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Abstract: A structurally-new, carbon-free hexadecanuclear Ni-containing silicotungstate, [Ni16(H2O)15

(OH)9(PO4)4(SiW9O34)3]19-, has been facilely synthesized using a one-pot, solution-based synthetic
method systematically characterized by single-crystal X-ray diffraction and several other techniques.
The resulting complex works as a noble-metal-free catalyst for visible-light-driven catalytic generation
of hydrogen, by coupling with a [Ir(coumarin)2(dtbbpy)][PF6] photosensitizer and a triethanolamine
(TEOA) sacrificial electron donor. Under minimally optimized conditions, a turnover number
(TON) of 842 was achieved for TBA-Ni16P4(SiW9)3-catalyzed hydrogen evolution system. The
structural stability of TBA-Ni16P4(SiW9)3 catalyst under photocatalytic conditions was evaluated
by the mercury-poisoning test, FT-IR, and DLS measurements. The photocatalytic mechanism was
elucidated by both time-solved luminescence decay and static emission quenching measurements.
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1. Introduction

Polyoxometalates (POMs), as an important family of metal-oxo nanoclusters with well-
defined structures, are typically composed of W, Mo, V, Nb, or Ta ions in their high
oxidation states [1–4]. The research on POM-based transition metal complexes has been
attracting increasing attention due to their diverse compositions and versatile physic-
ochemical properties [5,6] in the fields of catalysis [7–10], medicine [11–14], molecular
magnetism [15–17], energy storage/conversion [18–20], photochemistry [21,22], etc. La-
cunary POMs, with oxygen-rich surfaces and high negative charges [23–25], can work
as significant multidentate O-donor ligands to coordinate with multiple transition metal
ions, leading to the formation of transition-metal-substituted POMs (TMSPOMs). More
importantly, the introduction of transition metal ions into POMs could not only adjust
the electronic structures of target TMSPOMs, but also introduce more active sites for
widespread catalytic applications, especially in photo-driven water splitting area [8,26–28].
Given their reversible multi-electron-transfer properties, TMSPOMs usually exhibit the
advantages of decent structural stability under the photocatalytic conditions [26,29–31].
To date, a series of TMSPOMs have been synthesized and investigated as multi-electron-
transfer catalysts for solar energy conversion under visible light irradiation, including
water oxidation catalysts (WOCs) [32–38] and water reduction catalysts (WRCs) [39–42].

Among these reported TMSPOMs catalysts, a number of multinuclear TMSPOMs
have been successfully prepared and systematically characterized. A number of impor-
tant representative examples of these multinuclear TMSPOMs include {Mn18P8W48} [43],
{Mn19(SiW10)6} [44], {Mn20P8W48} [43], {Mn40(P8W48)(P2W14)4(P2W15)8} [45], {Fe15(SiW9)4} [40],
{Fe16(P8W48)} [46], {Fe28(P2W12)4} [47], {Fe48(P2W12)8} [48], {Co9(PW9)3} [49], {Co16(PW9)4} [50],
{Co16(XW9)4} (X = Si, As, Ge) [51], {Co21(SiW9)6} [52], {Cu6W18} [53], {Cu14W36} [54], and
{Cu20W48} [55]. In addition to these Mn, Fe, Co, Cu-substituted POMs, some multin-
uclear nickel-containing POMs have also been prepared, including {Ni12(SiW9)3} [56],
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{Ni13(SiW9)3} [56], {Ni14(P2W15)4} [57], {Ni16(PW9)4} [58], {Ni25(SiW9)6} [56], and {Ni36(SiW9)6} [59].
Considering that Ni belongs to the same group as Pt in the periodic table, it could also ex-
hibit catalytic hydrogen evolution activity, even though the activity is much lower than that
of Pt [60]. More importantly, the price of Ni is much cheaper with high earth abundance. In
nature, Ni has also been successfully used in hydrogenases that can work as an effective
hydrogen-evolving catalyst, achieving a turnover frequency (TOF) of 9000 s−1 [61,62].
Theoretical studies revealed that the Ni sites in hydrogenases played a crucial role in
the hydrogen evolution reaction (HER) [63]. In this context, Ni-substituted POMs will
be interesting catalyst candidates for solar-driven hydrogen production, of which, some
pioneering works have already been reported [9,58,64–66].

