALDI FTICR Imaging Approach for the 3D Reconstruction of a Mouse Lung. J. Am. Soc. Mass Spectrom. 2017, 28, 1709–1715. [Google Scholar] [CrossRef]
- Abdelmoula, W.M.; Regan, M.S.; Lopez, B.G.C.; Randall, E.C.; Lawler, S.; Mladek, A.C.; Nowicki, M.O.; Marin, B.M.; Agar, J.N.; Swanson, K.R.; et al. Automatic 3D Nonlinear Registration of Mass Spectrometry Imaging and Magnetic Resonance Imaging Data. Anal. Chem. 2019, 91, 6206–6216. [Google Scholar] [CrossRef]
- Abdelmoula, W.M.; Lopez, B.G.; Randall, E.C.; Kapur, T.; Sarkaria, J.N. Peak learning of mass spectrometry imaging data using artificial neural networks. Nat. Commun. 2021, 12, 5544. [Google Scholar] [CrossRef]
- Bonnel, D.; Legouffe, R.; Eriksson, A.H.; Mortensen, R.W.; Pamelard, F.; Stauber, J.; Nielsen, K.T. MALDI imaging facilitates new topical drug development process by determining quantitative skin distribution profiles. Anal. Bioanal. Chem. 2018, 410, 2815–2828. [Google Scholar] [CrossRef]
- Rzagalinski, I.; Kovačević, B.; Hainz, N.; Meier, C.; Tschernig, T.; Volmer, D.A. Toward Higher Sensitivity in Quantitative MALDI Imaging Mass Spectrometry of CNS Drugs Using a Nonpolar Matrix. Anal. Chem. 2018, 90, 12592–12600. [Google Scholar] [CrossRef] [Green Version]
- Tang, W.; Chen, J.; Zhou, J.; Ge, J.; Zhang, Y.; Li, P.; Li, B. Quantitative MALDI Imaging of Spatial Distributions and Dynamic Changes of Tetrandrine in Multiple Organs of Rats. Theranostics 2019, 9, 932–944. [Google Scholar] [CrossRef]
- Grey, A.C.; Demarais, N.J.; West, B.J.; Donaldson, P.J. A quantitative map of glutathione in the aging human lens. Int. J. Mass Spectrom. 2019, 437, 58–68. [Google Scholar] [CrossRef]
- Källback, P.; Vallianatou, T.; Nilsson, A.; Shariatgorji, R.; Schintu, N.; Pereira, M.; Barré, F.; Wadensten, H.; Svenningsson, P.; Andrén, P.E. Cross-validated Matrix-Assisted Laser Desorption/Ionization Mass Spectrometry Imaging Quantitation Protocol for a Pharmaceutical Drug and Its Drug-Target Effects in the Brain Using Time-of-Flight and Fourier Transform Ion Cyclotron Resonance Analyzers. Anal. Chem. 2020, 92, 14676–14684. [Google Scholar] [CrossRef]
- Abu Sammour, D.; Marsching, C.; Geisel, A.; Erich, K.; Schulz, S.; Ramallo Guevara, C.; Rabe, J.-H.; Marx, A.; Findeisen, P.; Hohenberger, P.; et al. Quantitative Mass Spectrometry Imaging Reveals Mutation Status-independent Lack of Imatinib in Liver Metastases of Gastrointestinal Stromal Tumors. Sci. Rep. 2019, 9, 10698. [Google Scholar] [CrossRef] [Green Version]
- Gahlaut, A.; Vikas; Dahiya, M.; Gothwal, A.; Kulharia, M.; Chhillar, A.K.; Hooda, V.; Dabur, R. Proteomics & metabolomics: Mapping biochemical regulations. Drug Invent. Today 2013, 5, 321–326. [Google Scholar] [CrossRef]
- Gonzalez-Covarrubias, V.; Martínez-Martínez, E.; del Bosque-Plata, L. The Potential of Metabolomics in Biomedical Applications. Metabolites 2022, 12, 194. [Google Scholar] [CrossRef]
