Ultrarapid Microwave-Assisted Synthesis of Fluorescent Silver Coordination Polymer Nanoparticles and Its Application in Detecting Alkaline Phosphatase Activity
Abstract
:1. Introduction
2. Results and Discussion
2.1. Synthesis and Characterization of Ag-TPA CPNs
2.2. The Feasibility of Fluorescent “Turn-Off” Detection of ALP Activity Using Ag-TPA CPNs
2.3. The Possible Mechanism of Fluorescent “Turn-Off” Detection of ALP Activity
2.4. Optimization of the Experimental Conditions
2.5. The Performance of Fluorescent “Turn-Off” Detection of ALP Activity
2.6. The Selectivity of the Fluorescent “Turn-Off” Detection of ALP Activity
2.7. Fluorescent “Turn-Off” Detection of ALP Activity in Serum Samples
3. Conclusions
4. Materials and Methods
4.1. Materials and Reagents
4.2. Instrumentation
4.3. Synthesis of Fluorescent Ag-TPA CPNs
4.4. Fluorescent “Turn-Off” Detection of ALP Activity Using Ag-TPA CPNs
4.5. Fluorescent “Turn-Off” Detection of ALP Activity in Real Goat Serum Samples
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Li, S.J.; Li, C.Y.; Li, Y.F.; Fei, J.; Wu, P.; Yang, B.; Ou-Yang, J.; Nie, S.X. Facile and sensitive near-infrared fluorescence probe for the detection of endogenous alkaline phosphatase activity in vivo. Anal. Chem. 2017, 89, 6854–6860. [Google Scholar] [CrossRef] [PubMed]
- Du, S.Z.; Sun, Z.; Qing, M.; Wang, L.; Tang, Q.; Zhou, J.; Luo, H.Q.; Li, N.B. Infinite coordination polymer nanoparticles used for fluorescence turn-on sensing of ascorbic acid. ACS Appl. Nano Mater. 2021, 4, 6872–6880. [Google Scholar] [CrossRef]
- Fan, Y.; Lv, M.; Xue, Y.; Li, J.; Wang, E. In situ fluorogenic reaction generated via ascorbic acid for the construction of universal sensing platform. Anal. Chem. 2021, 93, 6873–6880. [Google Scholar] [CrossRef] [PubMed]
- Zeng, H.-H.; Liu, F.; Peng, Z.-Q.; Yu, K.; Rong, L.-Q.; Wang, Y.; Wu, P.; Liang, R.-P.; Qiu, J.-D. Lanthanide phosphate nanoparticle-based one-step optical discrimination of alkaline phosphatase activity. ACS Appl. Nano Mater. 2020, 3, 2336–2345. [Google Scholar] [CrossRef]
- Deng, J.; Yu, P.; Wang, Y.; Mao, L. Real-time ratiometric fluorescent assay for alkaline phosphatase activity with stimulus responsive infinite coordination polymer nanoparticles. Anal. Chem. 2015, 87, 3080–3086. [Google Scholar] [CrossRef]
- Ruan, C.; Wang, W.; Gu, B. Detection of alkaline phosphatase using surface-enhanced raman spectroscopy. Anal. Chem. 2006, 78, 3379–3384. [Google Scholar] [CrossRef]
- Sun, J.; Zhao, J.; Bao, X.; Wang, Q.; Yang, X. Alkaline phosphatase assay based on the chromogenic interaction of diethanolamine with 4-aminophenol. Anal. Chem. 2018, 90, 6339–6345. [Google Scholar] [CrossRef]
- Song, Z.; Kwok, R.T.; Zhao, E.; He, Z.; Hong, Y.; Lam, J.W.; Liu, B.; Tang, B.Z. A ratiometric fluorescent probe based on ESIPT and AIE processes for alkaline phosphatase activity assay and visualization in living cells. ACS Appl. Mater. Interfaces. 2014, 6, 17245–17254. [Google Scholar] [CrossRef]
- Kim, C.-Y.; Shaban, S.M.; Cho, S.-Y.; Kim, D.-H. Detection of periodontal disease marker with geometrical transformation of Ag nanoplates. Anal. Chem. 2023, 95, 2356–2365. [Google Scholar] [CrossRef]
- Goggins, S.; Naz, C.; Marsh, B.J.; Frost, C.G. Ratiometric electrochemical detection of alkaline phosphatase. Chem. Commun. 2015, 51, 561–564. [Google Scholar] [CrossRef] [Green Version]
- Suginta, W.; Khunkaewla, P.; Schulte, A. Electrochemical biosensor applications of polysaccharides chitin and chitosan. Chem. Rev. 2013, 113, 5458–5479. [Google Scholar] [CrossRef] [PubMed]
- Hasegawa, T.; Sugita, M.; Takatani, K.; Matsuura, H.; Umemura, T.; Haraguchi, H. Assay of alkaline phosphatase in salmon egg cell cytoplasm with fluorescence detection of enzymatic activity and zinc detection by ICP-MS in relation to metallomics research. Bull. Chem. Soc. Jpn. 2006, 79, 1211–1214. [Google Scholar] [CrossRef]
- Liu, X.; Fan, N.; Wu, L.; Wu, C.; Zhou, Y.; Li, P.; Tang, B. Lighting up alkaline phosphatase in drug-induced liver injury using a new chemiluminescence resonance energy transfer nanoprobe. Chem. Commun. 2018, 54, 12479–12482. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.Y.; Wu, M.X.; Ding, S.N. Anodic electrochemiluminescence from CsPbBr3 perovskite quantum dots for an alkaline phosphatase assay. Chem. Commun. 2020, 56, 8099–8102. [Google Scholar] [CrossRef] [PubMed]
