Two Fast GC-MS Methods for the Measurement of Nicotine, Propylene Glycol, Vegetable Glycol, Ethylmaltol, Diacetyl, and Acetylpropionyl in Refill Liquids for E-Cigarettes
Abstract
:1. Introduction
2. Results and Discussion
2.1. Method Development
2.2. Method Validation
2.2.1. Selectivity and Specificity
2.2.2. Fitted Models
2.2.3. Accuracy and Precision
2.2.4. Stability and Robustness
2.2.5. Carry-over
2.2.6. Screening and Quantification of E-Liquid Samples
3. Materials and Methods
3.1. Chemicals and Reagents
3.2. E-Liquid Samples
3.3. Preparation of Standard Solutions
3.4. Sample Preparation
3.5. Instrumentation
3.6. Method Validation
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Sample Availability
References
- Kim, H.; Lim, J.; Buehler, S.S.; Brinkman, M.C.; Johnson, N.M.; Wilson, L.; Cross, K.S.; Clark, P.I. Role of sweet and other flavours in liking and disliking of electronic cigarettes. Tob. Control. 2016, 25, ii55–ii61. [Google Scholar] [CrossRef] [Green Version]
- National Academies of Sciences, Engineering, and Medicine. New Report One of the Most Comprehensive Studies on Health Effects of E-Cigarettes: Finds that Using E-Cigarettes May Lead Youth to Start Smoking, Adults to Stop Smoking—ScienceDaily. Available online: https://www.sciencedaily.com/releases/2018/01/180123121043.htm (accessed on 3 June 2022).
- Leigh, N.J.; Lawton, R.I.; Hershberger, P.A.; Goniewicz, M.L. Flavorings significantly affect inhalation toxicity of aerosol generated from electronic nicotine delivery systems (ENDS). Tob. Control. 2016, 25, ii81. [Google Scholar] [CrossRef] [Green Version]
- Behar, R.Z.; Luo, W.; Mcwhirter, K.J.; Pankow, J.F.; Talbot, P. Analytical and toxicological evaluation of flavor chemicals in electronic cigarette refill fluids OPEN. Sci. Rep. 2018, 8, 8288. [Google Scholar] [CrossRef] [Green Version]
- Larcombe, A.; Allard, S.; Pringle, P.; Mead-Hunter, R.; Anderson, N.; Mullins, B. Chemical analysis of fresh and aged Australian e-cigarette liquids. Med. J. Aust. 2022, 216, 27–32. [Google Scholar] [CrossRef]
- Page, M.K.; Goniewicz, M.L.; Thornburg, J.; Petters, S.; Kovach, A. New Analytical Method for Quantifying Flavoring Chemicals of Potential Respiratory Health Risk Concerns in e-Cigarette Liquids. Front. Chem. 2021, 9, 763940. [Google Scholar] [CrossRef]
- Bitzer, Z.T.; Goel, R.; Reilly, S.M.; Elias, R.J.; Silakov, A.; Foulds, J.; Muscat, J.; Richie, J.P., Jr. Effect of Flavoring Chemicals on Free Radical Formation in Electronic Cigarette Aerosols. Free Radic. Biol. Med. 2018, 20, 72–79. [Google Scholar] [CrossRef]
- Omaiye, E.E.; Luo, W.; Mcwhirter, K.J.; Pankow, J.F.; Talbot, P. Electronic Cigarette Refill Fluids Sold Worldwide: Flavor Chemical Composition, Toxicity and Hazard Analysis Graphical Abstract. Chem. Res. Toxicol. 2020, 33, 2972–2987. [Google Scholar] [CrossRef]
- Omaiye, E.E.; Mcwhirter, K.J.; Luo, W.; Pankow, J.F.; Talbot, P. High Nicotine Electronic Cigarette Products: Toxicity of JUUL Fluids and Aerosols Correlates Strongly with Nicotine and Some Flavor Chemical Concentrations HHS Public Access. Chem. Res. Toxicol. 2019, 32, 1058–1069. [Google Scholar] [CrossRef] [Green Version]