- Calabrese, V.; Schmitz-Afonso, I.; Riah-Anglet, W.; Trinsoutrot-Gattin, I.; Pawlak, B.; Afonso, C. Direct introduction MALDI FTICR MS based on dried droplet deposition applied to non-targeted metabolomics on Pisum Sativum root exudates. Talanta 2023, 253, 123901. [Google Scholar] [CrossRef]
- Maia, M.; Figueiredo, A.; Cordeiro, C.; Sousa Silva, M. FT-ICR-MS-based metabolomics: A deep dive into plant metabolism. Mass Spectrom. Rev. 2021, 1–22. [Google Scholar] [CrossRef]
- Muthu, M.; Nordström, A. Current Status and Future Prospects of Clinically Exploiting Cancer-specific Metabolism—Why Is Tumor Metabolism Not More Extensively Translated into Clinical Targets and Biomarkers? Int. J. Mol. Sci. 2019, 20, 1385. [Google Scholar] [CrossRef] [Green Version]
- Greco, F.; Anastasi, F.; Pardini, L.F.; Dilillo, M.; Vannini, E.; Baroncelli, L.; Caleo, M.; McDonnell, L.A. Longitudinal Bottom-Up Proteomics of Serum, Serum Extracellular Vesicles, and Cerebrospinal Fluid Reveals Candidate Biomarkers for Early Detection of Glioblastoma in a Murine Model. Molecules 2021, 26, 5992. [Google Scholar] [CrossRef]
- Fernandes, J.; Chandler, J.D.; Liu, K.H.; Uppal, K.; Hao, L.; Hu, X.; Go, Y.-M.; Jones, D.P. Metabolomic Responses to Manganese Dose in SH-SY5Y Human Neuroblastoma Cells. Toxicol. Sci. 2019, 169, 84–94. [Google Scholar] [CrossRef]
- Saito, K.; Tanaka, N.; Ikari, J.; Suzuki, M.; Anazawa, R.; Abe, M.; Saito, Y.; Tatsumi, K. Comprehensive lipid profiling of bleomycin-induced lung injury. J. Appl. Toxicol. 2019, 39, 658–671. [Google Scholar] [CrossRef]
- Saito, K.; Ohno, Y.; Saito, Y. Enrichment of resolving power improves ion-peak quantification on a lipidomics platform. J. Chromatogr. B 2017, 1055–1056, 20–28. [Google Scholar] [CrossRef]
- Liu, W.; Wang, Q.; Chang, J.; Bhetuwal, A.; Bhattarai, N.; Zhang, F.; Tang, J. Serum proteomics unveil characteristic protein diagnostic biomarkers and signaling pathways in patients with esophageal squamous cell carcinoma. Clin. Proteom. 2022, 19, 18. [Google Scholar] [CrossRef]
- Sanchez, J.I.; Jiao, J.; Kwan, S.-Y.; Veillon, L.; Warmoes, M.O.; Tan, L.; Odewole, M.; Rich, N.E.; Wei, P.; Lorenzi, P.L.; et al. Lipidomic Profiles of Plasma Exosomes Identify Candidate Biomarkers for Early Detection of Hepatocellular Carcinoma in Patients with Cirrhosis. Cancer Prev. Res. 2021, 14, 955–962. [Google Scholar] [CrossRef]
- Fan, T.W.M.; Zhang, X.; Wang, C.; Yang, Y.; Kang, W.-Y.; Arnold, S.; Higashi, R.M.; Liu, J.; Lane, A.N. Exosomal lipids for classifying early and late stage non-small cell lung cancer. Anal. Chim. Acta 2018, 1037, 256–264. [Google Scholar] [CrossRef]
- Denihan, N.M.; Kirwan, J.A.; Walsh, B.H.; Dunn, W.B.; Broadhurst, D.I.; Boylan, G.B.; Murray, D.M. Untargeted metabolomic analysis and pathway discovery in perinatal asphyxia and hypoxic-ischaemic encephalopathy. J. Cereb. Blood Flow Metab. 2017, 39, 147–162. [Google Scholar] [CrossRef]
