Toxicity and Physiological Effects of Nine Lamiaceae Essential Oils and Their Major Compounds on Reticulitermes dabieshanensis
Abstract
:1. Introduction
2. Results
2.1. GC–MS Analysis
2.2. Fumigation Activity of Lamiaceae EOs and Its Major Constituents
2.3. ESTs, GST and AChE Enzyme Activities
3. Discussion
4. Materials and Methods
4.1. Plant EOs and Their Constituents
4.2. Termites
4.3. GC–MS Analysis
4.4. Fumigant Toxicity
4.5. Determination of Enzyme Activity
4.5.1. Enzyme Assays
4.5.2. Esterase (EST)
4.5.3. Glutathione S-Transferase (GST)
4.5.4. Acetylcholinesterase (AChE)
4.5.5. Acetylcholinesterase Inhibition
4.6. Data Analysis
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Sample Availability
References
- Yang, X.; Han, H.; Li, B.; Zhang, D.; Zhang, Z.; Xie, Y. Fumigant toxicity and physiological effects of spearmint (Mentha spicata, Lamiaceae) essential oil and its major constituents against Reticulitermes dabieshanensis. Ind Crop Prod. 2021, 171, 113894. [Google Scholar] [CrossRef]
- Verma, M.; Sharma, S.; Prasad, R. Biological alternatives for termite control: A review. Int. Biodeterior. Biodegrad. 2009, 63, 959–972. [Google Scholar] [CrossRef]
- Ahmad, F.; Fouad, H.; Liang, S.Y.; Hu, Y.; Mo, J.C. Termites and Chinese agricultural system: Applications and advances in integrated termite management and chemical control. Insect Sci. 2021, 28, 2–20. [Google Scholar] [CrossRef] [PubMed]
- Govindarajan, M.; Sivakumar, R.; Rajeswari, M.; Yogalakshmi, K. Chemical composition and larvicidal activity of essential oil from Mentha spicata (Linn.) against three mosquito species. Parasitol. Res. 2012, 110, 2023–2032. [Google Scholar] [CrossRef]
- Filho, J.G.S.; Almeida, A.S.; Pinto-Zevallos, D.; Barreto, I.C.; Cavalcanti, S.C.H.; Nunes, R.; Teodoro, A.V.; Xavier, H.S.; Filho, J.M.B.; Guan, L.; et al. From plant scent defense to biopesticide discovery: Evaluation of toxicity and acetylcholinesterase docking properties for Lamiaceae monoterpenes. Crop Prot. 2023, 164, 106126. [Google Scholar] [CrossRef]
- Eftekhari, A.; Khusro, A.; Ahmadian, E.; Dizaj, S.M.; Hasanzadeh, A.; Cucchiarini, M. Phytochemical and nutra-pharmaceutical attributes of Mentha spp.: A comprehensive review. Arab J Chem. 2021, 14, 103106. [Google Scholar] [CrossRef]
- Shaaya, E.; Ravid, U.; Paster, N.; Juven, B.; Zisman, U.; Pissarev, V. Fumigant toxicity of essential oils against four major stored- product insects. J. Chem. Ecol. 1991, 17, 499–504. [Google Scholar] [CrossRef]
- Koschier, E.H.; Sedy, K.A.; Novak, J. Influence of plant volatiles on feeding damage caused by the onion thrips Thrips tabaci. Crop Prot. 2002, 21, 419–425. [Google Scholar] [CrossRef]
- Zhang, Z.; Sun, X.; Luo, Z.; Gao, Y.; Bian, L.; Xin, Z.; Cai, X.; Chen, Z. Effect of 14 Plant Essential Oils on the Behavior of Ectropis obliqua (Prout). J. Tea Sci. 2014, 34, 489–496. [Google Scholar] [CrossRef]