Herein, we reported the successful preparation of a structurally-new, carbon-free
hexadecanuclear Ni-containing silicotungstate: Na19[Ni16(H2O)15(OH)9(PO4)4(A-α-SiW9
O34)3]·57H2O (Na-Ni16P4(SiW9)3), which was systematically characterized by single-crystal
X-ray diffraction analysis and other spectroscopic approaches. The resulting tetrabuty-
lammonium (TBA+) salt of the polyoxoanion Ni16P4(SiW9)3 (TBA-Ni16P4(SiW9)3) was
investigated as a noble-metal-free catalyst for photo-driven H2 production in a typical
three-component system.

2. Results and Discussion
2.1. Structural Description

Single crystal X-ray diffraction analysis showed that crystal Na-Ni16P4(SiW9)3 crys-
tallizes in the monoclinic space group C1/c1 (Table 1). The Ni16P4(SiW9)3 polyoxoanion
is composed of one central {Ni16(H2O)15(OH)9(PO4)3} ({Ni16}) moiety and three lacunary
A-α-{SiW9O34} POM ligands (Figure 1a,b). Herein, it is noted that Wang et al. [56] have
recently reported a Ni13-containing POM cluster. The central {Ni16} core is structurally
similar to the {Ni13} core except that an extra three {Ni(H2O)4} fragments are incorpo-
rated into the middle of the A-α-{SiW9O34} and {PO4} group. The central {Ni16} core is
connected by three µ3-{PO4} and one µ4-{PO4} linkers. The whole {Ni16} cluster is coor-
dinated by three trivacant A-α-{SiW9O34} POM ligands. In other words, the structure of
this polyoxoanion can also be regarded as a central {Ni4(H2O)3(PO4)4} core stabilized by
three {(A-α-SiW9O34)(Ni4O(OH)3(H2O)4} units (Figure 1d,e). Such a {Ni4(H2O)3(PO4)4}
core contains a central {Ni4O4} cubane unit (Figure 1f), which is structurally similar as
the Fe2S2 or FeNiS2 clusters working as the catalytically active sites of [FeFe] or [FeNi]
hydrogenases, respectively. The Ni−O distances of {Ni4O4} cubane range from 2.061(16) to
2.175(19) Å and the Ni···Ni distances range from 3.1771(48) to 3.2027(44) Å. The structure
of Na-Ni16P4(SiW9)3 exhibits idealized C3 point group symmetry (the C3 axis passing
through the corner diagonal of the central {Ni4O4} cubane). All the nickel ions are in the +2
oxidation states as confirmed by the BVS calculations.

Table 1. Crystal data and structure refinements for Ni16P4(SiW9)3.

Compound Ni16P4(SiW9)3

Empirical formula Na19H153Ni16P4Si3W27 O199
Mr (g mol−1) 9885.82

Temperature/K 298(2)
Crystal system Monoclinic

Space group C1/c1
a (Å) 37.2051(18)
b (Å) 18.3718(9)
c (Å) 26.9158(13)
α (◦) 90.00
β (◦) 101.907(2)
γ (◦) 90.00

V/Å3 18,001.8(15)
Z 4

ρcalcd (g cm−3) 3.127
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Table 1. Cont.

Compound Ni16P4(SiW9)3

µ mm−1 18.953
F(000) 14,824

Limiting indices −44 ≤ h ≤ 44, −21 ≤ k ≤ 21, −32 ≤ l ≤ 32
Reflections collected 97,803

Independent reflections 37,240
Restrains/parameters 2/1238

θmin/θmax 1.241/24.999
Rint 0.0848

GooF 0.960
R [I > 2σ] R1 = 0.0402, wR2 = 0.0666
R(all data) R1 = 0.0687, wR2 = 0.0752

R1 = ∑(|Fo| − |Fc||/∑|Fo|, wR2 = {∑[w(F2
o − F2

c)2]/∑[w(F2
o)2]}1/2.

Figure 1. Polyhedral and ball-and-stick representation of the building blocks (a,b,d,e) of Ni16P4(SiW9)3;
(c) ball-and-stick representation of {Ni4O4} cubane core; and (f) in Ni16P4(SiW9)3. Color code: WO6,
grey octahedra; SiO4, orange tetrahedra; PO4, pink tetrahedra; O, red sphere; Ni, green sphere.