- Lucio, M.; Willkommen, D.; Schroeter, M.; Sigaroudi, A.; Schmitt-Kopplin, P.; Michalke, B. Integrative Metabolomic and Metallomic Analysis in a Case–Control Cohort With Parkinson’s Disease. Front. Aging Neurosci. 2019, 11, 331. [Google Scholar] [CrossRef]
- Zou, L.; Wang, L.; Guo, L.; Zhou, W.; Lai, Z.; Zhu, C.; Wu, X.; Li, Z.; Yang, A. Small molecules as potential biomarkers of early gastric cancer: A mass spectrometry imaging approach. Clin. Chim. Acta 2022, 534, 35–42. [Google Scholar] [CrossRef]
- Dabaj, I.; Ferey, J.; Marguet, F.; Gilard, V.; Basset, C.; Bahri, Y.; Brehin, A.-C.; Vanhulle, C.; Leturcq, F.; Marret, S.; et al. Muscle metabolic remodelling patterns in Duchenne muscular dystrophy revealed by ultra-high-resolution mass spectrometry imaging. Sci. Rep. 2021, 11, 1906. [Google Scholar] [CrossRef]
- Singh, A.; Shannon, C.P.; Gautier, B.; Rohart, F.; Vacher, M.; Tebbutt, S.J.; Lê Cao, K.-A. DIABLO: An integrative approach for identifying key molecular drivers from multi-omics assays. Bioinformatics 2019, 35, 3055–3062. [Google Scholar] [CrossRef]
- Rohart, F.; Gautier, B.; Singh, A.; Lê Cao, K.-A. mixOmics: An R package for ‘omics feature selection and multiple data integration. PLOS Comput. Biol. 2017, 13, e1005752. [Google Scholar] [CrossRef] [Green Version]
- Tautenhahn, R.; Patti, G.J.; Rinehart, D.; Siuzdak, G. XCMS Online: A web-based platform to process untargeted metabolomic data. Anal Chem 2012, 84, 5035–5039. [Google Scholar] [CrossRef] [Green Version]
- Giacomoni, F.; Le Corguillé, G.; Monsoor, M.; Landi, M.; Pericard, P.; Pétéra, M.; Duperier, C.; Tremblay-Franco, M.; Martin, J.F.; Jacob, D.; et al. Workflow4Metabolomics: A collaborative research infrastructure for computational metabolomics. Bioinformatics 2015, 31, 1493–1495. [Google Scholar] [CrossRef] [Green Version]
- Pang, Z.; Chong, J.; Zhou, G.; de Lima Morais, D.A.; Chang, L. MetaboAnalyst 5.0: Narrowing the gap between raw spectra and functional insights. Nucleic Acids Res. 2021, 49, W388-W396. [Google Scholar] [CrossRef]
- Ayala-Ortiz, C.; Graf-Grachet, N.; Freire-Zapata, V.; Fudyma, J.; Hildebrand, G.; AminiTabrizi, R.; Howard-Varona, C.; Corilo, Y.E.; Hess, N.; Duhaime, M.; et al. MetaboDirect: An Analytical Pipeline for the processing of FTICR-MS-based Metabolomics Data. bioRxiv 2022. [Google Scholar] [CrossRef]
- Mc Ardle, A.; Binek, A.; Moradian, A.; Chazarin Orgel, B.; Rivas, A.; Washington, K.E.; Phebus, C.; Manalo, D.-M.; Go, J.; Venkatraman, V.; et al. Standardized Workflow for Precise Mid- and High-Throughput Proteomics of Blood Biofluids. Clin. Chem. 2022, 68, 450–460. [Google Scholar] [CrossRef]
- Zhu, Y.; Wancewicz, B.; Schaid, M.; Tiambeng, T.N.; Wenger, K.; Jin, Y.; Heyman, H.; Thompson, C.J.; Barsch, A.; Cox, E.D.; et al. Ultrahigh-Resolution Mass Spectrometry-Based Platform for Plasma Metabolomics Applied to Type 2 Diabetes Research. J. Proteome Res. 2021, 20, 463–473. [Google Scholar] [CrossRef]
