Structurally-New Hexadecanuclear Ni-Containing Silicotungstate with Catalytic Hydrogen Generation Activity
Abstract
:1. Introduction
2. Results and Discussion
2.1. Structural Description
2.2. Characterization of Ni16P4(SiW9)3
2.3. HOMO and LUMO Investigation
2.4. Photocatalytic Hydrogen Production and Evaluation of Catalyst Stability
2.5. Photocatalytic Mechanistic Studies
3. Experimental Section
3.1. Methods and Materials
3.2. Synthesis of Na19[Ni16(H2O)15(OH)9(PO4)4(A-α-SiW9O34)3]∙57H2O (Na-Ni16P4(SiW9)3)
3.3. Single-Crystal X-Ray Crystallography
3.4. Photocatalytic Hydrogen Evolution Tests
3.5. Electrochemical Measurements
3.6. Steady-State and Time-Resolved Fluorescence Decay Measurements
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Sample Availability
References
- Huang, P.; Qin, C.; Su, Z.-M.; Xing, Y.; Wang, X.-L.; Shao, K.-Z.; Lan, Y.-Q.; Wang, E.-B. Self-Assembly and Photocatalytic Properties of Polyoxoniobates: {Nb24O72}, {Nb32O96}, and {K12Nb96O288} Clusters. J. Am. Chem. Soc. 2012, 134, 14004–14010. [Google Scholar] [CrossRef] [PubMed]
- Lydon, C.; Sabi, M.M.; Symes, M.D.; Long, D.-L.; Murrie, M.; Yoshii, S.; Nojiri, H.; Cronin, L. Directed assembly of nanoscale Co(ii)-substituted {Co9[P2W15]3} and {Co14[P2W15]4} polyoxometalates. Chem. Commun. 2012, 48, 9819–9821. [Google Scholar] [CrossRef] [PubMed]
- An, H.-Y.; Wang, E.-B.; Xiao, D.-R.; Li, Y.-G.; Su, Z.-M.; Xu, L. Chiral 3D Architectures with Helical Channels Constructed from Polyoxometalate Clusters and Copper–Amino Acid Complexes. Angew. Chem. Int. Ed. 2006, 45, 904–908. [Google Scholar] [CrossRef] [PubMed]
- Long, D.-L.; Tsunashima, R.; Cronin, L. Polyoxometalates: Building Blocks for Functional Nanoscale Systems. Angew. Chem. Int. Ed. 2010, 49, 1736–1758. [Google Scholar] [CrossRef]
- Oms, O.; Dolbecq, A.; Mialane, P. Diversity in structures and properties of 3d-incorporating polyoxotungstates. Chem. Soc. Rev. 2012, 41, 7497–7536. [Google Scholar] [CrossRef]
- Zou, C.; Zhang, Z.; Xu, X.; Gong, Q.; Li, J.; Wu, C.-D. A Multifunctional Organic–Inorganic Hybrid Structure Based on MnIII–Porphyrin and Polyoxometalate as a Highly Effective Dye Scavenger and Heterogenous Catalyst. J. Am. Chem. Soc. 2012, 134, 87–90. [Google Scholar] [CrossRef]
- Lv, H.; Geletii, Y.V.; Zhao, C.; Vickers, J.W.; Zhu, G.; Luo, Z.; Song, J.; Lian, T.; Musaev, D.G.; Hill, C.L. Polyoxometalate water oxidation catalysts and the production of green fuel. Chem. Soc. Rev. 2012, 41, 7572–7589. [Google Scholar] [CrossRef]
- Lv, H.; Song, J.; Geletii, Y.V.; Vickers, J.W.; Sumliner, J.M.; Musaev, D.G.; Kögerler, P.; Zhuk, P.F.; Bacsa, J.; Zhu, G.; et al. An Exceptionally Fast Homogeneous Carbon-Free Cobalt-Based Water Oxidation Catalyst. J. Am. Chem. Soc. 2014, 136, 9268–9271. [Google Scholar] [CrossRef]