- Hua, M.; Omaiye, E.E.; Luo, W.; Mcwhirter, K.J.; Pankow, J.F.; Talbot, P. Identification of Cytotoxic Flavor Chemicals in Top-Selling Electronic Cigarette Refill Fluids. Sci. Rep. 2019, 9, 2782. [Google Scholar] [CrossRef] [Green Version]
- Miao, S.; Beach Phd, E.S.; Sommer, T.J.; Zimmerman, J.B.; Jordt, S.-E. High-Intensity Sweeteners in Alternative Tobacco Products. Nicotine Tob. Res. 2016, 18, 2169–2173. [Google Scholar] [CrossRef] [Green Version]
- Duell, A.K.; Pankow, J.F.; Peyton, D.H. Free-Base Nicotine Determination in Electronic Cigarette Liquids by 1H NMR Spectroscopy. Chem. Res. Toxicol. 2018, 31, 431–434. [Google Scholar] [CrossRef]
- Rajapaksha, R.D.; Tehrani, M.W.; Rule, A.M.; Harb, C.C. A Rapid and Sensitive Chemical Screening Method for E-Cigarette Aerosols Based on Runtime Cavity Ringdown Spectroscopy. Environ. Sci. Technol 2021, 55, 8096. [Google Scholar] [CrossRef]
- Miller, D.R.; Buettner-Schmidt, K.; Orr, M.; Rykal, K.; Niewojna, E. A systematic review of refillable e-liquid nicotine content accuracy. J. Am. Pharm. Assoc. 2021, 61, 20–26. [Google Scholar] [CrossRef]
- Omaiye, E.E.; Mcwhirter, K.J.; Luo, W.; Tierney, P.A.; Pankow, J.F.; Talbot, P. High concentrations of flavor chemicals are present in electronic cigarette refill fluids. Sci. Rep. 2019, 9, 2468. [Google Scholar] [CrossRef] [Green Version]
- Klager, S.; Vallarino, J.; Macnaughton, P.; Christiani, D.C.; Lu, Q.; Allen, J.G. Flavoring Chemicals and Aldehydes in E-Cigarette Emissions. Environ. Sci. Technol. 2017, 51, 10806–10813. [Google Scholar] [CrossRef]
- Melvin, M.S.; Avery, K.C.; Ballentine, R.M.; Flora, J.W.; Gardner, W.; Karles, G.D.; Pithawalla, Y.B.; Smith, D.C.; Ehman, K.D.; Wagner, K.A. Formation of Diacetyl and Other α-Dicarbonyl Compounds during the Generation of E-Vapor Product Aerosols. ACS Omega 2020, 5, 17565–17575. [Google Scholar] [CrossRef]
- Kanwal, R.; Kullman, G.; Piacitelli, C.; Boylstein, R.; Sahakian, N.; Martin, S.; Fedan, K.; Kreiss, K. Evaluation of flavorings-related lung disease risk at six microwave popcorn plants. J. Occup. Environ. Med. 2006, 48, 149–157. [Google Scholar] [CrossRef] [PubMed]
- Athleen, K.; Reiss, K.; Omaa, H.G.; Ullman, R.K.; Edan, F.; Duardo, E.; Imoes, J.S.; Aul, P.; Nright, L.E. Clinical Bronchiolitis Obliterans in Workers at a Microwave-Popcorn Plant. N. Engl. J. Med. 2002, 347, 330–338. [Google Scholar] [CrossRef] [Green Version]
- Shibamoto, T. Diacetyl: Occurrence, Analysis, and Toxicity. J. Agric. Food Chem. 2014, 62, 4048–4053. [Google Scholar] [CrossRef] [PubMed]
- More, S.S.; Vartak, A.P.; Vince, R. The butter flavorant, diacetyl, exacerbates β-amyloid cytotoxicity. Chem. Res. Toxicol. 2012, 25, 2083–2091. [Google Scholar] [CrossRef] [PubMed]