In addition, the structure of polyoxoanion Ni16P4(SiW9)3 (Figure 2a) can also be
simplified into a ball-and-stick model, therein the {SiW9O34} moieties and the central {Ni16}
unit are regarded as external pendulum and central node (Figure 2b), respectively. Three
external pendulums and one central node can be assembled into a triangular geometry
(Figure 2c). Interestingly, it is noted that the molecular structural units of polyoxoanion
Ni16P4(SiW9)3 can form a zigzag one-dimensional (1-D) chain connected by Na+ counter
cations along a axis (Figure S1).

2.2. Characterization of Ni16P4(SiW9)3

The FT-IR spectrum of Na-Ni16P4(SiW9)3 was collected in a 2 wt% KBr pellet in the
region of 4000 to 400 cm−1 (Figure S2, black curve). The signal at 987 cm−1 are attributed
to vibrations of W-Ot. The W-O-W vibrations peaks are located at 889, 861, 810, and
684 cm−1, while the absorption peak at 937 cm−1 is consistent with Si–Oa vibrations. All
the characteristic bands of the Na-Ni16P4(SiW9)3 structure were observed in the FT-IR
spectrum, which is similar to that of the lacunary [A-α-SiW9O34]10− POM ligand (Figure S2,
blue curve). The replacement of Na+ cations with tetrabutylammonium (TBA+) retains the
molecular skeleton of Ni16P4(SiW9)3 (Figure S2, red curve), the corresponding vibrational
signals of TBA+ cation is well observed [67,68]. The UV-vis spectrum of polyoxoanion Na-
Ni16P4(SiW9)3 exhibits a strong absorption peak in the UV region, which can be assigned
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as the oxygen-to-metal charge-transfer that are typically observed in the POM structures
(Figure S3). Thermogravimetric analysis (TGA) showed a weight loss of 10.5%, which was
calculated to be 57 crystallization H2O molecules in one formula unit (Figure S4). Due
to incomplete substitution of Na+ in the crystal, the amount of TBA+ was determined by
the TGA. The TGA of TBA-Ni16P4(SiW9)3 shows ~2.97% weight loss ~at 20–100 °C and
27.5% weight loss at 100–750 °C, roughly corresponding to about 15 H2O molecules and
14 TBA+ cations to replace the initial Na+ cations, respectively. The chemical compositions
of polyoxoanion Na-Ni16P4(SiW9)3 were characterized by ICP-AES tests (see Experimental
section). Then, XPS data was further collected to characterize the existence and oxidation
states of Ni (Figure S5a), P (Figure S5b), Si (Figure S5c), and W (Figure S5d) elements in
complex Na-Ni16P4(SiW9)3 (Figure S5). For instance, the binding energies of the Ni 2p3/2
and 2p1/2 (with corresponding satellite peaks at 862.5 eV and 880.3 eV, Figure S5a) peaks
were located at 856.0 and 874.0 eV (Figure S5), respectively, indicating the +2 oxidation
state of the Ni centers in the cluster. The XPS results are in good consistence with the BVS
calculations. In addition, SEM/EDX results also revealed the microscopic morphology of
the Na-Ni16P4(SiW9)3 crystal and the existence of Si, Ni, P, and W elements (Figure S6). The
calculated atomic ratio of Ni/W (1:1.50) from the EDX results is in good agreement with the
theoretical value (1:1.69) (Figure S7). In addition, the PXRD pattern of Na-Ni16P4(SiW9)3
matched well with the simulated diffraction pattern, also indicating the phase purity of the
title compound (Figure S8).

Figure 2. Combined wireframe/ball-and-stick representation of Ni16P4(SiW9)3: (a) [Ni16(H2O)15(OH)9

(PO4)4(SiW9O34)3]19-; (b) Representations of the building blocks of Ni16P4(SiW9)3; and (c) Triangular
geometry of Ni16P4(SiW9)3. Color code: W grey, Ni green, P pink, Si orange, O red.