- Wang, S.-S.; Kong, X.-Y.; Wu, W.; Wu, X.-Y.; Cai, S.; Lu, C.-Z. Synergic coordination of multicomponents for the formation of a {Ni30} cluster substituted polyoxometalate and its in-situ assembly. Inorg. Chem. Front. 2022, 9, 4350–4358. [Google Scholar] [CrossRef]
- Chen, Y.; Guo, Z.-W.; Chen, Y.-P.; Zhuang, Z.-Y.; Wang, G.-Q.; Li, X.-X.; Zheng, S.-T.; Yang, G.-Y. Two novel nickel cluster substituted polyoxometalates: Syntheses, structures and their photocatalytic activities, magnetic behaviors, and proton conduction properties. Inorg. Chem. Front. 2021, 8, 1303–1311. [Google Scholar] [CrossRef]
- Liu, J.-C.; Wang, J.-F.; Han, Q.; Shangguan, P.; Liu, L.-L.; Chen, L.-J.; Zhao, J.-W.; Streb, C.; Song, Y.-F. Multicomponent Self-Assembly of a Giant Heterometallic Polyoxotungstate Supercluster with Antitumor Activity. Angew. Chem. Int. Ed. 2021, 60, 11153–11157. [Google Scholar] [CrossRef] [PubMed]
- Zhao, M.; Zhu, X.-Y.; Li, Y.-Z.; Chang, J.-N.; Li, M.-X.; Ma, L.-H.; Guo, X.-Y. A Lindqvist-type [W6O19]2− organic–inorganic compound: Synthesis, characterization, antibacterial activity and preliminary studies on the mechanism of action. Tungsten 2022, 4, 121–129. [Google Scholar] [CrossRef]
- Bijelic, A.; Aureliano, M.; Rompel, A. Polyoxometalates as Potential Next-Generation Metallodrugs in the Combat Against Cancer. Angew. Chem. Int. Ed. 2019, 58, 2980–2999. [Google Scholar] [CrossRef] [Green Version]
- Rhule, J.T.; Hill, C.L.; Judd, D.A.; Schinazi, R.F. Polyoxometalates in medicine. Chem. Rev. 1998, 98, 327–358. [Google Scholar] [CrossRef]
- Cardona-Serra, S.; Clemente-Juan, J.M.; Coronado, E.; Gaita-Ariño, A.; Suaud, N.; Svoboda, O.; Bastardis, R.; Guihéry, N.; Palacios, J.J. Electrically Switchable Magnetic Molecules: Inducing a Magnetic Coupling by Means of an External Electric Field in a Mixed-Valence Polyoxovanadate Cluster. Chem. Eur. J. 2015, 21, 763–769. [Google Scholar] [CrossRef]
- Clemente-Juan, J.M.; Coronado, E.; Gaita-Ariño, A. Magnetic polyoxometalates: From molecular magnetism to molecular spintronics and quantum computing. Chem. Soc. Rev. 2012, 41, 7464–7478. [Google Scholar] [CrossRef]
- Yan-Qing Jiao, C.Q. Xin-Long Wang, Chun-Gang Wang, Chun-Yi Sun, Hai-Ning Wang, Kui-Zhan Shao, and Zhong-Min Su, Three Cobalt(II)-Linked {P8W48} Network Assemblies: Syntheses, Structures, and Magnetic and Photocatalysis Properties. Chem. Asian. J. 2014, 9, 470–478. [Google Scholar] [CrossRef]
- Ji, Y.; Huang, L.; Hu, J.; Streb, C.; Song, Y.-F. Polyoxometalate-functionalized nanocarbon materials for energy conversion, energy storage and sensor systems. Energ. Environ. Sci. 2015, 8, 776–789. [Google Scholar] [CrossRef] [Green Version]
- Li, Q.; Zhang, L.; Dai, J.; Tang, H.; Li, Q.; Xue, H.; Pang, H. Polyoxometalate-based materials for advanced electrochemical energy conversion and storage. Chem. Eng. J. 2018, 351, 441–461. [Google Scholar] [CrossRef]