- Regnault-Roger, C.; Hamraoui, A.; Holeman, M.; Theron, E.; Pinel, R. Insecticidal effect of essential oils from mediterranean plants upon Acanthoscelides obtectus Say (Coleoptera, Bruchidae), a pest of kidney bean (Phaseolus vulgaris L.). J. Chem. Ecol. 1993, 19, 1233–1244. [Google Scholar] [CrossRef]
- Keita, S.M.; Vincent, C.; Schmit, J.P.; Arnason, J.T.; Belanger, A. Efficacy of essential oil of Ocimum basilicum L. and O. gratissimum L. applied as an insecticidal fumigant and powder to control Callosobruchus maculatus (Fab.) [Coleoptera: Bruchidae]. J. Stored Prod. Res. 2001, 37, 339–349. [Google Scholar] [CrossRef]
- Aslan, Ï.; Özbek, H.; Çalmasur, Ö.; Şahin, F. Toxicity of essential oil vapours to two greenhouse pests, Tetranychus urticae Koch and Bemisia tabaci Genn. Ind. Crop Prod. 2004, 19, 167–173. [Google Scholar] [CrossRef]
- Mansour, F.; Ravid, U.; Putievsky, E. Studies of the effects of essential oils isolated from 14 species of Labiatae on the carmine spider mite, Tetranychus cinnabarinus. Phytoparasitica 1986, 14, 137–142. [Google Scholar] [CrossRef]
- Hori, M. Antifeeding, settling inhibitory and toxic activities of labiate essential oils against the green peach aphid, Myzus persicae (Sulzer) (Homoptera: Aphididae). Appl. Entomol. Zool. 1999, 34, 113–118. [Google Scholar] [CrossRef] [Green Version]
- Regnault-Roger, C.; Hamraoui, A. Efficiency of plants from the South of France used as traditional protectants of Phaseolus vulgaris L. against its bruchid Acanthoscelides obtectus (Say). J. Stored Prod. Res. 1993, 29, 259–264. [Google Scholar] [CrossRef]
- Yarou, B.B.; Bawin, T.; Boullis, A.; Heukin, S.; Lognay, G.; Verheggen, F.J.; Francis, F. Oviposition deterrent activity of basil plants and their essentials oils against Tuta absoluta (Lepidoptera: Gelechiidae). Environ. Sci. Pollut. Res. 2018, 25, 29880–29888. [Google Scholar] [CrossRef] [Green Version]
- Papachristos, D.P.; Stamopoulos, D.C. Repellent, toxic and reproduction inhibitory effects of essential oil vapours on Acanthoscelides obtectus (Say) (Coleoptera: Bruchidae). J. Stored Prod. Res. 2002, 38, 117–128. [Google Scholar] [CrossRef]
- Tuttolomondo, T.; Iapichino, G.; Licata, M.; Virga, G.; Leto, C.; Balla, S.L. Agronomic Evaluation and Chemical Characterization of Sicilian Salvia sclarea L. Accessions. Agronomy 2020, 10, 1114. [Google Scholar] [CrossRef]
- Apostolides, N.A.; Beyrouthy, M.E.; Dhifi, W.; Najm, S.; Cazier, F.; Najem, W.; Labaki, M.; AbouKaïs, A. Chemical Composition of Aerial Parts of Rosmarinus officinalis L. Essential Oil Growing Wild in Lebanon. J. Essent. Oil Bear Pl. 2013, 16, 274–282. [Google Scholar] [CrossRef]
