Mass Spectrometry of Esterified Cyclodextrins
Abstract
:1. Introduction
2. Single-Stage Mass Spectrometry Analysis Using MALDI and ESI
- MS characterization of ECD obtained through regular esterification reactions
- Characterization of ECD obtained through enzyme- and cyclodextrin-catalyzed transesterifications
- Ring opening of cyclic esters
3. Multistage Mass Spectrometry Analysis
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Crini, G. Review: A History of Cyclodextrins. Chem. Rev. 2014, 114, 10940–10975. [Google Scholar] [CrossRef] [PubMed]
- Hedges, A. Cyclodextrins: Properties and applications. In Food Science and Technology, Starch, 3rd ed.; BeMiller, J., Whistler, R., Eds.; Academic Press: Cambridge, MA, USA, 2009; pp. 833–851. [Google Scholar] [CrossRef]
- Saokham, P.; Muankaew, C.; Jansook, P.; Loftsson, T. Solubility of Cyclodextrins and Drug/Cyclodextrin Complexes. Molecules 2018, 23, 1161. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Khan, A.R.; Forgo, P.; Stine, K.J.; D’Souza, V.T. Methods for Selective Modifications of Cyclodextrins. Chem. Rev. 1998, 98, 1977–1996. [Google Scholar] [CrossRef] [PubMed]
- Pedersen, N.R.; Kristensen, J.B.; Bauw, G.; Ravoo, B.J.; Darcy, R.; Larsen, K.L.; Pedersen, L.H. Thermolysin catalyses the synthesis of cyclodextrin esters in DMSO. Tetrahedron Asymmetry 2005, 16, 615–622. [Google Scholar] [CrossRef]
- Garcia, A.; Leonardi, D.; Salazar, M.O.; Lamas, M.C. Modified β-Cyclodextrin Inclusion Complex to Improve the Physicochemical Properties of Albendazole. Complete In Vitro Evaluation and Characterization. PLoS ONE 2014, 9, e88234. [Google Scholar] [CrossRef]
- Li, Y.F.; Ha, Y.-M.; Guo, Q.; Li, Q.-P. Synthesis of two b-cyclodextrin derivatives containing a vinyl group. Carbohydr. Res. 2015, 404, 55–62. [Google Scholar] [CrossRef]
- Dubes, A.; Bouchu, D.; Lamartine, R.; Parrot-Lopez, H. An efficient regio-specific synthetic route to multiply substituted acyl-sulphated β-cyclodextrins. Tetrahedron Lett. 2001, 42, 9147–9151. [Google Scholar] [CrossRef]
- Dubes, A.; Degobert, G.; Fessi, H.; Parrot-Lopez, H. Synthesis and characterisation of sulfated amphiphilic α-, β- and γ-cyclodextrins: Application to the complexation of acyclovir. Carbohydr. Res. 2003, 338, 2185–2193. [Google Scholar] [CrossRef]
- Lesur, D.; Gassama, A.; Moreau, V.; Djedaini-Pilard, F.; Brique, A.; Pilard, S. Electrospray ionization mass spectrometry: A key analytical tool for the characterization of regioselectively derivatized maltooligosaccharides obtained starting from natural β-cyclodextrin. Rapid Commun. Mass Spectrom. 2006, 20, 747–754. [Google Scholar] [CrossRef]
- Choi, S.H.; Chung, J.W.; Priestley, R.D.; Kwak, S.-Y. Functionalization of polysulfone hollow fiber membranes with amphiphilic β-cyclodextrin and their applications for the removal of endocrine disrupting plasticizer. J. Membr. Sci. 2012, 409–410, 75–81. [Google Scholar] [CrossRef]
- Stancanelli, R.; Løjkner, L.D.; Lambertsen Larsen, K.; Guardo, M.; Cannavà, C.; Tommasini, S.; Ventura, C.A.; Calabrò, M.L.; Micali, N.; Villari, V.; et al. Structural and spectroscopic features of lutein/butanoyl-β-cyclodextrin nanoassemblies. J. Pharm. Biomed. Anal. 2012, 71, 214–218. [Google Scholar] [CrossRef] [PubMed]
- Kozlowski, C.A.; Nowik-Zajac, A.; Kurcok, P. Application of O-phenylacetyl β-CD as a carrier for selective transport of lead (II) across polymer inclusion membranes. Desalin. Water Treat. 2014, 52, 4257–4265. [Google Scholar] [CrossRef]
- Lumholdt, L.; Nielsen, T.T.; Lambertsen Larsen, K. Surface Modification Using Self-Assembled Layers of Amphiphilic Cyclodextrins. J. Appl. Polym. Sci. 2014, 131, 41047. [Google Scholar] [CrossRef]
- Xin, Y.; Wang, H.; Liu, B.; Yuan, J.Y. Synthesis and MALDI-TOF Characterization of β-CD Core ATRP Initiators and RAFT Chain Transfers with Different Degrees of Substitution. Chin. J. Polym. Sci. 2015, 33, 36–48. [Google Scholar] [CrossRef]
- Cosola, A.; Conti, R.; Rana, V.K.; Sangermano, M.; Chiappone, A.; Levalois-Grutzmacher, J.; Grutzmacher, H. Synthesis of c-cyclodextrin substituted bis(acyl)phosphane oxide derivative (BAPO-γ-CyD) serving as multiple photoinitiator and crosslinking agent. Chem. Commun. 2020, 56, 4828. [Google Scholar] [CrossRef]
- Ahn, Y.H.; Yoo, J.S.; Kim, S.H. Mass Analysis of Persuccinated Derivatives of Neutral Oligosaccharides Using Matrix-Assisted Laser Desorption/Ionization Time-of-Flight Mass Spectrometry. Anal. Sci. 1999, 15, 53–56. [Google Scholar] [CrossRef] [Green Version]