- Chen, L.; Chen, W.-L.; Wang, X.-L.; Li, Y.-G.; Su, Z.-M.; Wang, E.-B. Polyoxometalates in dye-sensitized solar cells. Chem. Soc. Rev. 2019, 48, 260–284. [Google Scholar] [CrossRef]
- Koshevar, V.D.; Shkadretsova, V.G.; Kazhuro, I.P. Photochemical Engineering and Thermal Transformations of Molybdenum Polyoxometallate Complexes in Aluminosilicate Matrices. Inorg. Mater. 2021, 57, 1250–1257. [Google Scholar] [CrossRef]
- Hiskia, A.; Mylonas, A.; Papaconstantinou, E. Comparison of the photoredox properties of polyoxometallates and semiconducting particles. Chem. Soc. Rev. 2001, 30, 62–69. [Google Scholar] [CrossRef]
- Liang, Z.; Zhang, D.; Ma, P.; Niu, J.; Wang, J. A {Co4O4} Cubane Incorporated within a Polyoxoniobate Cluster. Chem. Eur. J. 2015, 21, 8380–8383. [Google Scholar] [CrossRef]
- Ibrahim, M.; Haider, A.; Xiang, Y.; Bassil, B.S.; Carey, A.M.; Rullik, L.; Jameson, G.B.; Doungmene, F.; Mbomekallé, I.M.; de Oliveira, P.; et al. Tetradecanuclear Iron(III)-Oxo Nanoclusters Stabilized by Trilacunary Heteropolyanions. Inorg. Chem. 2015, 54, 6136–6146. [Google Scholar] [CrossRef]
- Duan, Y.; Clemente-Juan, J.M.; Giménez-Saiz, C.; Coronado, E. Cobalt Clusters with Cubane-Type Topologies Based on Trivacant Polyoxometalate Ligands. Inorg. Chem. 2016, 55, 925–938. [Google Scholar] [CrossRef]
- Car, P.-E.; Guttentag, M.; Baldridge, K.K.; Alberto, R.; Patzke, G.R. Synthesis and characterization of open and sandwich-type polyoxometalates reveals visible-light-driven water oxidation via POM-photosensitizer complexes. Green Chem. 2012, 14, 1680–1688. [Google Scholar] [CrossRef]
- Al-Oweini, R.; Sartorel, A.; Bassil, B.S.; Natali, M.; Berardi, S.; Scandola, F.; Kortz, U.; Bonchio, M. Photocatalytic Water Oxidation by a Mixed-Valent MnIII3MnIVO3 Manganese Oxo Core that Mimics the Natural Oxygen-Evolving Center. Angew. Chem. Int. Ed. 2014, 126, 11364–11367. [Google Scholar] [CrossRef]
- Ibrahim, M.; Haider, A.; Lan, Y.; Bassil, B.S.; Carey, A.M.; Liu, R.; Zhang, G.; Keita, B.; Li, W.; Kostakis, G.E.; et al. Multinuclear Cobalt(II)-Containing Heteropolytungstates: Structure, Magnetism, and Electrochemistry. Inorg. Chem. 2014, 53, 5179–5188. [Google Scholar] [CrossRef]
- Geletii, Y.V.; Huang, Z.; Hou, Y.; Musaev, D.G.; Lian, T.; Hill, C.L. Homogeneous Light-Driven Water Oxidation Catalyzed by a Tetraruthenium Complex with All Inorganic Ligands. J. Am. Chem. Soc. 2009, 131, 7522–7523. [Google Scholar] [CrossRef]
- Song, F.; Ding, Y.; Ma, B.; Wang, C.; Wang, Q.; Du, X.; Fu, S.; Song, J. K7[CoIIICoII(H2O)W11O39]: A molecular mixed-valence Keggin polyoxometalate catalyst of high stability and efficiency for visible light-driven water oxidation. Energy Environ. Sci. 2013, 6, 1170–1184. [Google Scholar] [CrossRef]
