Novel Arylsulfonylhydrazones as Breast Anticancer Agents Discovered by Quantitative Structure-Activity Relationships
Abstract
:1. Introduction
2. Results
2.1. Quantitative Structure–Activity Relationship (QSAR) Models for Arylsulfonylhydrazones as Breast Anticancer Agents
2.2. Design of Novel Arylsulfonylhydrazones Based on QSAR Models
- For Ar1: Single aromatic rings
- For Ar2: Aromatic rings containing aaaC and Cl but no aaN.
2.3. In Silico Screening of the Designed Compounds for Drug Likeness
2.3.1. Physicochemical Properties
2.3.2. ADME Properties
2.3.3. Pharmacokinetic Parameters
2.4. Synthesis of the Novel Arylsulfonyl Hydrazones
2.5. Anticancer Activity of the Novel Arylsulfonyl Hydrazones
3. Discussion
4. Materials and Methods
4.1. Materials and Reagents
4.2. QSAR Protocol
4.3. In Silico Screening for Drug Likeness
4.4. Synthesis
4.4.1. General Information
4.4.2. General Procedure for the Synthesis of the Compounds 1a–i
4.5. In Vitro Anticancer Activity
4.5.1. MTT Method
4.5.2. Statistical Methods
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Sample Availability
References
- Bray, F.; Ferlay, J.; Soerjomataram, I.; Siegel, R.L.; Torre, L.A.; Jemal, A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA A Cancer J. Clin. 2018, 68, 394–424. [Google Scholar] [CrossRef] [Green Version]
- Giaquinto, A.N.; Sung, H.; Miller, K.D.; Kramer, J.L.; Newman, L.A.; Minihan, A.; Jemal, A.; Siegel, R.L. Breast Cancer Statistics, 2022. CA A Cancer J. Clin. 2022, 72, 524–541. [Google Scholar] [CrossRef]
- Barzaman, K.; Karami, J.; Zarei, Z.; Hosseinzadeh, A.; Kazemi, M.H.; Moradi-Kalbolandi, S.; Safari, E.; Farahmand, L. Breast cancer: Biology, biomarkers, and treatments. Int. Immunopharmacol. 2020, 84, 106535. [Google Scholar] [CrossRef]
- Clemons, M.; Danson, S.; Howell, A. Tamoxifen (Nolvadex): A review. Cancer Treat. Rev. 2002, 28, 165–180. [Google Scholar] [CrossRef]
- Riemsma, R.; Forbes, C.A.; Kessels, A.; Lykopoulos, K.; Amonkar, M.M.; Rea, D.W.; Kleijnen, J. Systematic review of aromatase inhibitors in the first-line treatment for hormone sensitive advanced or metastatic breast cancer. Breast Cancer Res. Treat. 2010, 123, 9–24. [Google Scholar] [CrossRef]
- Husinka, L.; Koerner, P.H.; Miller, R.T.; Trombatt, W. Review of cyclin-dependent kinase 4/6 inhibitors in the treatment of advanced or metastatic breast cancer. J. Drug Assess. 2020, 10, 27–34. [Google Scholar] [CrossRef]
- Schlam, I.; Swain, S.M. HER2-positive breast cancer and tyrosine kinase inhibitors: The time is now. Breast Cancer 2021, 7, 56. [Google Scholar] [CrossRef]
- Hackshaw, A. Luteinizing hormone-releasing hormone (LHRH) agonists in the treatment of breast cancer. Expert Opin. Pharmacother. 2009, 10, 2633–2639. [Google Scholar] [CrossRef]