- Potluri, V.K.; Hamilton, A.D.; Karanikas, C.F.; Bane, S.E.; Xu, J.; Beckman, E.J.; Enick, R.M. The high CO2-solubility of per-acetylated α-, β-, and γ-cyclodextrin. Fluid Phase Equilibria 2003, 211, 211–217. [Google Scholar] [CrossRef]
- Hussain, L.A.; Dickens, S.H.; Bowen, R.L. Effects of polymerization initiator complexation in methacrylated β-cyclodextrin formulations. Dent. Mater. 2004, 20, 513–521. [Google Scholar] [CrossRef]
- Sallas, F.; Niikura, K.; Nishimura, S.I. A practical synthesis of amphiphilic cyclodextrins fully substituted with sugar residues on the primary face. Chem. Commun. 2004, 5, 596–597. [Google Scholar] [CrossRef]
- Silva, O.F.; Fernandez, M.A.; Pennie, S.L.; Gil, R.R.; de Rossi, R.H. Synthesis and Characterization of an Amphiphilic Cyclodextrin, a Micelle with Two Recognition Sites. Langmuir 2008, 24, 3718–3726. [Google Scholar] [CrossRef]
- Fifere, A.; Budtova, T.; Tarabukina, E.; Pinteala, M.; Spulber, M.; Peptu, C.; Harabagiu, V.; Simionescu, B.C. Inclusion complexes of γ-cyclodextrin and carboxyl-modified γ-cyclodextrin with C60: Synthesis, characterization and controlled release application via microgels. J. Incl. Phenom. Macrocycl. Chem. 2009, 64, 83–94. [Google Scholar] [CrossRef]
- Tutu, E.; Vigh, G. Synthesis, analytical characterization and initial capillary electrophoretic use in an acidic background electrolyte of a new, single-isomer chiral resolving agent: Heptakis(2-O-sulfo-3-O-methyl-6-O-acetyl)-β-cyclodextrin. Electrophoresis 2011, 32, 2655–2662. [Google Scholar] [CrossRef] [PubMed]
- Kang, S.; Park, E.; Kim, Y.; Lee, S.; Kwon, J.; Cho, H.; Lee, Y. A medusa-like β-cyclodextrin with 1-methyl-2-(20-carboxyethyl) maleic anhydrides, a potential carrier for pH-sensitive drug delivery. J. Drug Target 2014, 22, 658–668. [Google Scholar] [CrossRef] [PubMed]
- Donkuru, M.; Chitanda, J.M.; Verrall, R.E.; El-Aneed, A. Multi-stage tandem mass spectrometric analysis of novel β-cyclodextrin substituted and novel bis-pyridiniumgemini surfactants designed as nanomedical drug delivery agents. Rapid Commun. Mass Spectrom. 2014, 28, 757–772. [Google Scholar] [CrossRef]
- Xiao, Y.; Wu, Q.; Wang, N.; Lin, X. Regioselective monoacylation of cyclomaltoheptaose at the C-2 secondary hydroxyl groups by the alkaline protease from Bacillus subtilis in nonaqueous media. Carbohydr. Res. 2004, 339, 1279–1283. [Google Scholar] [CrossRef]
- Choisnard, L.; Geze, A.; Putaux, J.-L.; Wong, Y.-S.; Wouessidjewe, D. Nanoparticles of β-Cyclodextrin Esters Obtained by Self-Assembling of Biotransesterified β-Cyclodextrins. Biomacromolecules 2006, 7, 515–520. [Google Scholar] [CrossRef]
- Choisnard, L.; Geze, A.; Yameogo, B.G.J.; Putaux, J.-L.; Wouessidjewea, D. Miscellaneous nanoaggregates made of β-CD esters synthesised by an enzymatic pathway. Int. J. Pharm. 2007, 344, 26–32. [Google Scholar] [CrossRef]
- Yu, D.; Steffensen, K.; Tranholm, J.; Nielsen, A.L.; Wimmer, R.; Larsen, K.L. Regioselective alkanoylation of cyclodextrins. J. Incl. Phenom. Macrocycl. Chem. 2007, 57, 333–338. [Google Scholar] [CrossRef]
- Kieken, F.; West, C.; Keddadouche, K.; Elfakir, C.; Choisnard, L.; Geze, A.; Wouessidjeweb, D. Characterisation of complex amphiphilic cyclodextrin mixtures by high-performance liquid chromatography and mass spectrometry. J. Chromatogr. A 2008, 1189, 385–391. [Google Scholar] [CrossRef]
- Choisnard, L.; Geze, A.; Vanhaverbeke, C.; Yameogo, J.B.G.; Putaux, J.-L.; Brasme, B.; Jullien, L.; Boullanger, S.; Elfakir, C.; Wouessidjewe, D. Physicochemical Characterization of α-, β-, and γ-Cyclodextrins Bioesterified with Decanoate Chains Used As Building Blocks of Colloidal Nanoparticles. Biomacromolecules 2011, 12, 3031–3038. [Google Scholar] [CrossRef]
- Cho, E.; Yun, D.; Jeong, D.; Im, J.; Kim, H.; Dindulkar, S.D.; Choi, Y.; Jung, S. Regioselective self-acylating cyclodextrins in organic solvent. Sci. Rep. 2016, 6, 23740. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zerkoune, L.; Lesieur, S.; Putaux, J.-L.; Choisnard, L.; Geze, A.; Wouessidjewe, D.; Angelov, B.; Vebert-Nardin, C.; Doutch, J.; Angelova, A. Mesoporous self-assembled nanoparticles of biotransesterified cyclodextrins and nonlamellar lipids as carriers of water-insoluble substances. Soft. Matter. 2016, 12, 7539. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Putaux, J.-L.; Lancelon-Pin, C.; Legrand, F.-X.; Pastrello, M.; Choisnard, L.; Geze, A.; Rochas, C.; Wouessidjewe, D. Self-Assembly of Amphiphilic Biotransesterified β-Cyclodextrins: Supramolecular Structure of Nanoparticles and Surface Properties. Langmuir 2017, 33, 7917–7928. [Google Scholar] [CrossRef] [PubMed]