- Du, X.; Ding, Y.; Song, F.; Ma, B.; Zhao, J.; Song, J. Efficient photocatalytic water oxidation catalyzed by polyoxometalate [Fe11(H2O)14(OH)2(W3O10)2(α-SbW9O33)6]27− based on abundant metals. Chem. Commun. 2015, 51, 13925–13928. [Google Scholar] [CrossRef] [PubMed]
- Folkman, S.J.; Finke, R.G. Electrochemical Water Oxidation Catalysis Beginning with Co(II) Polyoxometalates: The Case of the Precatalyst Co4V2W18O6810–. ACS Catal. 2017, 7, 7–16. [Google Scholar] [CrossRef]
- Shahsavarifar, S.; Masteri-Farahani, M.; Ganjali, M.R. New Water Oxidation Electrocatalyst Based on the Cobalt-Containing Polyoxometalate-Reduced Graphene Oxide Hybrid Nanomaterial. Langmuir 2021, 37, 1925–1931. [Google Scholar] [CrossRef] [PubMed]
- Haider, A.; Bassil, B.S.; Soriano-López, J.; Qasim, H.M.; Sáenz de Pipaón, C.; Ibrahim, M.; Dutta, D.; Koo, Y.-S.; Carbó, J.J.; Poblet, J.M.; et al. 9-Cobalt(II)-Containing 27-Tungsto-3-germanate(IV): Synthesis, Structure, Computational Modeling, and Heterogeneous Water Oxidation Catalysis. Inorg. Chem. 2019, 58, 11308–11316. [Google Scholar] [CrossRef] [PubMed]
- Schiwon, R.; Klingan, K.; Dau, H.; Limberg, C. Shining light on integrity of a tetracobalt-polyoxometalate water oxidation catalyst by X-ray spectroscopy before and after catalysis. Chem. Comm. 2014, 50, 100–102. [Google Scholar] [CrossRef] [Green Version]
- Li, N.; Liu, J.; Dong, B.-X.; Lan, Y.-Q. Polyoxometalate-Based Compounds for Photo- and Electrocatalytic Applications. Angew. Chem. Int. Ed. 2020, 59, 20779–20793. [Google Scholar] [CrossRef]
- Chen, W.C.; Wang, X.L.; Qin, C.; Shao, K.Z.; Su, Z.M.; Wang, E.B. A carbon-free polyoxometalate molecular catalyst with a cobalt-arsenic core for visible light-driven water oxidation. Chem. Commun. 2016, 52, 9514–9517. [Google Scholar] [CrossRef]
- Al-Sayed, E.; Nandan, S.P.; Tanuhadi, E.; Giester, G.; Arrigoni, M.; Madsen, G.K.H.; Cherevan, A.; Eder, D.; Rompe, A. Phosphate-Templated Encapsulation of a {CoII4O4} Cubane in Germanotungstates as Carbon-Free Homogeneous Water Oxidation Photocatalysts. ChemSusChem 2021, 14, 2529–2536. [Google Scholar] [CrossRef]
- Bai, D.; Zhou, C.W.; Zhang, J.Y.; Yuan, Y.; Geng, S.Y.; Xie, Z.Y.; Xia, F.W.; Shi, S.Y.; Du, L. Two Novel Catalysts Based on Nickel-Substituted POMs Hybrids for Photocatalytic H2 Evolution from Water Splitting. J. Clust. Sci. 2022, 33, 1951–1960. [Google Scholar] [CrossRef]
- Cui, T.; Qin, L.; Fu, F.; Xin, X.; Li, H.; Fang, X.; Lv, H. Pentadecanuclear Fe-Containing Polyoxometalate Catalyst for Visible-Light-Driven Generation of Hydrogen. Inorg. Chem. 2021, 60, 4124–4132. [Google Scholar] [CrossRef]
- Du, X.; Zhao, J.; Mi, J.; Ding, Y.; Zhou, P.; Ma, B.; Zhao, J.; Song, J. Efficient photocatalytic H2 evolution catalyzed by an unprecedented robust molecular semiconductor {Fe11} nanocluster without cocatalysts at neutral conditions. Nano Energy 2015, 16, 247–255. [Google Scholar] [CrossRef]