- Kim, J.E.; Lee, J.E.; Huh, M.J.; Lee, S.C.; Seo, S.M.; Kwon, J.H.; Park, I.K. Fumigant Antifungal Activity via Reactive Oxygen Species of Thymus vulgaris and Satureja hortensiis Essential Oils and Constituents against Raffaelea quercus-mongolicae and Rhizoctonia solan. Biomolecules 2019, 9, 561. [Google Scholar] [CrossRef] [Green Version]
- Park, K.W.; Kim, D.Y.; Lee, Y.; Yang, D.S. A Multivariate Statistical Approach to Comparison of Essential Oil Composition from Three Mentha Species. Hortic. Sci. Technol. 2011, 29, 382–387. [Google Scholar]
- Mafakheri, S.; Hajivand, S.; Zarrabi, M.M.; Arvane, A. Effect of Bio and Chemical Fertilizers on the Essential Oil Content and Constituents of Melissa officinalis (Lemon Balm). J. Essent. Oil. Bear. Plant. 2016, 19, 1277–1285. [Google Scholar] [CrossRef]
- Krasniewska, K.; Kosakowska, O.; Pobiega, K.; Gniewosz, M. The Influence of Two-Component Mixtures from Spanish Origanum Oil with Spanish Marjoram Oil or Coriander Oil on Antilisterial Activity and Sensory Quality of a Fresh Cut Vegetable Mixture. Food 2020, 9, 1740. [Google Scholar] [CrossRef]
- Goudarzian, A.; Pirbalouti, A.G.; Hossaynzadeh, M. Menthol, Balance of Menthol/Menthone, and Essential Oil Contents of Mentha x Piperita L. under Foliar-Applied Chitosan and Inoculation of Arbuscular mycorrhizal Fungi. J. Essent. Oil Bear Plant. 2020, 23, 1012–1021. [Google Scholar] [CrossRef]
- Raina, A.P.; Kumar, A.; Dutta, M. Chemical characterization of aroma compounds in essential oil isolated from "Holy Basil" (Ocimum tenuiflorum L.) grown in India. Genet. Resour. Crop Evol. 2013, 60, 1727–1735. [Google Scholar] [CrossRef]
- Kara, N.; Baydar, H. Essential oil contents and composition of lavenders and lavandins cultivated in Turkey. Res. Crop. 2012, 13, 675–681. [Google Scholar]
- Xie, Y.; Yang, Z.; Cao, D.; Rong, F.; Ding, H.; Zhang, D. Antitermitic and antifungal activities of eugenol and its congeners from the flower buds of Syzgium aromaticum (Clove). Ind. Crops Prod. 2015, 77, 780–786. [Google Scholar] [CrossRef]
- Pandey, A.; Chattopadhyay, P.; Banerjee, S.; Pakshirajan, K.; Singh, L. Antitermitic activity of plant essential oils and their major constituents against termite Odontotermes assamensis Holmgren (Isoptera: Termitidae) of North East India. Int. Biodeter. Biodeg. 2012, 75, 63–67. [Google Scholar] [CrossRef]
- Jin, C.; Han, H.; Xie, Y.; Li, B.; Zhang, Z.; Zhang, D. Toxicity, Behavioral Effects, and Chitin Structural Chemistry of Reticulitermes flaviceps Exposed to Cymbopogon citratus EO and Its Major Constituent Citral. Insects 2022, 13, 812. [Google Scholar] [CrossRef]
- Koliopoulos, G.; Pitarokili, D.; Kioulos, E.; Michaelakis, A.; Tzakou, O. Chemical composition and larvicidal evaluation of Mentha, Salvia, and Melissa essential oils against the West Nile virus mosquito Culex pipiens. Parasitol. Res. 2010, 107, 327–335. [Google Scholar] [CrossRef]