- Masoud, V.; Pagès, G. Targeted therapies in breast cancer: New challenges to fight against resistance. World J. Clin. Oncol. 2017, 8, 120–134. [Google Scholar] [CrossRef] [Green Version]
- MacDonald, I.; Nixon, N.A.; Khan, O.F. Triple-Negative Breast Cancer: A Review of Current Curative Intent Therapies. Curr. Oncol. 2022, 29, 4768–4778. [Google Scholar] [CrossRef]
- Henriques, B.; Mendes, F.; Martins, D. Immunotherapy in breast cancer: When, how, and what challenges. Biomedicines 2021, 9, 1687. [Google Scholar] [CrossRef]
- Şenkardeş, S.; Han, M.İ.; Kulabaş, N.; Abbak, M.; Çevik, Ö.; Küçükgüzel, İ.; Küçükgüzel, Ş.G. Synthesis, molecular docking and evaluation of novel sulfonyl hydrazones as anticancer agents and COX-2 inhibitors. Mol. Divers. 2020, 24, 673–689. [Google Scholar] [CrossRef]
- Gaur, A.; Peerzada, M.N.; Khan, N.S.; Ali, I.; Azam, A. Synthesis and anticancer evaluation of novel indole based arylsulfonylhydrazides against human breast cancer cells. ACS Omega 2022, 7, 42036–42043. [Google Scholar] [CrossRef]
- Vilar, S.; Poater, A.; Bofill, R.; Solans, X. QSAR models for the prediction of cytotoxicity of a diverse set of chemicals. Toxicol. Vitr. 2010, 24, 1611–1620. [Google Scholar]
- Jain, S.; Kumar, R.; Lal, B. In silico prediction of anticancer activity of indole derivatives using molecular docking and molecular dynamics simulation. J. Comput. Aided Mol. Des. 2013, 27, 421–429. [Google Scholar]
- Tong, W.; Li, J.; Wang, X.; Zhang, Y. QSAR study on the anticancer activity of indole derivatives. J. Mol. Graph. Model 2015, 57, 107–115. [Google Scholar]
- Martínez, J.; García-Ruiz, C.; Gilarranz, M.A. QSAR modeling of anticancer activity of indole derivatives. J. Chem. Inf. Model 2012, 52, 1648–1658. [Google Scholar]
- Kier, L.B. A Shape Index from Molecular Graphs. Quant. Struct. Act. Relat. 1985, 4, 109–116. [Google Scholar] [CrossRef]
- Xie, Z.; Song, Y.; Xu, L.; Guo, Y.; Zhang, M.; Li, L.; Chen, K.; Liu, X. Rapid synthesis of N-tosylhydrazones under solvent-free conditions and their potential application against human triple-negative breast cancer. ChemistryOpen 2018, 7, 977–983. [Google Scholar] [CrossRef] [Green Version]
- Sidhu, J.S.; Singla, R.; Mayank, J.V. Indole derivatives as anticancer agents for breast cancer therapy: A review. Anticancer Agents Med. Chem. 2015, 16, 160–173. [Google Scholar] [CrossRef]
- Dhiman, A.; Sharma, R.; Singh, R.K. Target-based anticancer indole derivatives and insight into structure–activity relationship: A mechanistic review update (2018–2021). Acta Pharm. Sin. B 2022, 12, 3006–3027. [Google Scholar] [CrossRef]
- Congreve, M.; Carr, R.; Murray, C.; Jhoti, H. A rule of three for fragment-based lead discovery. Drug Discov. Today 2003, 8, 876–877. [Google Scholar] [CrossRef]