- Feng, Y.; Qin, L.; Zhang, J.; Fu, F.; Li, H.; Xiang, H.; Lv, H. Wheel-shaped icosanuclear Cu-containing polyoxometalate catalyst: Mechanistic and stability studies on light-driven hydrogen generation. Chin. J. Catal. 2022, 43, 442–450. [Google Scholar] [CrossRef]
- Sato, K.; Yonesato, K.; Yatabe, T.; Yamaguchi, K.; Suzuki, K. Nanostructured Manganese Oxides within a Ring-Shaped Polyoxometalate Exhibiting Unusual Oxidation Catalysis. Chem. Eur. J. 2022, 28, e202104051. [Google Scholar] [CrossRef]
- Bassil, B.S.; Al-Oweini, M.I.R.; Asano, M.; Wang, Z.; van Tol, J.; Dalal, N.S.; Choi, K.-Y.; Biboum, R.N.; Keita, B.; Nadjo, L.; et al. A Planar {Mn19(OH)12}26+ Unit Incorporated in a 60-Tungsto-6-Silicate Polyanion. Angew. Chem. Int. Ed. 2011, 50, 5961–5964. [Google Scholar] [CrossRef]
- Fang, X.; Kögerler, P.; Furukawa, Y.; Speldrich, M.; Luban, M. Molecular Growth of a Core–Shell Polyoxometalate. Angew. Chem. Int. Ed. 2011, 50, 5212–5216. [Google Scholar] [CrossRef]
- Mal, S.S.; Dickman, M.H.; Kortz, U.; Todea, A.M.; Merca, A.; Bögge, H.; Glaser, T.; Müller, A.; Nellutla, S.; Kaur, N.; et al. Nucleation Process in the Cavity of a 48-Tungstophosphate Wheel Resulting in a 16-Metal-Centre Iron Oxide Nanocluster. Chem. Eur. J. 2008, 14, 1186–1195. [Google Scholar] [CrossRef]
- Godin, B.; Chen, Y.-G.; Vaissermann, J.; Ruhlmann, L.; Verdaguer, M.; Gouzerh, P. Coordination Chemistry of the Hexavacant Tungstophosphate [H2P2W12O48]12− with FeIII Ions: Towards Original Structures of Increasing Size and Complexity. Angew. Chem. Int. Ed. 2005, 117, 3132–3135. [Google Scholar] [CrossRef]
- Goura, J.; Bassil, B.S.; Bindra, J.K.; Rutkowska, I.A.; Kulesza, P.J.; Dalal, N.S.; Kortz, U. FeIII48-Containing 96-Tungsto-16-Phosphate: Synthesis, Structure, Magnetism and Electrochemistry. Chem. Eur. J. 2020, 26, 15821–15824. [Google Scholar] [CrossRef]
- Goberna-Ferrón, S.; Vigara, L.; Soriano-López, J.; Galán-Mascarós, J.R. Identification of a Nonanuclear {CoII9} Polyoxometalate Cluster as a Homogeneous Catalyst for Water Oxidation. Inorg. Chem. 2012, 51, 11707–11715. [Google Scholar] [CrossRef]
- Ibrahim, M.; Lan, Y.; Bassil, B.S.; Xiang, Y.; Suchopar, A.; Powell, A.K.; Kortz, U. Hexadecacobalt(II)-containing polyoxometalate-based single-molecule magnet. Angew. Chem. Int. Ed. 2011, 50, 4708–4711. [Google Scholar] [CrossRef]
- Han, X.B.; Zhang, Z.M.; Zhang, T.; Li, Y.G.; Lin, W.; You, W.; Su, Z.M.; Wang, E.B. Polyoxometalate-based cobalt-phosphate molecular catalysts for visible light-driven water oxidation. J. Am. Chem. Soc. 2014, 136, 5359–5366. [Google Scholar] [CrossRef] [PubMed]
- Shi, D.; Cui, C.-J.; Sun, C.-X.; Du, J.-P.; Liu, C.-S. A new [Co21(H2O)4(OH)12]30+ unit-incorporating polyoxotungstate for sensitive detection of dichlorvos. N. J. Chem. 2020, 44, 11336–11341. [Google Scholar] [CrossRef]