- Sertkaya, E. Fumigant Toxicity of the Essential Oils from Medicinal Plants Against Bean Weevil, Acanthoscelides obtectus (Say) (Coleoptera: Bruchidae). Asian J. Chem. 2013, 25, 553–555. [Google Scholar] [CrossRef]
- Štefanidesová, K.; Škultéty, L.; Sparagano, O.A.E.; Špitalská, E. The repellent efficacy of eleven essential oils against adult Dermacentor reticulatus ticks. Ticks Tick-borne Dis. 2017, 8, 780–786. [Google Scholar] [CrossRef]
- Koundal, R.; Dolma, S.K.; Chand, G.; Agnihotri, V.K.; Reddy, S.G.E. Chemical composition and insecticidal properties of essential oils against diamondback moth (Plutella xylostella L.). Toxin Rev. 2020, 39, 371–381. [Google Scholar] [CrossRef]
- Xie, Y.; Huang, Q.; Rao, Y.; Hong, L.; Zhang, D. Efficacy of Origanum vulgare essential oil and carvacrol against the housefly, Musca domestica L. (Diptera: Muscidae). Environ. Sci. Pollut. R. 2019, 26, 23824–23831. [Google Scholar] [CrossRef]
- Xie, Y.; Jin, H.; Yang, X.; Gu, Q.; Zhang, D. Toxicity of the essential oil from Thymus serpyllum and thymol to larvae and pupae of the housefly Musca domestica L. (Diptera: Muscidae). Environ. Sci. Pollut. Res. 2020, 27, 23824–23831. [Google Scholar] [CrossRef]
- Piri, A.; Sahebzadeh, N.; Zibaee, A.; Sendi, J.J.; Shamakhi, L.; Shahriari, M. Toxicity and physiological effects of ajwain (Carum copticum, Apiaceae) essential oil and its major constituents against Tuta absoluta (Meyrick) (Lepidoptera: Gelechiidae). Chemosphere 2020, 256, 127103. [Google Scholar] [CrossRef]
- Shahriari, M.; Sahbzadeh, N.; Zibaee, A.; Khani, A.; Senthil-Nathan, S. Metabolic response of Ephestia kuehniella zeller (Lepidoptera: Pyralidae) to essential oil of ajwain and thymol. Toxin Rev. 2017, 36, 204–209. [Google Scholar] [CrossRef]
- Bibiano, C.S.; Alves, D.S.; Freire, B.C.; Bertolucci, S.K.V.; Carvalho, G.A. Toxicity of essential oils and pure compounds of Lamiaceae species against Spodoptera frugiperda (Lepidoptera: Noctuidae) and their safety for the nontarget organism Trichogramma pretiosum (Hymenoptera: Trichogrammatidae). Crop Prot. 2022, 158, 106011. [Google Scholar] [CrossRef]
- Bosly, H.A.E.K. Larvicidal and adulticidal activity of essential oils from plants of the Lamiaceae family against the West Nile virus vector, Culex pipiens (Diptera: Culicidae). Saudi J. Biol. Sci. 2022, 29, 103350. [Google Scholar] [CrossRef]
- Oliveira, A.C.; Simoes, R.C.; Tavares, C.P.S.; Lima, C.A.P.; Sa, I.S.C.; Silva, F.M.A.; Figueira, E.A.G.; Nunomura, S.M.; Nunomura, R.C.S.; Roque, R.A. Toxicity of the essential oil from Tetradenia riparia (Hochstetter.) Codd (Lamiaceae) and its principal constituent against malaria and dengue vectors and non-target animals. Pestici. Biochem. Phys. 2022, 188, 105265. [Google Scholar] [CrossRef]