- Tomimasu, N.; Kanaya, A.; Takashima, Y.; Yamaguchi, H.; Harada, A. Social Self-Sorting: Alternating Supramolecular Oligomer Consisting of Isomers. J. Am. Chem. Soc. 2009, 131, 12339–12343. [Google Scholar] [CrossRef]
- Nielsen, A.L.; Steffensen, K.; Wimmer, R.; Worm-Leonhard, M.; Larsen, K.L. Syntheses and characterisation of novel cyclodextrin vinyl derivatives from cyclodextrin-nitrophenol-derivatives. J. Incl. Phenom. Macrocycl. Chem. 2010, 67, 303–315. [Google Scholar] [CrossRef]
- Takashima, Y.; Osaki, M.; Harada, A. Cyclodextrin-Initiated Polymerization of Cyclic Esters in Bulk: Formation of Polyester-Tethered Cyclodextrins. J. Am. Chem. Soc. 2004, 126, 13588–13589. [Google Scholar] [CrossRef]
- Osaki, M.; Takashima, Y.; Yamaguchi, H.; Harada, A. Polymerization of Lactones Initiated by Cyclodextrins: Effects of Cyclodextrins on the Initiation and Propagation Reactions. Macromolecules 2007, 40, 3154–3158. [Google Scholar] [CrossRef]
- Osaki, M.; Takashima, Y.; Yamaguchi, H.; Harada, A. Polymerization of Lactones and Lactides Initiated by Cyclodextrins. Kobunshi Ronbunshu 2007, 64, 607–616. [Google Scholar] [CrossRef] [Green Version]
- Osaki, M.; Takashima, Y.; Yamaguchi, H.; Harada, A. Switching of polymerization activity of cinnamoyl-α-cyclodextrin. Org. Biomol. Chem. 2009, 7, 1646–1651. [Google Scholar] [CrossRef]
- Peptu, C.; Nicolescu, A.; Peptu, C.A.; Harabagiu, V.; Simionescu, B.C.; Kowalczuk, M. Mass spectrometry characterization of 3-OH butyrated β-cyclodextrin. J. Polym. Sci. A Polym. Chem. 2010, 48, 5581–5592. [Google Scholar] [CrossRef]
- Normand, M.; Kirillov, E.; Carpentier, J.F.; Guillaume, S.M. Cyclodextrin–Centered Polyesters: Controlled Ring-Opening Polymerization of Cyclic Esters from β-Cyclodextrin-Diol. Macromolecules 2012, 45, 1122–1130. [Google Scholar] [CrossRef]
- Peptu, C.; Kwiecien, I.; Harabagiu, V.; Simionescu, B.C.; Kowalczuk, M. Modification of β-cyclodextrin through solution ring-opening oligomerization of β-butyrolactone. Cellul. Chem. Technol. 2014, 48, 1–10. [Google Scholar]
- Galia, A.; Scialdone, O.; Spanò, T.; Valenti, M.G.; Grignard, B.; Lecomte, P.; Monflier, E.; Tilloy, S.; Rousseau, C. Ring-Opening Polymerization of ε-Caprolactone in the Presence of wet β-Cyclodextrin: Effect of the Operative Pressure and of Water Molecules in the β-Cyclodextrin Cavity. RSC Adv. 2016, 6, 90290–90299. [Google Scholar] [CrossRef]
- Lis-Cieplak, A.; Charuk, F.; Sobczak, M.; Zgadzaj, A.; Drobniewska, A.; Szeleszczuk, L.; Oledzka, E. Development and Evaluation of Matrices Composed of β-cyclodextrin and Biodegradable Polyesters in the Controlled Delivery of Pindolol. Pharmaceutics 2020, 12, 500. [Google Scholar] [CrossRef] [PubMed]
- Peptu, C.; Blaj, D.-A.; Balan-Porcarasu, M.; Rydz, J. Cyclodextrin-Oligocaprolactone Derivatives—Synthesis and Advanced Structural Characterization by MALDI Mass Spectrometry. Polymers 2022, 14, 1436. [Google Scholar] [CrossRef]
- Shen, Z.; Hai, A.; Du, G.; Zhang, H.; Sun, H. A convenient preparation of 6-oligo(lactic acid)cyclomaltoheptaose as kinetically degradable derivative for controlled release of amoxicillin. Carbohydr. Res. 2008, 343, 2517–2522. [Google Scholar] [CrossRef] [PubMed]
- Miao, Y.; Rousseau, C.; Mortreux, A.; Martin, P.; Zinck, P. Access to new carbohydrate-functionalized polylactides via organocatalyzed ring-opening polymerization. Polymer 2011, 52, 5018–5026. [Google Scholar] [CrossRef]
- Peptu, C.; Balan-Porcarasu, M.; Siskova, A.; Skultety, L.; Mosnacek, J. Cyclodextrins tethered with oligolactides—Green synthesis and structural assessment. Beilstein J. Org. Chem. 2017, 13, 779–792. [Google Scholar] [CrossRef] [Green Version]
- Peptu, C.; Danchenko, M.; Skultety, L.; Mosnacek, J. Structural Architectural Features of Cyclodextrin Oligoesters Revealed by Fragmentation Mass Spectrometry Analysis. Molecules 2018, 23, 2259. [Google Scholar] [CrossRef] [Green Version]
- Blaj, D.A.; Balan-Porcarasu, M.; Petre, B.A.; Harabagiu, V.; Peptu, C. MALDI mass spectrometry monitoring of cyclodextrin-oligolactide derivatives synthesis. Polymer 2021, 233, 124186. [Google Scholar] [CrossRef]
- Bender, M.L.; Komiyama, M. Catalyses by Cyclodextrins Leading to Practical Usages of Cyclodextrins. In Cyclodextrin Chemistry. Reactivity and Structure Concepts in Organic Chemistry; Springer: Berlin/Heidelberg, Germany, 1978; Volume 6, pp. 28–32. [Google Scholar] [CrossRef]