- Yao, S.; Zhang, Z.; Li, Y.; Wang, E. A {Cu6}-containing inorganic-metal-organic sandwich-type tungstoantimonite and its 3D supramolecular framework. Inorg. Chem. Commun. 2009, 12, 937–940. [Google Scholar] [CrossRef]
- Mialane, P.; Dolbecq, A.; Marrot, J.; Rivière, E.; Sécheresse, F. A Supramolecular Tetradecanuclear Copper(II) Polyoxotungstate. Angew. Chem. Int. Ed. 2003, 42, 3523–3526. [Google Scholar] [CrossRef] [PubMed]
- Mal, S.S.; Kortz, U. The Wheel-Shaped Cu20 Tungstophosphate [Cu20Cl(OH)24(H2O)12(P8W48O184)]25− Ion. Angew. Chem. Int. Ed. 2005, 44, 3777–3780. [Google Scholar] [CrossRef]
- Han, X.B.; Li, Y.G.; Zhang, Z.M.; Tan, H.Q.; Lu, Y.; Wang, E.B. Polyoxometalate-based nickel clusters as visible light-driven water oxidation catalysts. J. Am. Chem. Soc. 2015, 137, 5486–5493. [Google Scholar] [CrossRef]
- Ibrahim, M.; Xiang, Y.; Bassil, B.S.; Lan, Y.; Powell, A.K.; de Oliveira, P.; Keita, B.; Kortz, U. Synthesis, Magnetism, and Electrochemistry of the Ni14- and Ni5-Containing Heteropolytungstates [Ni14(OH)6(H2O)10(HPO4)4(P2W15O56)4]34– and [Ni5(OH)4(H2O)4(β-GeW9O34)(β-GeW8O30(OH))]13–. Inorg. Chem. 2013, 52, 8399–8408. [Google Scholar] [CrossRef]
- Han, X.-B.; Qin, C.; Wang, X.-L.; Tan, Y.-Z.; Zhao, X.-J.; Wang, E.-B. Bio-inspired assembly of cubane-adjustable polyoxometalate-based high-nuclear nickel clusters for visible light-driven hydrogen evolution. Appl. Catal. B 2017, 211, 349–356. [Google Scholar] [CrossRef]
- Goura, J.; Bassil, B.S.; Ma, X.; Rajan, A.; Moreno-Pineda, E.; Schnack, J.; Ibrahim, M.; Powell, A.K.; Ruben, M.; Wang, J.; et al. NiII36-Containing 54-Tungsto-6-Silicate: Synthesis, Structure, Magnetic and Electrochemical Studies. Chem. Eur. J. 2021, 27, 15081–15085. [Google Scholar] [CrossRef]
- Yao, L.; Wei, D.; Ni, Y.; Yan, D.; Hu, C. Surface localization of CdZnS quantum dots onto 2D g-C3N4 ultrathin microribbons: Highly efficient visible light-induced H2-generation. Nano Energy 2016, 26, 248–256. [Google Scholar] [CrossRef]
- Artero, V.; Fontecave, M. Some general principles for designing electrocatalysts with hydrogenase activity. Coord. Chem. Rev. 2005, 249, 1518–1535. [Google Scholar] [CrossRef]
- Helm, M.L.; Stewart, M.P.; Bullock, R.M.; DuBois, M.R.; DuBois, D.L. A Synthetic Nickel Electrocatalyst with a Turnover Frequency Above 100,000 s−1 for H2 Production. Science 2011, 333, 863–866. [Google Scholar] [CrossRef] [Green Version]
- Liu, P.; Rodriguez, J.A. Catalysts for Hydrogen Evolution from the [NiFe] Hydrogenase to the Ni2P(001) Surface: The Importance of Ensemble Effect. J. Am. Chem. Soc. 2005, 127, 14871–14878. [Google Scholar] [CrossRef]
- Lv, H.; Guo, W.; Wu, K.; Chen, Z.; Bacsa, J.; Musaev, D.G.; Geletii, Y.V.; Lauinger, S.M.; Lian, T.; Hill, C.L. A noble-metal-free, tetra-nickel polyoxotungstate catalyst for efficient photocatalytic hydrogen evolution. J. Am. Chem. Soc. 2014, 136, 14015–14018. [Google Scholar] [CrossRef]