- Daina, A.; Zoete, V. A boiled-egg to predict gastrointestinal absorption and brain penetration of small molecules. ChemMedChem 2016, 11, 1117–1121. [Google Scholar] [CrossRef] [Green Version]
- Daina, A.; Michielin, O.; Zoete, V. SwissADME: A free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules. Sci. Rep. 2017, 7, 42717. [Google Scholar] [CrossRef] [Green Version]
- Martin, Y.C. A bioavailability score. J. Med. Chem. 2005, 48, 3164–3170. [Google Scholar] [CrossRef]
- Ghose, A.K.; Viswanadhan, V.N.; Wendoloski, J.J. A knowledge-based approach in designing combinatorial or medicinal chemistry libraries for drug discovery. 1. A qualitative and quantitative characterization of known drug databases. J. Comb. Chem. 1999, 1, 55–68. [Google Scholar] [CrossRef]
- Veber, D.F.; Johnson, S.R.; Cheng, H.Y.; Smith, B.R.; Ward, K.W.; Kopple, K.D. Molecular properties that influence the oral bioavailability of drug candidates. J. Med. Chem. 2002, 45, 2615–2623. [Google Scholar] [CrossRef]
- Egan, W.J.; Merz, K.M., Jr.; Baldwin, J.J. Prediction of drug absorption using multivariate statistics. J. Med. Chem. 2000, 43, 3867–3877. [Google Scholar] [CrossRef]
- Muegge, I.; Heald, S.L.; Brittelli, D. Simple selection criteria for drug-like chemical matter. J. Med. Chem. 2001, 44, 1841–1846. [Google Scholar] [CrossRef]
- Teague, S.J.; Davis, A.M.; Leeson, P.D.; Oprea, T. The design of leadlike combinatorial libraries. Angew. Chem. Int. Ed. Engl. 1999, 38, 3743–3748. [Google Scholar] [CrossRef]
- Zhivkova, Z. Quantitative structure-pharmacokinetics relationship for plasma protein binding of neutral drugs. Int. J. Pharm. Pharmac. Sci. 2018, 10, 88–93. [Google Scholar] [CrossRef]
- Zhivkova, Z. Quantitative structure-pharmacokinetics modeling of the unbound clearance for neutral drugs. Int. J. Curr. Pharmac. Res. 2018, 10, 56–59. [Google Scholar] [CrossRef]
- Zhivkova, Z. Quantitative structure-pharmacokinetics relationship for the steady state volume of distribution of basic and neutral drugs. World J. Pharm. Pharmac. Sci. 2018, 7, 94–105. [Google Scholar]
- Schmidt, S.; Gonzales, D.; Derendorf, H. Significance of protein binding in pharmacokinetics and pharmacodynamics. J. Pharm. Sci. 2010, 99, 1107–1122. [Google Scholar] [CrossRef]
- Wasan, K.M.; Brocks, D.R.; Lee, S.D.; Sachs-Barrable, K.; Thornton, S.J. Impact of lipoproteins on the biological activity and disposition of hydrophobic drugs: Implications for drug discovery. Nat. Rev. Drug. Discov. 2008, 7, 84–99. [Google Scholar] [CrossRef]
- Berellini, G.; Waters, N.J.; Lombardo, S. In silico prediction of total human plasma clearance. J. Chem. Inf. Model 2012, 52, 2069–2078. [Google Scholar] [CrossRef]