- Barhdadi, S.; Canfyn, M.; Courselle, P.; Rogiers, V.; Vanhaecke, T.; Deconinck, E. Development and validation of a HS/GC–MS method for the simultaneous analysis of diacetyl and acetylpropionyl in electronic cigarette refills. J. Pharm. Biomed. Anal. 2017, 142, 218–224. [Google Scholar] [CrossRef] [PubMed]
- Farsalinos, K.E.; Kistler, K.A.; Gillman, G.; Voudris, V. Evaluation of electronic cigarette liquids and aerosol for the presence of selected inhalation toxins. Nicotine Tob. Res. 2015, 17, 168–174. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Crenshaw, M.D.; Tefft, M.E.; Buehler, S.S.; Brinkman, M.C.; Clark, P.I.; Gordon, S.M. Determination of Nicotine, Glycerol, Propylene Glycol and Water in Electronic Cigarette Fluids Using Quantitative 1 H NMR. Magn. Reson. Chem. 2016, 54, 901–904. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Beauval, N.; Antherieu, S.; Soyez, M.; Gengler, N.; Grova, N.; Howsam, M.; Hardy, E.M.; Fischer, M.; Appenzeller, B.M.R.; Goossens, J.-F.; et al. Chemical Evaluation of Electronic Cigarettes: Multicomponent Analysis of Liquid Refills and their Corresponding Aerosols. J. Anal. Toxicol. 2017, 41, 670–678. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kucharska, M.; Wesołowski, W.; Czerczak, S.; Soćko, R. Testing of the composition of e-cigarette liquids—Manufacturer-declared vs. true contents in a selected series of products. Med. Pr. 2016, 67, 239–253. [Google Scholar] [CrossRef]
Compounds | Best-fit Values | Std. Error | R2 | Sy.x | ||||
---|---|---|---|---|---|---|---|---|
B0 | B1 | B2 | B0 | B1 | B2 | |||
PG | 0.04949 | 8.299 | –0.06763 | 0.04882 | 0.3841 | 0.04899 | 0.9994 | 0.2195 |
VG | 0.2189 | 0.1991 | 0.000476 | 0.3863 | 0.0183 | 0.000173 | 0.9990 | 0.4298 |
EM | –0.02828 | 0.7924 | –0.2316 | 0.01217 | 0.09273 | 0.1516 | 0.9990 | 0.005673 |
Nicotine | 0.000615 | 0.2408 | –0.00391 | 0.06438 | 0.01515 | 0.000681 | 0.998 | 0.05609 |
Substance (Levels) | Accuracy (%E, n = 3) | Precision (%RSD, n = 3) | Stability (%RSD, n = 3) | Robustness (%RSD, n = 3) | ||
---|---|---|---|---|---|---|
Intra-day | Inter-day | Repeatability | Intermediate Precision | |||
PG (mL/10 mL) | ||||||
2 | 1.05 | 5.35 | 2.7 | 1.1 | 2.4 | |
5 | −5.63 | −7.53 | 7.3 | 2.8 | 5.2 | <1.2 |
10 | 2.55 | 3.05 | 3.0 | 2.5 | 3.2 | |
VG (mL/10 mL) | ||||||
2 | 5.47 | 2.36 | 3.4 | 4.3 | 2.5 | |
5 | 2.51 | –5.2 | 4.1 | 1.2 | 5.0 | <2.0 |
10 | 6.24 | 2.84 | 0.3 | 3.5 | 2.9 | |
EM (mg/mL) | ||||||
0.1 | 2.1 | 0.05 | 1.7 | 1.9 | 1.5 | |
0.3 | 2.79 | 2.34 | 2.3 | 1.8 | 1.8 | <1.3 |
0.5 | −2.51 | −1.58 | 3.4 | 3.5 | 2.1 | |
Nicotine (mg/mL) | ||||||
3 | 0.02 | 3.15 | 0.7 | 0.0 | 1.0 | |
12 | 3.66 | 7.53 | 5.3 | 1.7 | 1.6 | <1.27 |
20 | −1.95 | −5 | 5.0 | 1.5 | 1.2 | |
DA (μg/mL) | ||||||
5 | 1.23 | 2.65 | 2.4 | 4.5 | 2.6 | <2.4 |
AP (μg/mL) | ||||||
5 | −0.59 | 2.36 | 1.3 | 1.1 | 1.6 | <1.9 |
Samples | PG % w/v | VG % w/v | Nicotine % w/v | EM % w/v | |||
---|---|---|---|---|---|---|---|
Claimed | Calcd. (%E) | Claimed | Calcd. (%E) | Claimed | Calcd. (%E) | Calcd. | |
Sample_1 | 70 | 68.6 (2.0) | 30 | 29.6 (1.2) | 1.8 | 1.7 (5.6) | 0.003 |
Sample_2 | 70 | 67.7 (3.2) | 30 | 31.6 (–5.4) | 0.6 | 0.6 (0.0) | 0.004 |