- Zhang, M.; Xin, X.; Feng, Y.; Zhang, J.; Lv, H.; Yang, G.-Y. Coupling Ni-substituted polyoxometalate catalysts with water-soluble CdSe quantum dots for ultraefficient photogeneration of hydrogen under visible light. Appl. Catal. B 2022, 303, 120893–120902. [Google Scholar] [CrossRef]
- Chang, Q.; Meng, X.; Ruan, W.; Feng, Y.; Li, R.; Zhu, J.; Ding, Y.; Lv, H.; Wang, W.; Chen, G.; et al. Metal–Organic Cages with {SiW9Ni4} Polyoxotungstate Nodes. Angew. Chem. Int. Ed. 2022, 134, e202117637. [Google Scholar] [CrossRef]
- Qin, L.; Liang, F.; Li, Y.; Wu, J.; Guan, S.; Wu, M.; Xie, S.; Luo, M.; Ma, D. A 2D Porous Zinc-Organic Framework Platform for Loading of 5-Fluorouracil. Inorganics 2022, 10, 202–215. [Google Scholar] [CrossRef]
- Qin, L.; Li, Y.; Liang, F.; Li, L.; Lan, Y.; Li, Z.; Lu, X.; Yang, M.; Ma, D. A microporous 2D cobalt-based MOF with pyridyl sites and open metal sites for selective adsorption of CO2. Microporous Mesoporous Mater. 2022, 341, 112098–112106. [Google Scholar] [CrossRef]
- Qin, L.; Zhao, C.; Yao, L.-Y.; Dou, H.; Zhang, M.; Xie, J.; Weng, T.-C.; Lv, H.; Yang, G.-Y. Efficient Photogeneration of Hydrogen Boosted by Long-Lived Dye-Modified Ir(III) Photosensitizers and Polyoxometalate Catalyst. CCS Chem. 2021, 4, 259–271. [Google Scholar] [CrossRef]
- Herve, G.; Teze, A. Study of.alpha.- and.beta.-enneatungstosilicates and -germanates. Inorg. Chem. 1977, 16, 2115–2117. [Google Scholar] [CrossRef]
- Zheng, M.; Cao, X.; Ding, Y.; Tian, T.; Lin, J. Boosting photocatalytic water oxidation achieved by BiVO4 coupled with iron-containing polyoxometalate: Analysis the true catalyst. J. Catal. 2018, 363, 109–116. [Google Scholar] [CrossRef]
- Pradeep, C.P.; Long, D.-L.; Kögerler, P.; Cronin, L. Controlled assembly and solution observation of a 2.6 nm polyoxometalate ‘super’ tetrahedron cluster: [KFe12(OH)18(α-1,2,3-P2W15O56)4]29−. Chem. Commun. 2007, 41, 4254–4256. [Google Scholar] [CrossRef] [PubMed]
- Sheldrick, G. A short history of SHELX. Acta Crystallogr. Sec. A 2008, 64, 112–122. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dolomanov, O.V.; Bourhis, L.J.; Gildea, R.J.; Howard, J.A.K.; Puschmann, H. OLEX2: A complete structure solution, refinement and analysis program. J. Appl. Crystallogr. 2009, 42, 339–341. [Google Scholar] [CrossRef]
- Palatinus, L.; Chapuis, G. SUPERFLIP—A computer program for the solution of crystal structures by charge flipping in arbitrary dimensions. J. Appl. Crystallogr. 2007, 40, 786–790. [Google Scholar] [CrossRef] [Green Version]
- Liu, Z.; Bian, Z.; Hao, F.; Nie, D.; Ding, F.; Chen, Z.; Huang, C. Highly efficient, orange–red organic light-emitting diodes using a series of green-emission iridium complexes as hosts. Org. Electron. 2009, 10, 247–255. [Google Scholar] [CrossRef]