- Smith, D.A.; Allerton, C.; Kalgutkar, A.; Van de Waterbeemd, H.; Walker, D.K. Renal clearance. In Pharmacokinetics and Metabolism in Drug Design, 3rd ed.; Wiley-VCH: Weinheim, Germany, 2012; pp. 103–110. [Google Scholar]
- Angelova, V.T.; Pencheva, T.; Vassilev, N.; Yovkova, E.K.; Mihaylova, R.; Petrov, B.; Valcheva, V. Development of New Antimycobacterial Sulfonyl Hydrazones and 4-Methyl-1, 2, 3-thiadiazole-Based Hydrazone Derivatives. Antibiotics 2022, 11, 562. [Google Scholar] [CrossRef]
- Horwitz, K.B.; Costlow, M.E.; McGuire, W.L. MCF-7; a human breast cancer cell line with oestrogen, androgen, progesterone, and glucocorticoid receptors. Steroids 1975, 26, 785–795. [Google Scholar] [CrossRef]
- Chavez, K.J.; Garimella, S.V.; Lipkowitz, S. Triple negative breast cancer cell lines: One tool in the search for better treatment of triple negative breast cancer. Breast Dis. 2010, 32, 35–48. [Google Scholar] [CrossRef] [Green Version]
- Klebe, R.J.; Ruddle, F.H. Neuroblastoma: Cell culture analysis of a differentiating stem cell system. J. Cell Biol. 1969, 43, 69A. [Google Scholar]
- Olmsted, J.B.; Carlson, K.; Klebe, R.; Ruddle, F.; Rosenbaum, J. Isolation of microtubule protein from cultured mouse neuroblastoma cells. Proc. Natl. Acad. Sci. USA 1970, 65, 129–136. [Google Scholar] [CrossRef] [Green Version]
- Peña-Morán, O.A.; Villarreal, M.L.; Álvarez-Berber, L.; Meneses-Acosta, A.; Rodríguez-López, V. Cytotoxicity, post-treatment recovery, and selectivity analysis of naturally occurring podophyllotoxins from Bursera fagaroides var. fagaroides on breast cancer cell lines. Molecules 2016, 21, 1013. [Google Scholar]
- Obach, R.S.; Lombardo, F.; Waters, N.J. Trend analysis of a database of intravenous pharmacokinetic parameters in humans for 670 drug compounds. Drug Metab. Dispos. 2008, 36, 1385–1405. [Google Scholar] [CrossRef] [Green Version]
- Mosmann, T. Rapid colorimetric assay for cellular growth and survival: Application to proliferation and cytotoxicity assays. J. Immunol. Methods 1983, 65, 55–63. [Google Scholar] [CrossRef]
Original ID | Ar1 | Ar2 | LE MCF-7 | LE MDA-MB-468 |
---|---|---|---|---|
3a | 4-methylphenyl | 2,2-difluoro-1,3-benzodioxol-5-yl | 0.174 | |
3b | 4-bromothiophen-2-yl | 0.203 | ||
3c | 4-phenylthiophen-2-yl | 0.189 | ||
3d | 4-fluoro-3-phenoxyphenyl | 0.121 | ||
3e | 2-chloro-3-(trifluoromethyl)phenyl | 0.148 | ||
3f | 4-fluoro-3-methoxyphenyl | 0.207 | ||
3g | 4-methoxy-3-nitrophenyl | 0.143 | ||
3h | 3-phenyl-1H-pyrazol-4-yl | 0.141 | ||
3i | 5-bromo-2-methoxyphenyl | 0.170 | ||
3j | 4-fluoro-2-(trifluoromethyl)phenyl | 0.148 | ||
3k | 2-chloro-3-methoxyphenyl | 0.197 | ||
3l | 2-chloro-6-methylphenyl | 0.180 | ||
3m | 6-bromopyridin-2-yl | 0.176 | ||
3n | 1-methyl-1H-pyrrol-2-yl | 0.207 | ||
3o | 2-(trifluoromethoxy)phenyl | 0.166 | ||
5a | 4-methoxyphenyl | 1-(4-morpholinylethyl)-1H-indol-3-yl | 0.136 | 0.141 |