- Thompson, C.J.; Witt, M.; Forcisi, S.; Moritz, F.; Kessler, N.; Laukien, F.H.; Schmitt-Kopplin, P. An Enhanced Isotopic Fine Structure Method for Exact Mass Analysis in Discovery Metabolomics: FIA-CASI-FTMS. J. Am. Soc. Mass Spectrom. 2020, 31, 2025–2034. [Google Scholar] [CrossRef]
- Malinowska, J.M.; Palosaari, T.; Sund, J.; Carpi, D.; Bouhifd, M.; Weber, R.J.M.; Whelan, M.; Viant, M.R. Integrating in vitro metabolomics with a 96-well high-throughput screening platform. Metabolomics 2022, 18, 11. [Google Scholar] [CrossRef]
- Wang, Y.; Lih, T.-S.M.; Chen, L.; Xu, Y.; Kuczler, M.D.; Cao, L.; Pienta, K.J.; Amend, S.R.; Zhang, H. Optimized data-independent acquisition approach for proteomic analysis at single-cell level. Clin. Proteom. 2022, 19, 24. [Google Scholar] [CrossRef]
- Bayne, E.F.; Simmons, A.D.; Roberts, D.S.; Zhu, Y.; Aballo, T.J.; Wancewicz, B.; Palecek, S.P.; Ge, Y. Multiomics Method Enabled by Sequential Metabolomics and Proteomics for Human Pluripotent Stem-Cell-Derived Cardiomyocytes. J. Proteome Res. 2021, 20, 4646–4654. [Google Scholar] [CrossRef]
- Zhang, H.; Gu, H.; Yan, F.; Wang, N.; Wei, Y.; Xu, J.; Chen, H. Direct Characterization of Bulk Samples by Internal Extractive Electrospray Ionization Mass Spectrometry. Sci. Rep. 2013, 3, 2495. [Google Scholar] [CrossRef] [Green Version]
- Zheng, R.; Su, R.; Xing, F.; Li, Q.; Liu, B.; Wang, D.; Du, Y.; Huang, K.; Yan, F.; Wang, J.; et al. Metabolic-Dysregulation-Based iEESI-MS Reveals Potential Biomarkers Associated with Early-Stage and Progressive Colorectal Cancer. Anal. Chem. 2022, 94, 11821–11830. [Google Scholar] [CrossRef]
- Qin, M.; Qian, Y.; Huang, L.; Zhong, C.; Li, M.; Yu, J.; Chen, H. Extractive electrospray ionization mass spectrometry for analytical evaluation and synthetic preparation of pharmaceutical chemicals. Front. Pharmacol. 2023, 14, 1110900. [Google Scholar] [CrossRef]
- Hebert, A.S.; Prasad, S.; Belford, M.W.; Bailey, D.J.; McAlister, G.C.; Abbatiello, S.E.; Huguet, R.; Wouters, E.R.; Dunyach, J.J.; Brademan, D.R.; et al. Comprehensive Single-Shot Proteomics with FAIMS on a Hybrid Orbitrap Mass Spectrometer. Anal. Chem. 2018, 90, 9529–9537. [Google Scholar] [CrossRef]
- Patel, M.; Kumar, R.; Kishor, K.; Mlsna, T.; Pittman, C.U., Jr.; Mohan, D. Pharmaceuticals of Emerging Concern in Aquatic Systems: Chemistry, Occurrence, Effects, and Removal Methods. Chem. Rev. 2019, 119, 3510–3673. [Google Scholar] [CrossRef] [Green Version]
- Pourchet, M.; Debrauwer, L.; Klanova, J.; Price, E.J.; Covaci, A.; Caballero-Casero, N.; Oberacher, H.; Lamoree, M.; Damont, A.; Fenaille, F.; et al. Suspect and non-targeted screening of chemicals of emerging concern for human biomonitoring, environmental health studies and support to risk assessment: From promises to challenges and harmonisation issues. Environ. Int. 2020, 139, 105545. [Google Scholar] [CrossRef]