2.3. HOMO and LUMO Investigation

Electrochemical measurements and UV–vis absorption spectrum were conducted to
calculate the HOMO and LUMO energy levels of the catalyst. Estimated from the UV–vis
absorption spectrum, the energy bandgap of the crystal was obtained, thus the HOMO was
calculated to be the sum of the energy bandgap and LUMO (Figure S9). The LUMO orbital
energy for the TBA-Ni16P4(SiW9)3 was measured as −3.31 eV. According to the UV-vis-NIR
spectra of K-M function vs. energy (eV), the energy gap was 2.40 eV. Therefore, the HOMO
orbital energy was −5.71 eV. In the previous research of our group, the orbital energy of
photosensitizer [Ir(coumarin)2(dtbbpy)]+ was calculated. Its LUMO and HOMO energies
were −3.28 and −5.42 eV, respectively [69]. Therefore, the LUMO electron of excited
state [Ir(coumarin)2(dtbbpy)]+* can be transferred to the LUMO orbitals of the catalyst,
providing the possibility for establishing a photocatalytic hydrogen production system.
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2.4. Photocatalytic Hydrogen Production and Evaluation of Catalyst Stability

Considering the vital challenges of energy shortage and environmental problems faced
by modern mankind, the development of clean and renewable energy alternatives has
been attracting tremendous research attention. Photocatalytic hydrogen production driven
by solar energy represents a promising way to produce clean secondary energy carriers.
Herein, the visible light-driven H2 production activity of TBA-Ni16P4(SiW9)3 was investi-
gated in a well-established three-component system by using [Ir(coumarin)2(dtbbpy)]+ [69]
as the photosensitizer, TBA-Ni16P4(SiW9)3 as the WRC, and TEOA as electron donor in a
mixed CH3CN/DMF (v/v = 1/3) solvent. The reaction solution was exposed to 400 nm
visible-light irradiation at room temperature. All turnover numbers (TONs) were calculated
with respect to TBA-Ni16P4(SiW9)3 catalyst. The effect of each component on photocat-
alytic activity was evaluated by different control experiments. As shown in Figure 3a,
the catalytic system in the absence of photosensitizer, sacrificial reagent, or catalyst pro-
duces negligible H2 production under otherwise identical conditions. In addition, the
replacement of the catalyst TBA-Ni16P4(SiW9)3 with the lacunary {SiW9} POM stabiliz-
ing ligand causes very low amounts of H2 production, proving the vital role of Ni sites.
Moreover, the catalytic system using stoichiometric equivalents of NiCl2 (320 µM) as that
of 20 µM TBA-Ni16P4(SiW9)3 shows a remarkable decrease in hydrogen production. These
results demonstrate that photosensitizer, sacrificial agent, and catalyst are all necessary
component in the photocatalytic process. More importantly, the structural skeleton of TBA-
Ni16P4(SiW9)3 is essential for efficient catalysis because the unique molecular structure
of TBA-Ni16P4(SiW9)3 polyoxoanion can work as electron reservoir to effectively store
electrons in the electron-deficient POM ligands and, in the meantime, supply electrons to
the catalytically active Ni centers, thereby leading to the high catalytic efficiency of TBA-
Ni16P4(SiW9)3. The different concentrations of each component also significantly affect
H2 production (Figure 3b–d). Increasing the concentration of [Ir(coumarin)2(dtbbpy)]+

photosensitizer from 0.1 to 0.3 mM enhances the H2 yield from ~3.6 to ~100 µmol, cor-
responding to a TON change from ~30 to ~842 (Figure 3b). The catalytic performance
of this TBA-Ni16P4(SiW9)3 catalyst is comparable to that of some known Ni-containing
POMs under homogeneous catalytic systems using Ir/Ru-based photosensitizers (Table
S3). While adjusting the concentration of TEOA from 0.05 M to 0.25 M, the H2 production
increases from ~20 to ~100 µmol. In addition, the H2 yield was enhanced from ~0.9 to
~164 µmol as the concentration of TBA-Ni16P4(SiW9)3 changed from 5 to 20 µM. Based on
the above experimental results, the optimal combination of the [Ir(coumarin)2(dtbbpy)]+

photosensitizer, TEOA electron donor, and TBA-Ni16P4(SiW9)3 catalyst are vital for highly
efficient photocatalytic H2 evolution.