- Belzile, A.S.; Majerus, S.L.; Podeszfinski, C.; Guillet, G.; Durst, T.; Arnason, J.T. Dillapiol derivatives as synergists: Structure-activity relationship analysis. Pestic. Biochem. Physiol. 2000, 66, 33–40. [Google Scholar] [CrossRef]
- Tong, F.; Gross, A.D.; Dolan, M.C.; Coats, J.R. The phenolic monoterpenoid carvacrol inhibits the binding of nicotine to the housefly nicotinic acetylcholine receptor. Pest Manage. Sci. 2013, 69, 775–780. [Google Scholar] [CrossRef] [Green Version]
- Enan, E.E. Molecular response of Drosophila melanogaster tyramine receptor cascade to plant essential oils. Insect Biochem. Mol. Biol. 2005, 35, 309–321. [Google Scholar] [CrossRef]
- Lei, J.; Leser, M.; Enan, E. Nematicidal activity of two monoterpenoids andSER-2 tyramine receptor of Caenorhabditis elegans. Biochem. Pharmacol. 2010, 79, 1062–1071. [Google Scholar] [CrossRef]
- Chodari, L.; Aytemir, M.D.; Vahedi, P.; Alipour, M.; Vahed, S.Z.; Khatibi, S.M.H.; Ahmadian, E.; Ardalan, M.; Eftekhari, A. Targeting Mitochondrial Biogenesis with Polyphenol Compounds. Oxid. Med. Cell Longev. 2021, 4946711. [Google Scholar] [CrossRef]
- Wang, Z.; Xie, Y.; Sabier, M.; Zhang, T.; Deng, J.; Song, X.; Liao, Z.; Li, Q.; Yang, S.; Cao, Y.; et al. Trans-anethole is a potent toxic fumigant that partially inhibits rusty grain beetle (Cryptolestes ferrugineus) acetylcholinesterase activity. Ind. Crop Prod. 2021, 161, 113207. [Google Scholar] [CrossRef]
- Abdelgaleil, S.A.M.; Mohamed, M.I.E.; Badawy, M.E.I.; El-arami, S.A.A. Fumigant and contact toxicities of monoterpenes to Sitophilus oryzae (L.) and Tribolium castaneum (Herbst) and their inhibitory effects on acetylcholinesterase activity. J. Chem. Ecol. 2009, 35, 518–525. [Google Scholar] [CrossRef]
- Yeom, H.J.; Kang, J.S.; Kim, G.H.; Park, I.K. Insecticidal and Acetylcholine Esterase Inhibition Activity of Apiaceae Plant Essential Oils and Their Constituents against Adults of German Cockroach (Blattella germanica). J. Agric. Food. Chem. 2012, 60, 7194–7203. [Google Scholar] [CrossRef]
- Adams, R.P. Identification of Essential Oil Components by Gas Chromatography/Mass Spectrometry, 4th ed.; Allured Publishing Corporation: Carol Stream, IL, USA, 2007. [Google Scholar]
No | Components | RI | Relative Percentage Content (%) | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | |||
1 | α-Pinene | 939 | - | 23.92 | 0.64 | - | - | 6.60 | 0.65 | - | - |
2 | Camphene | 954 | - | 4.72 | - | - | - | - | - | - | - |
3 | β-Pinene | 979 | - | 4.86 | 2.03 | - | - | 2.58 | 1.91 | - | - |
4 | β-Myrcene | 991 | - | - | - | - | - | - | - | 1.98 | |
5 | β-Phellandrene | 1001 | 2.95 | - | 0.36 | - | - | 0.73 | - | - | - |
6 | α-Terpinene | 1018 | - | 2.18 | - | - | - | - | - | - | - |
7 | p-Cymene | 1025 | - | - | 28.32 | - | - | - | - | - | - |
8 | Limonene | 1027 | - | - | - | 21.28 | 3.81 | - | 5.65 | - | 6.34 |