- He, C.; He, D.; Chen, C.; Shi, Q. Application of Fourier transform ion cyclotron resonance mass spectrometry in molecular characterization of dissolved organic matter. Sci. China Earth Sci. 2022, 65, 1–18. [Google Scholar] [CrossRef]
- D’Andrilli, J.; Foreman, C.M.; Marshall, A.G.; McKnight, D.M. Characterization of IHSS Pony Lake fulvic acid dissolved organic matter by electrospray ionization Fourier transform ion cyclotron resonance mass spectrometry and fluorescence spectroscopy. Org. Geochem. 2013, 65, 19–28. [Google Scholar] [CrossRef] [Green Version]
- Faixo, S.; Gehin, N.; Balayssac, S.; Gilard, V.; Mazeghrane, S.; Haddad, M.; Gaval, G.; Paul, E.; Garrigues, J.-C. Current trends and advances in analytical techniques for the characterization and quantification of biologically recalcitrant organic species in sludge and wastewater: A review. Anal. Chim. Acta 2021, 1152, 338284. [Google Scholar] [CrossRef]
- Hawkes, J.A.; Dittmar, T.; Patriarca, C.; Tranvik, L.; Bergquist, J. Evaluation of the Orbitrap Mass Spectrometer for the Molecular Fingerprinting Analysis of Natural Dissolved Organic Matter. Anal. Chem. 2016, 88, 7698–7704. [Google Scholar] [CrossRef]
- Liu, K.H.; Lee, C.M.; Singer, G.; Bais, P.; Castellanos, F.; Woodworth, M.H.; Ziegler, T.R.; Kraft, C.S.; Miller, G.W.; Li, S.; et al. Large scale enzyme based xenobiotic identification for exposomics. Nat. Commun. 2021, 12, 5418. [Google Scholar] [CrossRef]
- Ortúzar, M.; Esterhuizen, M.; Olicón-Hernández, D.R.; González-López, J.; Aranda, E. Pharmaceutical Pollution in Aquatic Environments: A Concise Review of Environmental Impacts and Bioremediation Systems. Front. Microbiol. 2022, 13, 869332. [Google Scholar] [CrossRef]
- Goessens, T.; Huysman, S.; De Troyer, N.; Deknock, A.; Goethals, P.; Lens, L.; Vanhaecke, L.; Croubels, S. Multi-class analysis of 46 antimicrobial drug residues in pond water using UHPLC-Orbitrap-HRMS and application to freshwater ponds in Flanders, Belgium. Talanta 2020, 220, 121326. [Google Scholar] [CrossRef]
- Gros, M.; Catalán, N.; Mas-Pla, J.; Čelić, M.; Petrović, M.; Farré, M.J. Groundwater antibiotic pollution and its relationship with dissolved organic matter: Identification and environmental implications. Environ. Pollut. 2021, 289, 117927. [Google Scholar] [CrossRef]
- Duarte, B.; Gameiro, C.; Matos, A.R.; Figueiredo, A.; Silva, M.S.; Cordeiro, C.; Caçador, I.; Reis-Santos, P.; Fonseca, V.; Cabrita, M.T. First screening of biocides, persistent organic pollutants, pharmaceutical and personal care products in Antarctic phytoplankton from Deception Island by FT-ICR-MS. Chemosphere 2021, 274, 129860. [Google Scholar] [CrossRef]
- Gadipelly, C.; Pérez-González, A.; Yadav, G.D.; Ortiz, I.; Ibáñez, R.; Rathod, V.K.; Marathe, K.V. Pharmaceutical Industry Wastewater: Review of the Technologies for Water Treatment and Reuse. Ind. Eng. Chem. Res. 2014, 53, 11571–11592. [Google Scholar] [CrossRef]