The stability of catalyst agent has been a general concern in molecular photocat-
alytic systems. In this paper, the stability of TBA-Ni16P4(SiW9)3 was assessed using a
range of optical methods and experimental evaluation. To investigate whether the TBA-
Ni16P4(SiW9)3 catalyst was decomposed into the Ni nanoparticles, we have carried out a
mercury-poisoning test by the addition of 20 mg Hg to the photocatalytic solution. The
addition of Hg does not significantly affect the hydrogen production, implying the integrity
of TBA-Ni16P4(SiW9)3 catalyst during photocatalysis (Figure 3a). Moreover, to further
characterize the stability of TBA-Ni16P4(SiW9)3 catalyst, the post-reaction catalyst was
isolated in the form of [Ru(bpy)3]x-Ni16P4(SiW9)3 adducts after photocatalysis by adding
cationic [Ru(bpy)3]2+ species. FT-IR spectra of isolated [Ru(bpy)3]x-Ni16P4(SiW9)3 adducts
reveal almost no changes before and after photocatalysis for 6 h (Figure S10), implying
the decent molecular stability of the TBA-Ni16P4(SiW9)3 catalyst. The DLS measurement
illustrated a signal centered at ~1.7 nm for the TBA-Ni16P4(SiW9)3 (20 µM) system after
6 h of catalysis (Figure S11), which is consistent with the size of TBA-Ni16P4(SiW9)3, about
18.98 Å, implying the integrity of the TBA-Ni16P4(SiW9)3 polyoxoanion.
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Figure 3. (a) photocatalytic H2 evolution using different catalysts and control experiments and
varying concentrations of, (b) [Ir(coumarin)2(dtbbpy)]+ photosensitizer, (c) TBA-Ni16P4(SiW9)3

catalyst, and (d) TEOA sacrificial agent. Standard reaction conditions: 300 W Xe lamp with a 400
nm cutoff filter, [Ir(coumarin)2(dtbbpy)]+ (0.3 mM), TEOA (0.25 M), H2O (2 M), catalyst (20 µM),
CH3CN/DMF (v/v = 1/3) deaerated with Ar/CH4 (v/v = 4/1).

2.5. Photocatalytic Mechanistic Studies

It is known that the photoexcited photosensitizer can work as both oxidizing and
reducing species in the typical photocatalytic systems. Therefore, to reveal the photocat-
alytic mechanism, the quenching experiments of [Ir(coumarin)2(dtbbpy)]+ by TEOA and
TBA-Ni16P4(SiW9)3 has been performed in CH3CN/DMF using both steady-state emission
quenching and time-resolved luminescence decay spectroscopy. As shown in Figure 4,
a strong emission band in the region of 500−750 nm was observed upon excitation of
[Ir(coumarin)2(dtbbpy)]+ (λe = 460 nm), and the emission intensity of [Ir(coumarin)2(dtbbpy)]+

was progressively quenched with the addition of TBA-Ni16P4(SiW9)3 (0–60 µM) and TEOA
(0–0.25 M). Luminescence quenching rate constants can be derived by the Stern–Volmer
plot using a linear function (Figure S12). The quenching rate constant (krq) for the reductive
pathway by TEOA was calculated as 2.55 × 106 M−1·s−1, while the oxidative quenching
rate constant (koq) by TBA-Ni16P4(SiW9)3 was 6.27 × 109 M−1·s−1. It is clear that the koq
value is three orders of magnitude higher than the krq value, which can be attributed to
the strong electrostatic interaction between positively-charged [Ir(coumarin)2(dtbbpy)]+

photosensitizer and negatively-charged TBA-Ni16P4(SiW9)3 catalyst. However, in the
typical photocatalytic hydrogen evolution experiments, the concentrations of TEOA and
TBA-Ni16P4(SiW9)3 were 0.25 M and 20 µM, respectively. Therefore, the corresponding
quenching rates can be calculated by multiplying the values of quenching rate constants
by the concentrations of quenchers, leading to the values of 0.6375 × 106 s−1 by TEOA
and 1.254 × 105 s−1 by TBA-Ni16P4(SiW9)3 catalyst. Such relatively higher quenching
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rates by TEOA revealed that that the reductive pathway was still the dominant one during
photocatalysis (Figure S13).

Figure 4. Emission quenching of excited state [Ir(coumarin)2(dtbbpy)]+* (0.3 mM) by: (a) TBA-
Ni16P4(SiW9)3, and (b) TEOA in 3 mL of CH3CN/DMF (v/v = 1/3) solution upon 450 nm excitation.