- VanEtten, R.L.; Clowes, G.A.; Sebastian, J.F.; Bender, M.L. The mechanism of the cycloamylose-accelerated cleavage of phenyl esters. J. Am. Chem. Soc. 1967, 89, 3253–3262. [Google Scholar] [CrossRef]
- Kost, B.; Brzezinski, M.; Socka, M.; Basko, M.; Biela, T. Biocompatible Polymers Combined with Cyclodextrins: Fascinating Materials for Drug Delivery Applications. Molecules 2020, 25, 3404. [Google Scholar] [CrossRef] [PubMed]
- Varan, G.; Varan, C.; Erdoğar, N.; Hıncal, A.A.; Bilensoy, E. Amphiphilic cyclodextrin nanoparticles. Int. J. Pharm. 2017, 531, 457–469. [Google Scholar] [CrossRef]
- Caldera, F.; Tannous, M.; Cavalli, R.; Zanetti, M.; Trotta, F. Evolution of Cyclodextrin Nanosponges. Int. J. Phatm. 2017, 531, 470–479. [Google Scholar] [CrossRef] [PubMed]
- Peptu, C.; Diaconu, A.-D.; Danu, M.; Peptu, C.A.; Cristea, M.; Harabagiu, V. The Influence of the Hydroxyl Type on Crosslinking Process in Cyclodextrin Based Polyurethane Networks. Gels 2022, 8, 348. [Google Scholar] [CrossRef]
- Opalkova Siskova, A.; Sacarescu, L.; Opalek, A.; Mosnacek, J.; Peptu, C. Electrospinning of Cyclodextrin–Oligolactide Derivatives. Biomolecules 2023, 13, 203. [Google Scholar] [CrossRef]
- Yamashita, M.; Fenn, J.B. Electrospray ion source. Another variation on the free-jet theme. J. Phys. Chem. 1984, 88, 4451–4459. [Google Scholar] [CrossRef]
- Tanaka, K.; Waki, H.; Ido, Y.; Akita, S.; Yoshida, Y.; Yoshida, T.; Matsuo, T. Protein and polymer analyses up to m/z 100 000 by laser ionization time-of-flight mass spectrometry. Rapid Commun. Mass Spectrom. 1988, 2, 151–153. [Google Scholar] [CrossRef]
- Szente, L.; Szemán, J.; Sohajda, T. Analytical characterization of cyclodextrins: History, official methods and recommended new techniques. J. Pharm. Biomed. Anal. 2016, 130, 347–365. [Google Scholar] [CrossRef]
- Montaudo, G.; Lattimer, R.P. Mass Spectrometry of Polymers; CRC Press: Boca Raton, FL, USA, 2001. [Google Scholar]
- Barner-Kowollik, C.; Gruendling, T.; Falkenhagen, J.; Weidner, S. Mass Spectrometry in Polymer Chemistry, 1st ed.; Wiley: Weinheim, Germany, 2012. [Google Scholar]
- Nielen, M.W.F. Maldi time-of-flight mass spectrometry of synthetic polymers. Mass Spectrom. Rev. 1999, 18, 309–344. [Google Scholar] [CrossRef]
- Hanton, S.D. Mass Spectrometry of Polymers and Polymer Surfaces. Chem. Rev. 2001, 101, 527–570. [Google Scholar] [CrossRef]
- Harvey, D.J. Matrix-assisted laser desorption/ionization mass spectrometry of carbohydrates. Mass Spectrom. Rev. 1999, 18, 349–451. [Google Scholar] [CrossRef]
- Harvey, D.J. Analysis of carbohydrates and glycoconjugates by matrix-assisted laser desorption/ionization mass spectrometry: An update covering the period 1999–2000. Mass Spectrom. Rev. 2006, 25, 595–662. [Google Scholar] [CrossRef] [PubMed]
- Harvey, D.J. Analysis of carbohydrates and glycoconjugates by matrix-assisted laser desorption/ionization mass spectrometry: An update covering the period 2001–2002. Mass Spectrom. Rev. 2008, 27, 125–201. [Google Scholar] [CrossRef] [PubMed]
- Harvey, D.J. Analysis of carbohydrates and glycoconjugates by matrix-assisted laser desorption/ionization mass spectrometry: An update for 2003–2004. Mass Spectrom. Rev. 2009, 28, 273–361. [Google Scholar] [CrossRef]
- Harvey, D.J. Analysis of carbohydrates and glycoconjugates by matrix-assisted laser desorption/ionization mass spectrometry: An update for the period 2005–2006. Mass Spectrom. Rev. 2011, 30, 1–100. [Google Scholar] [CrossRef]
- Harvey, D.J. Analysis of carbohydrates and glycoconjugates by matrix-assisted laser desorption/ionization mass spectrometry: An update for 2007–2008. Mass Spectrom. Rev. 2012, 31, 183–311. [Google Scholar] [CrossRef]
- Harvey, D.J. Analysis of carbohydrates and glycoconjugates by matrix-assisted laser desorption/ionization mass spectrometry: An update for 2009–2010. Mass Spectrom. Rev. 2015, 34, 268–422. [Google Scholar] [CrossRef]
- Harvey, D.J. Analysis of carbohydrates and glycoconjugates by matrix-assisted laser desorption/ionization mass spectrometry: An update for 2011–2012. Mass Spectrom. Rev. 2017, 36, 255–422. [Google Scholar] [CrossRef]
- Harvey, D.J. Analysis of carbohydrates and glycoconjugates by matrix-assisted laser desorption/ionization mass spectrometry: An update for 2013–2014. Mass Spectrom. Rev. 2018, 37, 353–491. [Google Scholar] [CrossRef]
- Harvey, D.J. Analysis of carbohydrates and glycoconjugates by matrix-assisted laser desorption/ionization mass spectrometry: An update for 2015–2016. Mass Spectrom. Rev. 2021, 40, 408–565. [Google Scholar] [CrossRef] [PubMed]