- Papagiannaki, D.; Belay, M.H.; Gonçalves, N.P.F.; Robotti, E.; Bianco-Prevot, A.; Binetti, R.; Calza, P. From monitoring to treatment, how to improve water quality: The pharmaceuticals case. Chem. Eng. J. Adv. 2022, 10, 100245. [Google Scholar] [CrossRef]
- Nguyen, P.Y.; Carvalho, G.; Reis, M.A.M.; Oehmen, A. A review of the biotransformations of priority pharmaceuticals in biological wastewater treatment processes. Water Res. 2021, 188, 116446. [Google Scholar] [CrossRef]
- Brunner, A.M.; Bertelkamp, C.; Dingemans, M.M.L.; Kolkman, A.; Wols, B.; Harmsen, D.; Siegers, W.; Martijn, B.J.; Oorthuizen, W.A.; ter Laak, T.L. Integration of target analyses, non-target screening and effect-based monitoring to assess OMP related water quality changes in drinking water treatment. Sci. Total Environ. 2020, 705, 135779. [Google Scholar] [CrossRef]
- Hellauer, K.; Uhl, J.; Lucio, M.; Schmitt-Kopplin, P.; Wibberg, D.; Hübner, U.; Drewes, J.E. Microbiome-Triggered Transformations of Trace Organic Chemicals in the Presence of Effluent Organic Matter in Managed Aquifer Recharge (MAR) Systems. Environ. Sci. Technol. 2018, 52, 14342–14351. [Google Scholar] [CrossRef] [Green Version]
- Shi, Y.; Li, S.; Wang, L.; Yu, Q.; Shen, G.; Li, J.; Xu, K.; Ren, H.; Geng, J. Compositional characteristics of dissolved organic matter in pharmaceutical wastewater effluent during ozonation. Sci. Total Environ. 2021, 778, 146278. [Google Scholar] [CrossRef]
- Hu, H.; Jiang, C.; Ma, H.; Ding, L.; Geng, J.; Xu, K.; Huang, H.; Ren, H. Removal characteristics of DON in pharmaceutical wastewater and its influence on the N-nitrosodimethylamine formation potential and acute toxicity of DOM. Water Res. 2017, 109, 114–121. [Google Scholar] [CrossRef] [Green Version]
- Liao, K.; Ma, S.; Liu, C.; Hu, H.; Wang, J.; Wu, B.; Ren, H. High concentrations of dissolved organic nitrogen and N-nitrosodimethylamine precursors in effluent from biological nutrient removal process with low dissolved oxygen conditions. Water Res. 2022, 216, 118336. [Google Scholar] [CrossRef]
- Khalaf, S.; Shoqeir, J.H.; Lelario, F.; Bufo, S.A.; Karaman, R.; Scrano, L. TiO2 and Active Coated Glass Photodegradation of Ibuprofen. Catalysts 2020, 10, 560. [Google Scholar] [CrossRef]
- Gonçalves, N.P.F.; Varga, Z.; Nicol, E.; Calza, P.; Bouchonnet, S. Comparison of Advanced Oxidation Processes for the Degradation of Maprotiline in Water—Kinetics, Degradation Products and Potential Ecotoxicity. Catalysts 2021, 11, 240. [Google Scholar] [CrossRef]
- Minh, T.D.; Ncibi, M.C.; Srivastava, V.; Thangaraj, S.K.; Jänis, J.; Sillanpää, M. Gingerbread ingredient-derived carbons-assembled CNT foam for the efficient peroxymonosulfate-mediated degradation of emerging pharmaceutical contaminants. Appl. Catal. B Environ. 2019, 244, 367–384. [Google Scholar] [CrossRef]