Sample_3 | 70 | 75.0 (–7.1) | 30 | 25.0 (16.8) | 0.0 | 0.0 (0.0) | 0.001 |
Sample_4 | 70 | 64.4 (8.0) | 30 | 34.4 (–14.8) | 1.2 | 1.1 (8.3) | 0.002 |
Sample_5 | 60 | 55.2 (8.0) | 40 | 42.8 (–7.1) | 1.8 | 1.8 (0.0) | 0.171 |
Sample_6 | 60 | 56.6 (5.7) | 40 | 41.6 (–4.0) | 1.8 | 1.8 (0.0) | 0.006 |
Sample_7 | 60 | 56.5 (5.9) | 40 | 42.4 (–5.9) | 1.2 | 1.2 (0.0) | 0.02 |
Sample_8 | 60 | 70.1 (–16.8) | 40 | 29.9 (25.4) | 0.0 | 0.0 (0.0) | 0.003 |
Sample_9 | 70 | 69.6 (0.5) | 30 | 29.3 (2.4) | 1.2 | 1.1 (8.3) | 0.002 |
Sample_10 | 70 | 70.5 (–0.7) | 30 | 28.9 (3.8) | 0.6 | 0.6 (0.0) | 0.006 |
Sample_11 | 50 | 53.0 (–6.0) | 50 | 45.7 (8.6) | 1.2 | 1.3 (–8.3) | 0.012 |
Sample_12 | 50 | 46.5 (6.9) | 50 | 53.0 (–5.9) | 0.6 | 0.5 (16.7) | 0.000 |
Sample_13 | 50 | 50.5 (–0.9) | 50 | 49.2 (1.5) | 0.3 | 0.3 (0.0) | 0.009 |
Sample_14 | 50 | 48.4 (3.2) | 50 | 51.3 (–2.6) | 0.3 | 0.3 (0.0) | 0.000 |
Sample_15 | 50 | 47.2 (5.6) | 50 | 52.1 (–4.3) | 0.6 | 0.6 (0.0) | 0.11 |
Sample_16 | 70 | 71.7 (–2.5) | 30 | 27.0 (9.9) | 1.2 | 1.2 (0.0) | 0.01 |
Sample_17 | 50 | 47.7 (4.7) | 50 | 51.1 (–2.1) | 1.2 | 1.3 (–8.3) | 0.000 |
Sample_18 | 0 | 7.8 (0.0) | 100 | 91.7 (8.3) | 0.6 | 0.5 (16.7) | 0.013 |
Sample_19 | 70 | 65.5 (6.4) | 30 | 33.0 (–9.9) | 1.8 | 1.5 (16.7) | 0.000 |
Sample_20 | 70 | 74.5 (–6.5) | 30 | 23.9 (20.2) | 1.8 | 1.3 (27.8) | 0.18 |
Sample_21 | 100 | 100.0 (0.0) | 0 | 0.0 (0.0) | 0.0 | 0.0 (0.0) | 0.000 |
Sample_22 | 70 | 81.7 (–16.6) | 30 | 17.0 (43.4) | 1.2 | 1.4 (–16.7) | 0.000 |
Sample_23 | 70 | 66.6 (4.8) | 30 | 31.3 (–4.4) | 1.8 | 2.0 (–11.1) | 0.000 |
Sample_24 | 0 | 0.0 (0.0) | 100 | 94.2 (5.8) | 0.6 | 0.6 (0) | 0.000 |
Sample_25 | 50 | 44.6 (10.9) | 50 | 53.7 (–7.4) | 1.2 | 1.7 (–41.7) | 0.000 |
Sample_26 | 50 | 45.0 (9.9) | 50 | 54.3 (–8.5) | 0.6 | 0.7 (–16.7) | 0.000 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dagla, I.; Gikas, E.; Tsarbopoulos, A. Two Fast GC-MS Methods for the Measurement of Nicotine, Propylene Glycol, Vegetable Glycol, Ethylmaltol, Diacetyl, and Acetylpropionyl in Refill Liquids for E-Cigarettes. Molecules 2023, 28, 1902. https://doi.org/10.3390/molecules28041902
Dagla I, Gikas E, Tsarbopoulos A. Two Fast GC-MS Methods for the Measurement of Nicotine, Propylene Glycol, Vegetable Glycol, Ethylmaltol, Diacetyl, and Acetylpropionyl in Refill Liquids for E-Cigarettes. Molecules. 2023; 28(4):1902. https://doi.org/10.3390/molecules28041902
Chicago/Turabian StyleDagla, Ioanna, Evagelos Gikas, and Anthony Tsarbopoulos. 2023. "Two Fast GC-MS Methods for the Measurement of Nicotine, Propylene Glycol, Vegetable Glycol, Ethylmaltol, Diacetyl, and Acetylpropionyl in Refill Liquids for E-Cigarettes" Molecules 28, no. 4: 1902. https://doi.org/10.3390/molecules28041902
APA StyleDagla, I., Gikas, E., & Tsarbopoulos, A. (2023). Two Fast GC-MS Methods for the Measurement of Nicotine, Propylene Glycol, Vegetable Glycol, Ethylmaltol, Diacetyl, and Acetylpropionyl in Refill Liquids for E-Cigarettes. Molecules, 28(4), 1902. https://doi.org/10.3390/molecules28041902