5b | 4-methylphenyl | 0.140 | 0.146 | |
5c | phenyl | 0.143 | 0.149 | |
5d | 4-fluorophenyl | 0.150 | 0.161 | |
5e | 4-nitrophenyl | 0.128 | 0.138 | |
5f | 4-chlorophenyl | 0.163 | 0.170 | |
5g | 4-trimethylphenyl | 0.126 | 0.137 | |
5h | 2-naphthyl | 0.116 | 0.110 | |
5i | 5-quinolyl | 0.105 | 0.115 | |
5j | methylphenyl | 0.140 | 0.143 | |
5k | diphenyl | 0.136 | 0.128 | |
Cisplatin 1 | 0.931 | |||
Doxorubicin 2 | 0.185 | 0.182 |
ID | Ar1 | Ar2 | LE MCF-7 | LE MDA-MB-231 | ||||
---|---|---|---|---|---|---|---|---|
Pred | Exp | Error | Pred | Exp | Error | |||
1a | phenyl | 5-methoxy-1H-indole-3-yl | 0.216 | 0.271 | 0.055 | 0.170 | 0.240 | 0.070 |
1b | 4-methylphenyl | 5-methoxy-1H-indole-3-yl | 0.205 | 0.254 | 0.049 | 0.167 | 0.211 | 0.044 |
1c | phenyl | 1-acetyl-1H-indole-3-yl | 0.208 | 0.252 | 0.044 | 0.167 | 0.197 | 0.030 |
1d | 4-methylphenyl | 1-acetyl-1H-indole-3-yl | 0.197 | 0.230 | 0.033 | 0.163 | 0.167 | 0.004 |
1e | phenyl | 5-chloro-1H-indole-3-yl | 0.223 | 0.286 | 0.063 | 0.194 | 0.275 | 0.081 |
1f | phenyl | 3,4-dimethoxyphenyl | 0.178 | 0.237 | 0.059 | 0.174 | 0.162 | 0.012 |
1g | 4-methylphenyl | 3,4-dimethoxyphenyl | 0.166 | 0.185 | 0.019 | 0.170 | 0.143 | −0.027 |
1h | phenyl | 4-chlorophenyl | 0.208 | 0.200 | −0.008 | 0.205 | 0.221 | 0.016 |
1i | phenyl | 1-methyl-1H-indole-3-yl | 0.205 | 0.158 | −0.047 | 0.167 | 0.178 | 0.011 |
Cisplatin | – | 0.931 | – | – | 0.840 | – |
ID | Mw | pKa | fA | logP | logD7.4 | PSA | FRB | HBD | HBA | R5 |
---|---|---|---|---|---|---|---|---|---|---|
1a | 329.4 | 9.09 | 0.02 | 2.73 | 2.73 | 91.93 | 4 | 2 | 6 | 0 |
1b | 343.4 | 9.08 | 0.02 | 1.93 | 1.92 | 88.50 | 4 | 1 | 6 | 0 |
1c | 341.4 | 8.59 | 0.06 | 2.85 | 2.83 | 88.91 | 3 | 1 | 6 | 0 |
1d | 355.4 | 8.83 | 0.04 | 3.31 | 3.30 | 88.91 | 3 | 1 | 6 | 0 |
1e | 333.8 | 8.99 | 0.03 | 3.60 | 3.59 | 82.70 | 3 | 2 | 5 | 0 |
1f | 320.4 | 8.84 | 0.04 | 3.01 | 2.99 | 85.37 | 5 | 1 | 6 | 0 |
1g | 334.4 | 9.08 | 0.02 | 3.47 | 3.46 | 85.37 | 5 | 1 | 6 | 0 |
1h | 294.8 | 8.92 | 0.03 | 3.65 | 3.63 | 66.91 | 3 | 1 | 4 | 0 |
1i | 343.4 | 8.73 | 0.04 | 3.13 | 3.11 | 81.07 | 4 | 1 | 6 | 0 |
ID | Water Soluble | GI abs | Oral BA | BA Score | BBB Perm | CYP inh | P-gp Substr | Drug Likeness | Lead Likeness | Synth Access |
---|---|---|---|---|---|---|---|---|---|---|
1a | moderate | high | INSATU | 0.55 | no | 3/5 | no | yes | yes | 2.61 |
1b | moderate | high | INSATU | 0.55 | no | 4/5 | no | yes | yes | 2.72 |
1c | soluble | high | INSATU | 0.55 | no | 2/5 | no | yes | yes | 2.69 |
1d | moderate | high | INSATU | 0.55 | no | 2/5 | no | yes | yes | 2.80 |
1e | moderate | high | INSATU | 0.55 | no | 4/5 | no | yes | yes | 2.57 |
1f | soluble | high | INSATU | 0.55 | no | 3/5 | no | yes | yes | 2.71 |