- Harvey, D.J. Analysis of carbohydrates and glycoconjugates by matrix-assisted laser desorption/ionization mass spectrometry: An update for 2017–2018. Mass Spectrom. Rev. 2021, 42, 227–431. [Google Scholar] [CrossRef] [PubMed]
- Bartsch, H.; Konig, W.A.; Strabner, M.; Hintze, U. Quantitative determination of native and methylated cyclodextrins by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. Carbohydr. Res. 1996, 286, 41–53. [Google Scholar] [CrossRef]
- Mercier, J.P.; Debrun, J.L.; Dreux, M.; Elfakir, C.; Hakim, B. Mass spectrometric study of randomly methylated β-cyclodextrins using ionspray, atmospheric pressure chemical ionization and matrix-assisted laser desorption/ionization. Rapid Commun. Mass Spectrom. 2000, 14, 68–70. [Google Scholar] [CrossRef]
- Bashir, S.; Derrick, P.J.; Critchley, P.; Gates, P.J.; Staunton, J. Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry of dextran and dextrin derivatives. Eur. J. Mass Spectrom. 2003, 9, 61–70. [Google Scholar] [CrossRef] [PubMed]
- Jacquet, R.; Favetta, P.; Elfakir, C.; Lafosse, M. Characterization of a new methylated β-cyclodextrin with a low degree of substitution by matrix-assisted laser desorption/ionization mass spectrometry and liquid chromatography using evaporative light scattering detection. J. Chromatogr. A 2005, 1083, 106–112. [Google Scholar] [CrossRef] [PubMed]
- Choi, S.-S.; Lee, H.M.; Jang, S.; Shin, J. Comparison of ionization behaviors of ring and linear carbohydrates in MALDI-TOF MS. Int. J. Mass Spectrom. 2009, 279, 53–58. [Google Scholar] [CrossRef]
- Schonbeck, C.; Westh, P.; Madsen, J.C.; Larsen, K.L.; Stade, L.W.; Holm, R. Hydroxypropyl-Substituted β-Cyclodextrins: Influence of Degree of Substitution on the Thermodynamics of Complexation with Tauroconjugated and Glycoconjugated Bile Salts. Langmuir 2010, 26, 17949–17957. [Google Scholar] [CrossRef]
- Janus, L.; Carbonnier, B.; Morcellet, M.; Ricart, G.; Crini, G.; Deratani, A. Mass Spectrometric Characterization of a New2-Hydroxypropyl-β-cyclodextrin Derivative Bearing Methacrylic Moieties and Its Copolymerization with1-Vinyl-2-pyrrolidone. Macromol. Biosci. 2003, 3, 198–209. [Google Scholar] [CrossRef]
- Pan, C.; Xu, S.; Hu, L.; Su, X.; Ou, J.; Zou, H.; Guo, Z.; Zhang, Y.; Guo, B. Using Oxidized Carbon Nanotubes as Matrix for Analysis of Small Molecules by MALDI-TOF MS. J. Am. Soc. Mass Spectrom. 2005, 16, 883–892. [Google Scholar] [CrossRef] [Green Version]
- Schonbeck, C.; Westh, P.; Madsen, J.C.; Larsen, K.L.; Stade, L.W.; Holm, R. Methylated β-Cyclodextrins: Influence of Degree and Pattern of Substitution on the Thermodynamics of Complexation withTauro- and Glyco-Conjugated Bile Salts. Langmuir 2011, 27, 5832–5841. [Google Scholar] [CrossRef]
- Malanga, M.; Szeman, J.; Fenyvesi, E.; Puskas, I.; Csabai, K.; Gyemant, G.; Fenyvesi, F.; Szente, L. “Back to the Future”: A New Look at HydroxypropylBeta-Cyclodextrins. J. Pharm. Sci. 2016, 105, 2921–2931. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Manta, C.; Peralta-Altier, G.; Gioia, L.; Mendez, M.F.; Seoane, G.; Ovsejevi, K. Synthesis of a Thiol-β-cyclodextrin, a Potential Agent for Controlling Enzymatic Browning in Fruits and Vegetables. J. Agric. Food Chem. 2013, 61, 11603–11609. [Google Scholar] [CrossRef] [PubMed]
- Amini, A.; Rundlöf, T.; Rydberg, M.B.G.; Arvidsson, T. Characterization of sulfated beta-cyclodextrins and determination of enantiomeric purity of (1 R,2S)-ephedrine by capillary zone electrophoresis. J. Sep. Sci. 2004, 27, 1102–1108. [Google Scholar] [CrossRef]
- Cunniff, J.B.; Vouros, P. False positives and the detection of cyclodextrin inclusion complexes by electrospray mass spectrometry. J. Am. Soc. Mass Spectrom. 1995, 6, 437–447. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Salvador, A.; Herbreteau, B.; Dreux, M. Electrospray mass spectrometry and supercritical fluid chromatography of methylated β-cyclodextrins. J. Chromatogr. A 1999, 855, 645–656. [Google Scholar] [CrossRef] [PubMed]
- Jacquet, R.; Elfakir, C.; Lafosse, M. Characterization of a new methylated b-cyclodextrin with a low degree of substitution by electrospray ionization mass spectrometry and liquid chromatography/mass spectrometry. Rapid Commun. Mass Spectrom. 2005, 19, 3097–3102. [Google Scholar] [CrossRef]
- Hubert-Roux, M.; Ba, O.M.; Skiba, M.; Lange, C.M. What structural information can ion trap mass spectrometry bring for the characterization of permethylated cyclodextrins? Rapid Commun Mass Spectrom. 2008, 22, 1607–1610. [Google Scholar] [CrossRef]