By using the time-resolved fluorescence spectroscopy, the decay kinetics of the excited
state [Ir(coumarin)2(dtbbpy)]+* was also investigated. The experimental phenomenon that
both TBA-Ni16P4(SiW9)3 and TEOA can accelerate the decay of [Ir(coumarin)2(dtbbpy)]+*
luminescence was obvious (Figure 5). The single-exponential fitting of decay kinetics of
[Ir(coumarin)2(dtbbpy)]+* yielded a lifetime of ~1181.38 ns, which was further decreased
to ~906.22 and ~967.85 ns in the presence of TEOA and TBA-Ni16P4(SiW9)3, respectively.
These results clearly revealed that both reductive and oxidative quenching processes
existed during photocatalysis and the reductive quenching process is the dominant one,
thus agreeing with the steady-state emission quenching results.

Figure 5. Normalized luminescence decay kinetics of [Ir(coumarin)2(dtbbpy)]+ (green curve) by
TBA-Ni16P4(SiW9)3 (purple curve) and TEOA (brown curve). Conditions: 460 nm excitation, 0.3 mM
[Ir(coumarin)2(dtbbpy)]+, 0.25 M TEOA or 20 µM catalyst, CH3CN/DMF (v/v = 1/3). The black
curves are the single-exponential fitting results.
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According to the above mechanistic analyses, the possible photocatalytic process
was proposed as follows. Under the light irradiation, the photons were absorbed by the
[Ir(coumarin)2(dtbbpy)]+ photosensitizer, generating the excited state [Ir(coumarin)2(dtbbpy)]+*.
In addition to the oxidative quenching of [Ir(coumarin)2(dtbbpy)]+* by TBA-Ni16P4(SiW9)3
catalyst, the photoexcited states can also be reductively quenched by TEOA to form one-
electron-reduced [Ir(coumarin)2(dtbbpy)] species. The TBA-Ni16P4(SiW9)3 catalyst can be
reduced by accepting electrons from this reduced [Ir(coumarin)2(dtbbpy)] species. During
photocatalysis, the lacunary {SiW9} POM building blocks and transition metals act as
electron storage mediator and catalytic active sites, respectively. The lacunary {SiW9} POM
ligands can be reduced by reversibly storing multiple electrons and protons, then the
electrons could be continuously utilized by the Ni active centers to effectively catalyze
hydrogen evolution.

3. Experimental Section
3.1. Methods and Materials

All chemicals were used as received without further purification, unless otherwise
specified. Trivacant lacunary POM Na10[A-α-SiW9O34]·18H2O was synthesized according
to the literature method [70]. Single-crystal X-ray crystallography was performed on a
Bruker APEXII DUO (Bruker, Karlsruhe, Germany) diffractometer CCD detector operated
at 40 kV and 40 mA with Mo Kα radiation (λ = 0.71073 Å). Fourier transform infrared
(FT-IR) were recorded on a Bruker TENSOR II spectrometer (Bruker, Karlsruhe, Germany)
with ~2 wt% KBr pellets. Ultraviolet-visible (UV-Vis) absorption spectra were measured
by using a Techcomp UV 2600 (Techcomp, Shanghai, China) spectrophotometer. Scan-
ning electron microscopy (SEM) associated with energy-dispersive X-ray spectroscopy
(EDX) data were collected on a JSM-7500F (JEOL, Tokyo, Japan) instrument. ICP-AES
was conducted on an Agilent ICP-AES 5110 (Agilent, Santa Clara, CA, USA) to analyze
the elemental composition of the resulting complex, which contains Ni, Si, P, W, and Na.
Thermogravimetric data (TGA) were collected on a HITACHI TG/DTA7300 (HITACHI
High-Technologies, Yamaguchi, Japan) instrument from 20 to 800 ◦C under N2 atmosphere.
X-ray photoelectron spectroscopy (XPS) measurements were performed on a PHI 5000
Versaprobe III (Ulvac-Phi, Osaka, Japan) instrument. The X-ray powder diffraction pattern
was collected on a Shimadzu XRD-6000 instrument (Shimadzu, Kyoto, Japan).