- Buchicchio, A.; Bianco, G.; Sofo, A.; Masi, S.; Caniani, D. Biodegradation of carbamazepine and clarithromycin by Trichoderma harzianum and Pleurotus ostreatus investigated by liquid chromatography-high-resolution tandem mass spectrometry (FTICR MS-IRMPD). Sci. Total Environ. 2016, 557–558, 733–739. [Google Scholar] [CrossRef]
- Petras, D.; Koester, I.; Da Silva, R.; Stephens, B.M.; Haas, A.F.; Nelson, C.E.; Kelly, L.W.; Aluwihare, L.I.; Dorrestein, P.C. High-Resolution Liquid Chromatography Tandem Mass Spectrometry Enables Large Scale Molecular Characterization of Dissolved Organic Matter. Front. Mar. Sci. 2017, 4, 405. [Google Scholar] [CrossRef] [Green Version]
Orbitrap | FTICR | |
---|---|---|
Characteristics | Expensive | Very expensive |
Compact instrument | Heavy and massive instrument | |
High electric field in the analyzer | High magnetic field requiring cryogenic maintenance | |
User experience | User-friendly | High expertise required |
Numerous parameters automatically set | Fine-tuning of parameters required—high influence on resolution | |
Mass accuracy (ppm) | 0.5–5 | 0.05–1 |
Resolution (FWHM) | 120,000–1,000,000 | 200,000–10,000,000 |
Coupling to LC/GC | Easy | Difficult |
Instrument sold with setup | Requires parameters optimization | |
Distinctive features | Automatic gain control (AGC) and normalized level (NL) | Electrospray Ionization (ESI)/ Matrix-Assisted Laser Desorption Ionization (MALDI) dual source |
eFT | Absorption mode | |
Higher-energy collisional dissociation (HCD) | 2D-FTICR | |
Electron transfer-HCD (ETHcD) | Electron detachment dissociation (EDD) | |
Limitations | Space-charge effects, especially for compact Orbitrap | High magnetic field magnets difficult to produce |
Requires high voltages (4–5 kV) -> technical difficulty to avoid power supply variation | On current commercial FTICR: no automatic adjustment of the number of ions entering the cell (i.e., AGC) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Deschamps, E.; Calabrese, V.; Schmitz, I.; Hubert-Roux, M.; Castagnos, D.; Afonso, C. Advances in Ultra-High-Resolution Mass Spectrometry for Pharmaceutical Analysis. Molecules 2023, 28, 2061. https://doi.org/10.3390/molecules28052061
Deschamps E, Calabrese V, Schmitz I, Hubert-Roux M, Castagnos D, Afonso C. Advances in Ultra-High-Resolution Mass Spectrometry for Pharmaceutical Analysis. Molecules. 2023; 28(5):2061. https://doi.org/10.3390/molecules28052061
Chicago/Turabian StyleDeschamps, Estelle, Valentina Calabrese, Isabelle Schmitz, Marie Hubert-Roux, Denis Castagnos, and Carlos Afonso. 2023. "Advances in Ultra-High-Resolution Mass Spectrometry for Pharmaceutical Analysis" Molecules 28, no. 5: 2061. https://doi.org/10.3390/molecules28052061
APA StyleDeschamps, E., Calabrese, V., Schmitz, I., Hubert-Roux, M., Castagnos, D., & Afonso, C. (2023). Advances in Ultra-High-Resolution Mass Spectrometry for Pharmaceutical Analysis. Molecules, 28(5), 2061. https://doi.org/10.3390/molecules28052061