- Przybylski, C.; Bonnet, V.; Cezard, C. Probing the common alkali metal affinity of native and variously methylated b-cyclodextrins by combining electrospray-tandem mass spectrometry and molecular modeling. Phys. Chem. Chem. Phys. 2015, 17, 19288–19305. [Google Scholar] [CrossRef] [Green Version]
- Laquintana, V.; Asimb, M.H.; Lopedota, A.; Cutrignellia, A.; Lopalco, A.; Franco, M.; Bernkop-Schnürch, A.; Denora, N. Thiolated hydroxypropyl-β-cyclodextrin as mucoadhesive excipient for oral delivery of budesonide in liquid paediatric formulation. Int. J. Pharm. 2019, 572, 118820. [Google Scholar] [CrossRef]
- Bondarenko, P.V.; Wolf, B.; Cai, H.; Vincent, J.B.; Macfarlane, R.D.; Vigh, G. Characterization of Single-Isomer, Heptasulfated β-Cyclodextrins by Electrospray Ionization Mass Spectrometry and Indirect UV Detection Capillary Electrophoresis. Anal. Chem. 1998, 70, 3042–3045. [Google Scholar] [CrossRef]
- Chen, F.-T.A.; Shen, G.; Evangelista, R.A. Characterization of highly sulfated cyclodextrins. J. Chromatogr. A 2001, 924, 523–532. [Google Scholar] [CrossRef] [PubMed]
- Griffin, W.C. Classification of surface-active agents by HLB. J. Soc. Cosmet. Chem. 1949, 1, 311–326. [Google Scholar]
- Harada, A. Artificial Polymerases and Molecular Chaperones. J. Polym. Sci. Part A Polym. Chem. 2009, 47, 4469–4481. [Google Scholar] [CrossRef]
- Harada, A.; Furue, M.; Nozakura, S. Cyclodextrin-Containing Polymers. 1. Preparation of Polymers. Macromolecules 1976, 9, 5–701. [Google Scholar] [CrossRef]
- Kricheldorf, H.R.; Weidner, S.M. Syntheses of polylactides by means of tin catalysts. Polym. Chem. 2022, 13, 1618. [Google Scholar] [CrossRef]
- Dove, A. Organic Catalysis for Ring-Opening Polymerization. ACS Macro Lett. 2012, 1, 1409–1412. [Google Scholar] [CrossRef]
- Coulembier, O.; De Winter, J.; Josse, T.; Mespouille, L.; Gerbaux, P.; Dubois, P. One-step synthesis of polylactide macrocycles from sparteine-initiated ROP. Polym. Chem. 2014, 5, 2103–2108. [Google Scholar] [CrossRef]
- Metzger, J.W.; Jung, M.; Schmalzing, D.; Bayer, E.; Schurig, V. Analysis of cyclomalto-oligosaccharides (cyclodextrins) and derivatives thereof by ion-spray mass spectrometry. Carbohydr. Res. 1991, 222, 23–35. [Google Scholar] [CrossRef]
- Yamagaki, T.; Ishizuka, Y.; Kawabata, S.; Nakanishi, H. Post-source Decay Fragment Spectra of Cyclomalto-octaose and Branched Cyclomaltohexaose by Matrix-assisted Laser Desorption/Ionization Time-of-flight Mass Spectrometry. Rapid Commun. Mass Spectrom. 1996, 10, 1887–1890. [Google Scholar] [CrossRef]
- Sforza, S.; Galaverna, G.; Corradini, R.; Dossena, A.; Marchelli, R. ESI-mass spectrometry analysis of unsubstituted and disubstituted β-cyclodextrins: Fragmentation mode and identification of the AB, AC, AD regioisomers. J. Am. Soc. Mass Spectrom. 2003, 14, 124–135. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Madhusudanan, K.P. Multiple lithium exchange under lithium cationization of cyclodextrins. J. Mass Spectrom. 2003, 38, 409–416. [Google Scholar] [CrossRef] [PubMed]
- Franski, R.; Gierczyc, B.; Schroeder, G.; Beck, S.; Springer, A.; Linscheid, M. Mass Spectrometric decompositions of cationized β-cyclodextrin. Carbohydr. Res. 2005, 340, 1567–1572. [Google Scholar] [CrossRef] [PubMed]
- Yamagaki, T.; Sugahara, K.; Watanabe, T. Amino and acetamide functional group effects on the ionization and fragmentation of sugar chains in positive-ion mass spectrometry. J. Am. Soc. Mass Spectrom. 2014, 25, 95–103. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Przybylski, C.; Bonnet, V. Discrimination of cyclic and linear oligosaccharides by tandem mass spectrometry using collision-induced dissociation (CID), pulsed-Q-dissociation, and the higher energy C-trap dissociation modes. Rapid Commun. Mass Spectrom. 2013, 27, 75–87. [Google Scholar] [CrossRef]
- He, X.; Wei, W.; Chu, Y.; Liu, Z.; Ding, C. Investigation of non-covalent complexes of cyclodextrins with Li+ in gas phase by mass spectrometry. Chin. J. Chem. Phys. 2013, 26, 287–294. [Google Scholar] [CrossRef] [Green Version]
- Chizhov, A.O.; Tsvetkov, Y.E.; Nifantiev, N.E. Gas-phase fragmentation of cyclic oligosaccharides in tandem mass spectrometry. Molecules 2019, 24, 2226. [Google Scholar] [CrossRef] [Green Version]
- Bruni, P.S.; Schurch, S. Fragmentation mechanisms of protonated cyclodextrins in tandem mass spectrometry. Carbohydr. Res. 2021, 504, 108316. [Google Scholar] [CrossRef]