3.2. Synthesis of Na19[Ni16(H2O)15(OH)9(PO4)4(A-α-SiW9O34)3]·57H2O (Na-Ni16P4(SiW9)3)

NiCl2·6H2O (0.15 g, 0.32 mmol) was dissolved in 10 mL distilled water. Then, Na10[A-
α-SiW9O34]·18H2O (0.25 g, 0.08 mmol) was added with stirring until a clear and green
solution was obtained. The pH value of the resulting mixture was adjusted to 7.5 with
4.0 M NaOH solution. The turbid solution was stirred for 30 min at room temperature.
Then, solid Na3PO4·12H2O (0.57 g, 1.5 mmol) was added, while maintaining above pH at
7.5 with 2.0 M HCl. The admixture was heated to 80 ◦C for 2 h and the reaction solution
became clear during the heating process. Then, the light green precipitate was removed
by filtration. The clear filtrate was kept in a 25 mL beaker to allow slow evaporation at
room temperature. After about 5 days, the desired rhombohedral flake green crystals were
obtained by filtration and further dried at ambient conditions. Yield: 83 mg (40.5% based
on Ni). Analytical calculated (found, wt%) compositions of complex Na-Ni16P4(SiW9)3:
Na 4.42 (4.15), Si 0.85 (0.90), P 1.25 (1.23), Ni 9.50 (9.06), W 50.20 (49.59).

The TBA+ salt of Ni16P4(SiW9)3 (TBA-Ni16P4(SiW9)3) was synthesized using the
following procedure: the crystalline Na-Ni16P4(SiW9)3 (0.2 g, 17.86 µmol) sample was dis-
solved in 5 mL of H2O, to which a solution of TBA bromide (5 g, 15.6 mmol) in 5 mL of 0.5 M
sodium acetate buffer (pH 4.8) was added and then stirred vigorously for 0.5 h. The light
green precipitate was formed, separated by centrifugation, washed with ice water to remove
excess TBA bromide, and finally dried under vacuum. The final TBA-Ni16P4(SiW9)3 prod-
uct was collected and characterized by FT-IR and TGA. The empirical molecular formula of
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the TBA+ salt of Ni16P4(SiW9)3 was calculated as TBA14Na5[Ni16(H2O)15(OH)9(PO4)4(A-
α-SiW9O34)3]·15H2O.

3.3. Single-Crystal X-Ray Crystallography

An appropriate high-quality crystal (0.19 × 0.20 × 0.21 mm3) was selected and en-
capsulated in a single crystal tube with Vaseline on both ends for data collection at 298 K.
The data of Na-Ni16P4(SiW9)3 crystal was collected on a Bruker APEXII diffractometer.
The APEX 3 software (APEX3 v2016.1-0, Bruker, Karlsruhe, Germany) was installed on
the diffractometer for data collection, indexing, and initial cell refinements [71]. Optimal
reflections have been collected for high-quality frame integration and final cell refinements
using SAINT software (APEX3 v2016.1-0, Bruker, Karlsruhe, Germany) [72]. The Olex 2
software (Olex2 v1.3, England) equipped with Superflip structure solution program was
used to solve the crystal structures, which were further refined by least squares using
ShelXL [73–75]. All these non-H atoms were refined with anisotropic thermal parameters.
The hydrogen atoms were located by bond valence sum (BVS) calculations. Details of
the crystallographic data and analyses for the compound Na-Ni16P4(SiW9)3 are given in
Table 1, and important bond lengths as well as corresponding bond valence sum (BVS)
calculations are summarized in Tables S1 and S2. The Cambridge Crystallographic Data
Centre (CCDC) number of Na-Ni16P4(SiW9)3 is deposited as 2223896. Further details on the
crystal structure investigations may be obtained from http://www.ccdc.cam.ac.uk/deposit
(accessed on 12 February 2022) on quoting the depository number as mentioned.

3.4. Photocatalytic Hydrogen Evolution Tests

Photocatalytic hydrogen production was conducted in degassed CH3CN-DMF (v/v = 1/3)
solution containing triethanolamine (TEOA) electron donor, H2O proton source, iridium
complexes ([Ir(coumarin)2(dtbbpy)][PF6]) photosensitizers [69], and Ni-substituted polyox-
ometalate TBA-Ni16P4(SiW9)3 as the catalyst. The reaction solution was deaerated with
Ar/CH4 (v/v = 4/1), the internal standard of CH4 was used for better quantification. The
degassed mixture was illuminated using a 300 W Xe-lamp (PerfectLight, Beijing, China)
equipped with a 400 nm cutoff filter at room temperature with constant stirring. Gas
chromatograph (Thermo GC7900, thermal conductivity detector (TCD), Thermo Fisher
Scientific, Waltham, MA, USA) was used to analyze the hydrogen in the reaction headspace
using a 5 Å molecular sieve capillary column. All turnover numbers (TONs) were calcu-
lated based on catalyst TBA-Ni16P4(SiW9)3. Control experiments were conducted under
similar experimental conditions by removing one component one at a time. Additional
control experiments were conducted by replacing the TBA-Ni16P4(SiW9)3 catalyst with
NiCl2 or trivacant {SiW9} POM under otherwise identical conditions.