9 | 1,8-Cineole | 1038 | - | 45.56 | - | - | - | 62.29 | - | - | - |
10 | β-Ocimene | 1046 | 1.59 | - | - | - | - | 1.06 | - | - | 2.05 |
11 | γ-Terpinene | 1060 | - | 0.91 | 31.02 | - | - | 1.31 | - | - | - |
12 | Linalool | 1097 | 17.57 | - | - | - | 0.84 | 15.40 | - | 2.17 | 39.58 |
13 | Camphor | 1114 | 0.98 | 11.33 | - | - | - | 1.44 | - | - | 2.57 |
14 | Menthone | 1129 | - | - | - | 1.04 | - | - | 20.47 | - | - |
15 | Isopulegol | 1141 | - | - | - | - | - | - | 0.96 | - | - |
16 | Isoborneol | 1143 | - | - | - | - | - | 1.21 | - | - | 0.17 |
17 18 | Citronellal Borneol | 1154 1166 | - - | - 0.94 | - - | - - | 36.99 - | - - | - - | - - | - 1.30 |
19 20 | Menthol Neodihydrocarveol | 1170 1174 | - - | - - | - - | - 11.23 | - - | - - | 46.04 - | - - | - - |
21 | Terpinen-4-ol | 1177 | - | - | - | - | - | 1.46 | - | - | 0.54 |
22 23 | α-Terpineol Estragole | 1191 1201 | - - | 0.47 - | - - | - - | - - | 1.42 - | 3.30 - | - 18.05 | 0.44 - |
24 25 | Citronellol Pulegone | 1233 1235 | - - | - - | - - | - - | 13.77 - | - - | - 1.34 | - - | - - |
26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 | Carvone Geraniol Linalyl acetate Bornyl acetate Lavandulyl acetate Thymol Menthyl acetate Terpinyl acetate Neryl acetate Eugenol α-Copaene Geranyl acetate β-bourbonene β-Elemene Caryophyllene β-Farnesene Humulene Germacrene D δ-Cadinene α-elemol Total | 1243 1250 1253 1286 1288 1292 1322 1331 1356 1359 1377 1380 1381 1391 1419 1447 1455 1485 1523 1549 | - - 65.93 - - - - - 1.59 -- 2.89 3.38 - - 2.08 - - - - - 98.96 | - - - 1.59 - - - - - - - - - - 3.02 - - - - - 99.51 | - - - - - 33.59 - - - - - - - - - - - - - 95.97 | 58.68 - - - - - - - - - - - 1.97 0.78 2.21 - - - - - 97.20 | - 20.23 - - - - - - - - - 3.29 - 3.49 - - - 1.81 3.59 5.86 93.67 | - - - - - - - 0.73 - - - - - - 1.38 - - - - - 97.60 | - - - - - - 6.31 - - - - - - - 10.83 1.83 - - - 99.29 | - - - - - - - - - 71.08 - - - - 6.73 - 1.57 - - - 99.60 | - - - - 1.80 - - - 0.58 - - 1.53 - - 2.95 0.57 - 0.23 - - 97.08 |
EOs | Con. (μL/L) | Mortality (% ± SD) | LC30 (95%CL *) | LC50 (95%CL) | LC90 (95%CL) | χ2 |
---|---|---|---|---|---|---|
S. sclarea | 0.16 | 15.00 ± 8.66 | 0.604 (0.480–0.726) | 1.015 (0.854–1.199) | 3.605 (2.812–5.081) | 17.571 |
0.31 | 28.33 ± 10.41 | |||||
0.63 | 55.00 ± 22.91 | |||||
1.25 | 81.67 ± 7.64 | |||||
2.50 | 96.67 ± 2.89 | |||||
R. officinalis | 1.00 | 0.00 ± 0.00 | 1.670 (1.494–1.805) | 1.904 (1.755–2.051) | 2.625 (2.391–3.046) | 24.728 |
1.50 | 28.33 ± 7.64 | |||||
2.00 | 36.67 ± 2.89 | |||||
2.50 | 90.00 ± 10.00 | |||||
3.00 | 100.00 ± 0.00 | |||||
T. serpyllum | 0.08 | 26.67 ± 16.07 | 0.092 (0.066–0.116) | 0.137 (0.108–0.166) | 0.360 (0.282–0.531) | 24.147 |
0.16 | 53.33 ± 15.28 | |||||
0.31 | 86.67 ± 18.93 | |||||
0.63 | 98.33 ± 2.89 | |||||
1.25 | 100.00 ± 0.00 | |||||