- Von Allmen, K.; Moré, R.; Müller, R.; Soriano-López, J.; Linden, A.; Patzke, G.R. Nickel-Containing Keggin-Type Polyoxometalates as Hydrogen Evolution Catalysts: Photochemical Structure–Activity Relationships. ChemPlusChem 2015, 80, 1389–1398. [Google Scholar] [CrossRef]
- Guo, W.; Lv, H.; Bacsa, J.; Gao, Y.; Lee, J.S.; Hill, C.L. Syntheses, Structural Characterization, and Catalytic Properties of Di- and Trinickel Polyoxometalates. Inorg. Chem. 2016, 55, 461–466. [Google Scholar] [CrossRef]
- Paille, G.; Boulmier, A.; Bensaid, A.; Ha-Thi, M.-H.; Tran, T.-T.; Pino, T.; Marrot, J.; Riviere, E.; Hendon, C.H.; Oms, O.; et al. An unprecedented {Ni14SiW9} hybrid polyoxometalate with high photocatalytic hydrogen evolution activity. Chem. Commun. 2019, 55, 4166–4169. [Google Scholar] [CrossRef] [Green Version]
- Lv, H.; Chi, Y.; van Leusen, J.; Koegerler, P.; Chen, Z.; Bacsa, J.; Geletii, Y.V.; Guo, W.; Lian, T.; Hill, C.L. {Ni4(OH)3AsO4}4(B-α-PW9O34)428-: A New Polyoxometalate Structural Family with Catalytic Hydrogen Evolution Activity. Chem. Eur. J. 2015, 21, 17363–17370. [Google Scholar] [CrossRef]
Compound | Ni16P4(SiW9)3 |
---|---|
Empirical formula | Na19H153Ni16P4Si3W27 O199 |
Mr (g mol−1) | 9885.82 |
Temperature/K | 298(2) |
Crystal system | Monoclinic |
Space group | C1/c1 |
a (Å) | 37.2051(18) |
b (Å) | 18.3718(9) |
c (Å) | 26.9158(13) |
α (°) | 90.00 |
β (°) | 101.907(2) |
γ (°) | 90.00 |
V/Å3 | 18,001.8(15) |
Z | 4 |
ρcalcd (g cm−3) | 3.127 |
μ mm−1 | 18.953 |
F(000) | 14,824 |
Limiting indices | −44 ≤ h ≤ 44, −21 ≤ k ≤ 21, −32 ≤ l ≤ 32 |
Reflections collected | 97,803 |
Independent reflections | 37,240 |
Restrains/parameters | 2/1238 |
θmin/θmax | 1.241/24.999 |
Rint | 0.0848 |
GooF | 0.960 |
R [I > 2σ] | R1 = 0.0402, wR2 = 0.0666 |
R(all data) | R1 = 0.0687, wR2 = 0.0752 |
R1 = ∑(|Fo| − |Fc||/∑|Fo|, wR2 = {∑[w(F2o − F2c)2]/∑[w(F2o)2]}1/2. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, Y.; Xin, X.; Feng, Y.; Chi, M.; Wang, R.; Liu, T.; Lv, H. Structurally-New Hexadecanuclear Ni-Containing Silicotungstate with Catalytic Hydrogen Generation Activity. Molecules 2023, 28, 2017. https://doi.org/10.3390/molecules28052017
Wang Y, Xin X, Feng Y, Chi M, Wang R, Liu T, Lv H. Structurally-New Hexadecanuclear Ni-Containing Silicotungstate with Catalytic Hydrogen Generation Activity. Molecules. 2023; 28(5):2017. https://doi.org/10.3390/molecules28052017
Chicago/Turabian StyleWang, Yequn, Xing Xin, Yeqin Feng, Manzhou Chi, Ruijie Wang, Tianfu Liu, and Hongjin Lv. 2023. "Structurally-New Hexadecanuclear Ni-Containing Silicotungstate with Catalytic Hydrogen Generation Activity" Molecules 28, no. 5: 2017. https://doi.org/10.3390/molecules28052017
APA StyleWang, Y., Xin, X., Feng, Y., Chi, M., Wang, R., Liu, T., & Lv, H. (2023). Structurally-New Hexadecanuclear Ni-Containing Silicotungstate with Catalytic Hydrogen Generation Activity. Molecules, 28(5), 2017. https://doi.org/10.3390/molecules28052017