3.5. Electrochemical Measurements

The cyclic voltammetry was conducted on a CHI660E (Chinstruments, Shanghai,
China) instrument using 0.1 M tetrabutylammonium hexafluorophosphate (TBAPF6) as
electrolyte, glassy carbon as working electrode, Pt wire as counter electrode, and non-
aqueous Ag/Ag+ as reference electrode. The scan rate of CV was 50 mV/s. The Eox or
Ered was measured by using the internal standard substance ferrocene (Eox(Fc/Fc+) = 0 V
vs. Ag/Ag+) [76]. The working electrode was treated by grinding with 0.3 µm and
0.05 µm alumina for about 4 min, flushing with deionized water, sonicating with acetone
for 2 min and drying with nitrogen gas flow. The solution was degassed to remove oxygen.
At the time of measurement, the degassing device is placed above the liquid level to
avoid large disturbance. The HOMO and LUMO energy levels was calculated by the
following equations:

HOMO = −[Eox − E(Fc/Fc+) + 4.8] eV (1)

LUMO = −[Ered − E(Fc/Fc+) + 4.8] eV (2)

http://www.ccdc.cam.ac.uk/deposit
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3.6. Steady-State and Time-Resolved Fluorescence Decay Measurements

The Edinburgh Instruments FS5 (Edinburgh Instruments, Livingston, UK) spectrofluo-
rometer was used to test the steady-state luminescence quenching spectra and time-resolved
luminescence decay kinetics. The solvent for photoluminescence decay measurements was
mixing CH3CN/DMF with a volume ratio of 1:3. The different concentrations of TBA-
Ni16P4(SiW9)3 or TEOA were degassed with Ar for 10 min to avoid the influence of oxygen
before experiment. An intense emission band of [Ir(coumarin)2(dtbbpy)]+ at 450–750 nm
(λexcitation = 450 nm) was recorded and an EPL-450 picosecond pulsed diode laser system
(pulse output 450 nm) was used to measure the emission lifetime at the emission maximum.

4. Conclusions

In summary, we reported the successful synthesis of a structurally-new, carbon-free
hexadecanuclear Ni-containing silicotungstate, [Ni16(H2O)15(OH)9(PO4)4(SiW9O34)3]19-,
using a one-pot, solution-based synthetic method. A series of techniques, including
single-crystal X-ray diffraction, UV-Vis, TGA, FT-IR, SEM/EDS, XPS, etc., have systemati-
cally characterized the chemical composition, crystal structure, and elemental oxidation
states of the resulting POM complex. While coupling with a [Ir(coumarin)2(dtbbpy)][PF6]
photosensitizer and a triethanolamine (TEOA) sacrificial electron donor, the title TBA-
Ni16P4(SiW9)3 polyoxoanion works as a noble-metal-free catalyst for hydrogen generation
under visible light irradiation, achieving a turnover number (TON) of 842 under mini-
mally optimized conditions. The mercury-poisoning test, FT-IR spectra of the isolated
[Ru(bpy)3]x-Ni16P4(SiW9)3 adducts, and the DLS measurements revealed the structural
stability of TBA-Ni16P4(SiW9)3 catalyst under photocatalytic conditions. More importantly,
both time-solved luminescence decay and static emission quenching measurements elu-
cidated the photocatalytic mechanism, confirming the existence of both reductive and
oxidative quenching pathways with the reductive quenching pathway as the dominant
one. This work presents another good example of using Ni-substituted POMs as efficient
hydrogen evolution catalyst, which might provide insights for future design of additional
high-nuclearity metal-containing POMs as catalysts for solar energy conversion.

Supplementary Materials: The following supporting information can be downloaded at: https://www.
mdpi.com/article/10.3390/molecules28052017/s1, Tables S1–S3: BVS calculations, and a comparison
of Ni-POMs HER; Figures S1–S13: crystal packing, FT-IR, UV-Vis, TGA, CV, XPS, SEM/EDX, DLS,
Stern–Volmer plots, and Emission quenching spectra [10,58,64,65,77–80].
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