M. spicata | 0.04 | 26.67 ± 7.64 | 0.043 (0.035–0.051) | 0.060 (0.051–0.068) | 0.129 (0.109–0.165) | 9.890 |
0.08 | 66.67 ± 10.41 | |||||
0.16 | 95.00 ± 8.66 | |||||
0.31 | 100.00 ± 0.00 | |||||
0.63 | 100.00 ± 0.00 | |||||
M. officinalis | 0.16 | 3.33 ± 5.77 | 0.425 (0.331–0.516) | 0.564 (0.462–0.695) | 1.126 (0.880–1.705) | 29.770 |
0.31 | 13.33 ± 7.64 | |||||
0.63 | 46.67 ± 15.28 | |||||
1.25 | 98.33 ± 2.89 | |||||
2.5 | 100.00 ± 0.00 | |||||
O. majorana | 0.31 | 10.00 ± 5.00 | 0.684 (0.570–0.795) | 1.029 (0.890–1.188) | 2.799 (2.294–3.647) | 10.082 |
0.63 | 18.33 ± 2.89 | |||||
1.25 | 60.00 ± 5.00 | |||||
2.5 | 91.67 ± 5.77 | |||||
5 | 96.67 ± 2.89 | |||||
M. piperita | 0.15 | 36.67 ± 10.41 | 0.187 (0.090–0.268) | 0.321 (0.209–0.432) | 1.209 (0.812–2.809) | 34.831 |
0.3 | 38.33 ± 5.77 | |||||
0.6 | 51.67 ± 10.41 | |||||
0.9 | 93.33 ± 7.64 | |||||
1.2 | 96.67 ± 5.77 | |||||
O. basilicum | 0.04 | 31.67 ± 7.64 | 0.036 (0.019–0.047) | 0.048 (0.032–0.061) | 0.096 (0.074–0.173) | 37.174 |
0.08 | 93.33 ± 7.64 | |||||
0.16 | 95.00 ± 8.66 | |||||
0.31 | 100.00 ± 0.00 | |||||
0.63 | 100.00 ± 0.00 | |||||
L. angustifolia | 0.16 | 10.00 ± 0.00 | 0.444 (0.338–0.551) | 0.690 (0.556–0.865) | 2.027 (1.492–3.270) | 21.971 |
0.31 | 11.67 ± 2.89 | |||||
0.63 | 41.67 ± 8.93 | |||||
1.25 | 70.00 ± 13.23 | |||||
2.5 | 100.00 ± 0.00 |
Com. | Con. (μL/L) | Mortality (% ± SD) | LC30 (95%CL *) | LC50 (95%CL) | LC90 (95%CL) | χ2 |
---|---|---|---|---|---|---|
Linalyl acetate | 0.16 | 8.33 ± 7.64 | 0.431 (0.352–0.510) | 0.712 (0.605–0.842) | 2.435 (1.886–3.446) | 10.023 |
0.31 | 20.00 ± 0.00 | |||||
0.63 | 33.33 ± 2.89 | |||||
1.25 | 80.00 ± 0.00 | |||||
2.5 | 90.00 ± 0.00 | |||||
1,8-cineole | 1 | 23.33 ± 7.64 | 1.052 (0.83–1.240) | 1.478 (1.256–1.679) | 3.392 (2.959–4.063) | 13.979 |
2 | 75.00 ± 10.00 | |||||
3 | 88.33 ± 5.77 | |||||
4 | 90.00 ± 5.00 | |||||
5 | 96.67 ± 5.77 | |||||
Thymol | 0.02 | 16.67 ± 7.64 | 0.038 (0.031–0.045) | 0.062 (0.054–0.073) | 0.209 (0.153–0.355) | 12.663 |
0.04 | 21.67 ± 12.58 | |||||
0.06 | 45.00 ± 5.00 | |||||
0.08 | 65.00 ± 5.00 | |||||
0.1 | 71.67 ± 7.64 | |||||
Carvone | 0.03 | 13.33 ± 2.89 | 0.054 (0.046–0.061) | 0.075 (0.067–0.083) | 0.168 (0.144–0.210) | 16.108 |
0.06 | 28.33 ± 7.64 | |||||
0.09 | 48.33 ± 2.89 | |||||
0.12 | 81.67 ± 2.89 | |||||
0.15 | 93.33 ± 7.64 | |||||
Citronellal | 0.2 | 26.67 ± 11.55 | 0.237 (0.162–0.286) | 0.330 (0.269–0.387) | 0.745 (0.580–1.302) | 28.105 |
0.3 | 38.33 ± 28.43 | |||||
0.4 | 60.00 ± 15.00 | |||||
0.5 | 66.67 ± 5.77 | |||||
0.6 | 91.67 ± 2.89 | |||||
Menthol | 0.04 | 10.00 ± 13.23 | 0.138 (0.091–0.189) | 0.242 (0.177–0.358) | 0.964 (0.577–2.646) | 33.504 |
0.08 | 13.33 ± 12.59 | |||||
0.16 | 21.67 ± 7.64 | |||||
0.31 | 63.33 ± 10.41 | |||||
0.63 | 85.00 ± 5.00 | |||||