- Rabus, J.M.; Pellegrinelli, R.P.; Khodr, A.H.A.; Bythell, B.J.; Rizzo, T.R.; Carrascosa, E. Unravelling the structures of sodiated β-cyclodextrin and its fragments. Phys. Chem. Chem. Phys. 2021, 23, 13714–13723. [Google Scholar] [CrossRef]
- Peptu, C.; Harabagiu, V. Tandem Mass Spectrometry Characterization of Esterified Cyclodextrins. Dig. J. Nanomater. Biostructures 2013, 8, 1551–1561. [Google Scholar]
- Domon, B.; Costello, C.E. A systematic nomenclature for carbohydrate fragmentations in FAB-MS/MS spectra of glycoconjugates. Glycoconj. J. 1988, 5, 397–409. [Google Scholar] [CrossRef]
- Koster, S.; Duursma, M.C.; Boon, J.J.; Nielen, M.W.; de Koster, C.G.; Heeren, R.M. Structural analysis of synthetic homo- and copolyesters by electrospray ionization on a Fourier transform ion cyclotron resonance mass spectrometer. Mass Spectrom. 2000, 35, 739–748. [Google Scholar] [CrossRef]
- De Winter, J.; Lemaur, V.; Marsal, P.; Coulembier, O.; Cornil, J.; Dubois, P.; Gerbaux, P. Mechanistic Study of the Collision-Induced Dissociation of Sodium-Cationized Polylactide Oligomers: A Joint Experimental and Theoretical Investigation. J. Am. Soc. Mass Spectrom. 2010, 21, 1159–1168. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- De Winter, J.; Coulembier, O.; Dubois, P.; Gerbaux, P. Collision-induced dissociation of polymer ions: Charge driven decomposition for sodium-cationized polylactides and isomeric end-group distinction. Int. J. Mass Spectrom. 2011, 308, 11–17. [Google Scholar] [CrossRef]
- Wesdemiotis, C.; Solak, N.; Polce, M.J.; Dabney, D.E.; Chaicharoen, K.; Katzenmeyer, B.C. Fragmentation Pathways of Polymer Ions. Mass Spectrom. Rev. 2011, 30, 523–559. [Google Scholar] [CrossRef]
- Jedlinski, Z.; Adamus, G.; Kowalczuk, M.; Schubert, R.; Szewczuk, Z.; Stefanowicz, P. Electrospray Tandem Mass Spectrometry of Poly(3-hydroxybutanoic acid) End Groups Analysis and Fragmentation Mechanism. Rapid Commun. Mass Spectrom. 1998, 12, 357–360. [Google Scholar] [CrossRef]
- Suckau, D.; Resemann, A.; Schuerenberg, M.; Hufnagel, P.; Franzen, J.; Holle, A. A novel MALDI LIFT-TOF/TOF mass spectrometer for proteomics. Anal. Bioanal. Chem. 2003, 376, 952–965. [Google Scholar] [CrossRef]
- Oliva, E.; Mathiron, D.; Rigaud, S.; Monflier, E.; Sevin, E.; Bricout, H.; Tilloy, S.; Gosselet, F.; Fenart, L.; Bonnet, V.; et al. New Lipidyl-Cyclodextrins Obtained by Ring Opening of Methyl Oleate Epoxide Using Ball Milling. Biomolecules 2020, 10, 339. [Google Scholar] [CrossRef] [Green Version]
CD Type | Esterification Agent | Substitution Site | Ionization | Observation | Ref. |
---|---|---|---|---|---|
β-CD | citric acid | OH2 or OH6 | ESI—positive and negative mode | SD determination | [6] |
β-CD | maleic acid itaconic acid | - | MALDI—positive mode | SD determination | [7] |
6-O-tert-butyl- methylsilyl-β-CD | hexanoyl chloride hexanoyl anhydride | OH2 and OH3 | ESI—positive mode | SD determination | [8] |
6-O-tert-butyl- methylsilyl-α-, β-, γ-CD | hexanoyl chloride hexanoyl anhydride | OH2 and OH3 | ESI—positive mode | SD determination | [9] |
Heptakis(6-Br-6-deoxy)-β-CD | acetyl anhydride benzoyl bromide | OH2 and OH3 | ESI—positive mode | structural confirmation (MS, MS/MS) | [10] |
β-CD | capryloyl chloride lauroyl chloride palmitoyl chloride | random substitution | MALDI (DHB) | SD determination | [11] |
β-CD | butanoyl chloride | - | MALDI (CHCA) | SD determination | [12] |
β-CD | phenylacetyl chloride | random substitution | MALDI (DHB) | SD determination | [13] |
β-CD | caproyl chloride | random substitution | MALDI (CHCA) | SD determination | [14] |
β-CD | 2-bromoisobutyryl bromide 2-methyl-2-(((undecyl-thio)carbonothioyl) thio) propanoic acid | substitution at OH6 | MALDI (CHCA) | SD determination | [15] |
γ-CD | acryloyl chloride | random substitution | MALDI | SD determination | [16] |
α-CD, β-CD, γ-CD, maltoheptaose | succinic anhydride | fully substituted at OH 2, 3 and 6 | MALDI (DHB) | Structural confirmation and MS detection (100 fmol) | [17] |
α-CD, γ-CD | acetic anhydride | fully substituted at OH 2, 3 and 6 | MALDI | Structural confirmation | [18] |
β-CD | methacrylic anhydride | random substitution | MALDI | SD determination | [19] |
β-CD | palmitoyl anhydride | OH2 and OH3 | MALDI (IAA, THAP) | Structural confirmation | [20] |
β-CD | 3-((E)-dec-2-enyl)-di- hydrofuran-2,5-dione | monosubstituted at OH6 | MALDI | Structural confirmation | [21] |
γ-CD | succinic anhydride | random substitution | MALDI (CHCA) | SD determination | [22] |