1g | moderate | high | INSATU | 0.55 | no | 3/5 | no | yes | yes | 2.86 |
1h | moderate | high | INSATU | 0.55 | yes | 3/5 | no | yes | yes | 2.56 |
1i | soluble | high | INSATU | 0.55 | no | 3/5 | no | yes | yes | 2.70 |
ID | fu | CL L/h/kg | VDss L/kg | t1/2 h |
---|---|---|---|---|
1a | 0.015 | 0.193 | 0.587 | 2.10 |
1b | 0.040 | 0.071 | 0.632 | 6.20 |
1c | 0.018 | 0.363 | 0.613 | 1.17 |
1d | 0.019 | 0.647 | 0.879 | 0.94 |
1e | 0.010 | 0.074 | 0.770 | 7.19 |
1f | 0.074 | 0.060 | 0.852 | 9.89 |
1g | 0.040 | 0.054 | 0.953 | 12.16 |
1h | 0.034 | 0.017 | 0.868 | 35.12 |
1i | 0.012 | 0.141 | 0.623 | 3.07 |
ID | MCF-7 | MDA-MB-231 | Neuro-2a | |||||
---|---|---|---|---|---|---|---|---|
IC50 μM | LE | SI | IC50 μM | LE | SI | IC50 μM | LE | |
1a | 0.6 ± 0.2 | 0.271 | 8.667 | 3.1 ± 0.7 | 0.240 | 1.677 | 5.2 ± 0.9 | 0.230 |
1b | 0.8 ± 0.3 | 0.254 | 5.000 | 8.5 ± 2.1 | 0.211 | 0.471 | 4.0 ± 0.4 | 0.225 |
1c | 0.9 ± 0.4 | 0.252 | 40.222 | 19.2 ± 3.4 | 0.197 | 1.885 | 36.2 ± 4.3 | 0.185 |
1d | 1.8 ± 0.6 | 0.230 | 46.000 | 65.1 ± 6.1 | 0.167 | 1.272 | 82.8 ± 8.1 | 0.163 |
1e | 0.5 ± 0.1 | 0.286 | 13.000 | 0.9 ± 0.2 | 0.275 | 7.222 | 6.5 ± 1.1 | 0.236 |
1f | 5.97 ± 2.1 | 0.237 | 18.291 | 266.4 ± 19.7 | 0.162 | 0.410 | 109.2 ± 5.1 | 0.180 |
1g | 56.1 ± 8.4 | 0.185 | 2.415 | >500 | 0.143 | 0.270 | 135.5 ± 12.6 | 0.168 |
1h | 157.2 ± 11.2 | 0.200 | 0.747 | 63.1 ± 6.9 | 0.221 | 1.861 | 117.4 ± 11.5 | 0.207 |
1i | 164.9 ± 8.6 | 0.158 | 0.818 | 54.8 ± 7.4 | 0.178 | 2.462 | 134.9 ± 10.9 | 0.161 |
Cisplatin | 50.3 ± 6.5 | 63.4 ± 7.2 | - |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Angelova, V.T.; Tatarova, T.; Mihaylova, R.; Vassilev, N.; Petrov, B.; Zhivkova, Z.; Doytchinova, I. Novel Arylsulfonylhydrazones as Breast Anticancer Agents Discovered by Quantitative Structure-Activity Relationships. Molecules 2023, 28, 2058. https://doi.org/10.3390/molecules28052058
Angelova VT, Tatarova T, Mihaylova R, Vassilev N, Petrov B, Zhivkova Z, Doytchinova I. Novel Arylsulfonylhydrazones as Breast Anticancer Agents Discovered by Quantitative Structure-Activity Relationships. Molecules. 2023; 28(5):2058. https://doi.org/10.3390/molecules28052058
Chicago/Turabian StyleAngelova, Violina T., Teodora Tatarova, Rositsa Mihaylova, Nikolay Vassilev, Boris Petrov, Zvetanka Zhivkova, and Irini Doytchinova. 2023. "Novel Arylsulfonylhydrazones as Breast Anticancer Agents Discovered by Quantitative Structure-Activity Relationships" Molecules 28, no. 5: 2058. https://doi.org/10.3390/molecules28052058
APA StyleAngelova, V. T., Tatarova, T., Mihaylova, R., Vassilev, N., Petrov, B., Zhivkova, Z., & Doytchinova, I. (2023). Novel Arylsulfonylhydrazones as Breast Anticancer Agents Discovered by Quantitative Structure-Activity Relationships. Molecules, 28(5), 2058. https://doi.org/10.3390/molecules28052058