Eugenol | 0.04 | 23.33 ± 7.64 | 0.044 (0.036–0.050) | 0.060 (0.054–0.067) | 0.133 (0.114–0.169) | 16.685 |
0.06 | 51.67 ± 7.64 | |||||
0.08 | 71.67 ± 5.77 | |||||
0.1 | 73.33 ± 16.07 | |||||
0.12 | 88.33 ± 12.58 | |||||
Linalool | 0.2 | 41.67 ± 10.41 | 0.166 (0.088–0.218) | 0.256 (0.183–0.307) | 0.739 (0.567–1.372) | 19.116 |
0.4 | 51.67 ± 10.41 | |||||
0.6 | 71.67 ± 10.41 | |||||
0.8 | 78.33 ± 10.41 | |||||
1.0 | 86.67 ± 2.89 |
Reagent | ESTs | GST | ATCh | |
---|---|---|---|---|
α-NA | β-NA | |||
Control | 0.422 ± 0.061 f | 1.000 ± 0.091 e | 35.410 ± 0.682 e | 17.710 ± 1.692 a |
Linalyl acetate | 0.914 ± 0.054 d | 1.287 ± 0.057 b | 43.465 ± 2.989 d | 8.848 ± 1.033 e |
1,8-Cineole | 1.180 ± 0.063 b | 1.404 ± 0.013 a | 65.215 ± 3.181 a | 6.683 ± 0.649 fg |
Thymol | 0.760 ± 0.062 e | 1.456 ± 0.076 a | 38.507 ± 1.226 e | 10.948 ± 1.437 d |
Carvone | 1.749 ± 0.041 a | 1.060 ± 0.155 d | 47.806 ± 0.796 c | 15.038 ± 1.148 b |
Citronellal | 0.510 ± 0.040 f | 1.293 ± 0.073 c | 43.917 ± 3.692 d | 8.007 ± 0.665 ef |
Menthol | 0.949 ± 0.094 cd | 1.445 ± 0.088 a | 52.972 ± 2.106 b | 12.465 ± 0.466 cd |
Eugenol | 1.067 ± 0.084 bc | 1.364 ± 0.042 ab | 61.590 ± 1.445 a | 6.032 ± 0.137 g |
Linalool | 0.737 ± 0.098 e | 1.391 ± 0.078 a | 51.813 ± 0.445 b | 13.675 ± 0.340 bc |
df | 8 | 8 | 8 | 8 |
F-value | 97.816 | 239.570 | 64.099 | 50.467 |
Pr | 0.0001 | 0.0001 | 0.0001 | 0.0001 |
Reagent | 95%CL | χ2(df) |
---|---|---|
Linalyl acetate | 0.601 (0.311–0.881) | 33.821 (4) |
1,8-Cineole Thymol Carvone Citronellal Menthol Eugenol Linalool | 0.097 (0.024–0.203) 6.360 (4.457–11.487) 1.922 (1.131–3.308) -* - 0.501 (0.055–0.978) 0.136 (0.066–0.218) | 17.517 (4) 29.602 (4) 12.262 (4) - - 45.778 (4) 7.738 (4) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, X.; Jin, C.; Wu, Z.; Han, H.; Zhang, Z.; Xie, Y.; Zhang, D. Toxicity and Physiological Effects of Nine Lamiaceae Essential Oils and Their Major Compounds on Reticulitermes dabieshanensis. Molecules 2023, 28, 2007. https://doi.org/10.3390/molecules28052007
Yang X, Jin C, Wu Z, Han H, Zhang Z, Xie Y, Zhang D. Toxicity and Physiological Effects of Nine Lamiaceae Essential Oils and Their Major Compounds on Reticulitermes dabieshanensis. Molecules. 2023; 28(5):2007. https://doi.org/10.3390/molecules28052007
Chicago/Turabian StyleYang, Xi, Chunzhe Jin, Ziwei Wu, Hui Han, Zhilin Zhang, Yongjian Xie, and Dayu Zhang. 2023. "Toxicity and Physiological Effects of Nine Lamiaceae Essential Oils and Their Major Compounds on Reticulitermes dabieshanensis" Molecules 28, no. 5: 2007. https://doi.org/10.3390/molecules28052007
APA StyleYang, X., Jin, C., Wu, Z., Han, H., Zhang, Z., Xie, Y., & Zhang, D. (2023). Toxicity and Physiological Effects of Nine Lamiaceae Essential Oils and Their Major Compounds on Reticulitermes dabieshanensis. Molecules, 28(5), 2007. https://doi.org/10.3390/molecules28052007