heptakis(2-O-benzyl-3-O-methyl)-β-CD | acetic anhydride | selective substitution at OH6 | MALDI (THAP) | Structural confirmation | [23] |
β-CD | 1-methyl-2-(2′-carboxyethyl) maleic anhydride | - | MALDI | SD determination | [24] |
β-CD | succinic anhydride based bis-pyridinium gemini surfactants | monosubstituted at OH6 | ESI—positive mode | Accurate measurements, MS/MS | [25] |
β-CD | divinyl dibutanoate divinyl dihexanoate divinyl didecanoate | monosubstituted at OH2 | ESI—negative mode | SD determination | [26] |
α-CD, β-CD, γ-CD | vinyl butyrate vinyl decanoate vinyl laurate | OH2 or random | MALDI (CHCA) ESI—positive mode | SD determination | [5] |
β-CD | vinyl hexanoate vinyl decanoate | OH2 | MALDI (DHB, CHCA) | SD determination | [27] |
β-CD | vinyl butyric ester vinyl caproic ester vinyl caprylic ester vinyl capric ester vinyl lauric ester vinyl myristic ester | OH2 | MALDI (DHB, CHCA) | SD determination | [28] |
β-CD | vinyl acetate vinyl laurate | OH2 | MALDI (CHCA) | SD determination | [29] |
β-CD | vinyl butyric ester vinyl caproic ester vinyl caprylic ester vinyl capric ester vinyl lauric ester | OH2 | ESI—positive mode | LC ESI MS analysis with LC ELSD confirmation | [30] |
α-CD, β-CD, γ-CD | vinyl decanoate | OH2 | MALDI (DHB) | SD determination, HLB-MALDI mesurement | [31] |
α-CD, β-CD, γ-CD | vinyl laurate vinyl butyrate vinyl pivalate vinyl benzoate vinyl stearate | monosubstituted at OH2 | MALDI (DHB) | Structural confirmation | [32] |
β-CD | vinyl decanoate | OH2 | MALDI | SD determination | [33] |
β-CD | vinyl octanoate vinyl decanoate vinyl dodecanoate vinyl myristate | OH2 | MALDI | SD determination | [34] |
α-CD | m-nitrophenyl cinnamate | monosubstituted at OH2 or OH3 | MALDI ESI—positive mode | Structural confirmation and proof for supramolecular interactions | [35] |
α-CD, β-CD, γ-CD | 4-nitrophenol-acrylate 4-nitrophenol-pent-4- enoate 4-nitrophenol-undec- 10-enoate | random substitution | MALDI (CHCA) | Structural confirmation—MS and MS/MS | [36] |
CD Type | Esterification Agent | Substitution Site | Ionization | Observation | Ref. |
---|---|---|---|---|---|
α-CD, β-CD, γ-CD, mono-2-O-(6-benzoxy-pentanoyl)-β-CD | β-butyrolactone δ-valerolactone ε-caprolactone | OH2 | MALDI (DHB) | Structural confirmation | [37,38,39] |
cinnamoyl-α-CD | δ-valerolactone | OH2 | MALDI | Structural confirmation | [40] |
β-CD | β-butyrolactone | random substitution | ESI—positive mode | structural confirmation (MS, MS/MS), LC MS, number of oligoester arms—MS and NMR | [41] |
dihydroxyl per-O-benzyl-β-CD | rac-Lactide rac-butyrolactone | OH6 | MALDI (CHCA) | Structural confirmation | [42] |
β-CD | β-butyrolactone | mainly at OH6 | ESI—positive mode | Structural confirmation—LC MS, number of oligoester arms—MS and NMR | [43] |
β-CD | ε-caprolactone | - | MALDI | Structural confirmation of CD derivatives and side products | [44] |
β-CD | D,L-lactide L-lactide ε-caprolactone | random substitution | MALDI (DHB, HABA) | Structural confirmation | [45] |
β-CD | ε-caprolactone | random substitution | MALDI (DHB, CHCA) | Structural confirmation (MS, MS/MS), MS kinetics with NMR confirmation, number of oligoester arms—MS and NMR | [46] |
β-CD | lactide | OH6 | ESI—positive mode | Structural confirmation | [47] |
Dihydroxyl per-O-benzyl-β-CD | D,L-lactide | OH6 | MALDI (dithranol) | Structural confirmation | [48] |
α-CD, β-CD, γ-CD | L-lactide | OH6 | MALDI (CHCA) ESI—positive mode | Structural confirmation, LC with ELSD detection and offline MALDI MS, number of oligoester arms—MS and NMR | [49] |
β-CD | L-lactide | OH6 | MALDI (CHCA) ESI—positive mode | Structural confirmation and oligoester arms length by MS/MS | [50,58] |
β-CD | D,L-lactide | OH6 | MALDI (DHB, CHCA) | Structural confirmation (MS, MS/MS), MS kinetics with NMR confirmation, number of oligoester arms—MS and NMR | [51] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Blaj, D.-A.; Kowalczuk, M.; Peptu, C. Mass Spectrometry of Esterified Cyclodextrins. Molecules 2023, 28, 2001. https://doi.org/10.3390/molecules28052001
Blaj D-A, Kowalczuk M, Peptu C. Mass Spectrometry of Esterified Cyclodextrins. Molecules. 2023; 28(5):2001. https://doi.org/10.3390/molecules28052001
Chicago/Turabian StyleBlaj, Diana-Andreea, Marek Kowalczuk, and Cristian Peptu. 2023. "Mass Spectrometry of Esterified Cyclodextrins" Molecules 28, no. 5: 2001. https://doi.org/10.3390/molecules28052001
APA StyleBlaj, D. -A., Kowalczuk, M., & Peptu, C. (2023). Mass Spectrometry of Esterified Cyclodextrins. Molecules, 28(5), 2001. https://doi.org/10.3390/molecules28052001