- Chen, C.; Zhao, J.; Lu, Y.; Sun, J.; Yang, X. Fluorescence immunoassay based on the phosphate-triggered fluorescence turn-on detection of alkaline phosphatase. Anal. Chem. 2018, 90, 3505–3511. [Google Scholar] [CrossRef] [PubMed]
- Peng, C.; Xue, Y.; Zhu, X.; Fan, Y.; Li, J.; Wang, E. Midas touch: Engineering activity of metal-organic frameworks via coordination for biosensing. Anal. Chem. 2022, 94, 1465–1473. [Google Scholar] [CrossRef]
- Li, D.; Lv, P.; Han, X.W.; Jia, Z.; Zheng, M.; Feng, H.T. A highly efficient fluorescent sensor based on AIEgen for detection of nitrophenolic explosives. Molecules 2022, 28, 181. [Google Scholar] [CrossRef]
- Ji, Y.; Li, G.; Wang, J.; Piao, C.; Zhou, X. Recent progress in identifying bacteria with fluorescent probes. Molecules 2022, 27, 6440. [Google Scholar] [CrossRef]
- Chen, Y.; Li, W.; Wang, Y.; Yang, X.; Chen, J.; Jiang, Y.; Yu, C.; Lin, Q. Cysteine-directed fluorescent gold nanoclusters for the sensing of pyrophosphate and alkaline phosphatase. J. Mater. Chem. C 2014, 2, 4080–4085. [Google Scholar] [CrossRef]
- Ni, P.; Chen, C.; Jiang, Y.; Zhang, C.; Wang, B.; Cao, B.; Li, C.; Lu, Y. Gold nanoclusters-based dual-channel assay for colorimetric and turn-on fluorescent sensing of alkaline phosphatase. Sens. Actuators B Chem. 2019, 301, 127080–127086. [Google Scholar] [CrossRef]
- Yu, K.; Wei, T.; Li, Z.; Li, J.; Wang, Z.; Dai, Z. Construction of molecular sensing and logic systems based on site-occupying effect-modulated MOF-DNA interaction. J. Am. Chem. Soc. 2020, 142, 21267–21271. [Google Scholar] [CrossRef] [PubMed]
- Gao, N.; Zhang, Y.; Huang, P.; Xiang, Z.; Wu, F.Y.; Mao, L. Perturbing tandem energy transfer in luminescent heterobinuclear lanthanide coordination polymer nanoparticles enables real-time monitoring of release of the anthrax biomarker from bacterial spores. Anal. Chem. 2018, 90, 7004–7011. [Google Scholar] [CrossRef]
- Jiang, H.L.; Xu, Q. Porous metal-organic frameworks as platforms for functional applications. Chem. Commun. 2011, 47, 3351–3370. [Google Scholar] [CrossRef] [PubMed]
- Hu, Z.; Deibert, B.J.; Li, J. Luminescent metal-organic frameworks for chemical sensing and explosive detection. Chem. Soc. Rev. 2014, 43, 5815–5840. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, B.; Huang, Y.; Zhu, X.; Hao, Y.; Ding, Y.; Wei, W.; Wang, Q.; Qu, P.; Xu, M. Smart lanthanide coordination polymer fluorescence probe for mercury(II) determination. Anal. Chim. Acta. 2016, 912, 139–145. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Zou, Q.; Yuan, C.; Li, S.; Xing, R.; Yan, X. Amino acid coordination driven self-assembly for enhancing both the biological stability and tumor accumulation of curcumin. Angew. Chem. Int. Ed. 2018, 57, 17084–17088. [Google Scholar] [CrossRef] [PubMed]
- Suárez-García, S.; Solórzano, R.; Novio, F.; Alibés, R.; Busqué, F.; Ruiz-Molina, D. Coordination polymers nanoparticles for bioimaging. Coord. Chem. Rev. 2021, 432, 213716–213740. [Google Scholar] [CrossRef]
- Liang, H.; Lin, F.; Zhang, Z.; Liu, B.; Jiang, S.; Yuan, Q.; Liu, J. Multicopper laccase mimicking nanozymes with nucleotides as ligands. ACS Appl. Mater. Interfaces 2017, 9, 1352–1360. [Google Scholar] [CrossRef]
- Li, G.; Tong, C. Dual-functional lanthanide metal organic frameworks for visual and ultrasensitive ratiometric fluorescent detection of phosphate based on aggregation-induced energy transfer. Anal. Chim. Acta. 2020, 1133, 11–19. [Google Scholar] [CrossRef]
- Wang, F.; Hu, X.; Hu, J.; Peng, Q.; Zheng, B.; Du, J.; Xiao, D. Fluorescence assay for alkaline phosphatase activity based on energy transfer from terbium to europium in lanthanide coordination polymer nanoparticles. J. Mater. Chem. B 2018, 6, 6008–6015. [Google Scholar] [CrossRef]
- Fernandes, T.A.; Costa, I.F.M.; Jorge, P.; Sousa, A.C.; Andre, V.; Cerca, N.; Kirillov, A.M. Silver(I) coordination polymers immobilized into biopolymer films for antimicrobial applications. ACS Appl. Mater. Interfaces 2021, 13, 12836–12844. [Google Scholar] [CrossRef] [PubMed]
- Shibata, S.; Tsuge, K.; Sasaki, Y.; Ishizaka, S.; Kitamura, N. Directional energy transfer in mixed-metallic copper(I)-silver(I) coordination polymers with strong luminescence. Inorg. Chem. 2015, 54, 9733–9739. [Google Scholar] [CrossRef] [PubMed]
- Li, J.X.; Qin, Z.B.; Li, Y.H.; Cui, G.H. Sonochemical synthesis and properties of two new nanostructured silver(I) coordination polymers. Ultrason. Sonochem. 2018, 48, 127–135. [Google Scholar] [CrossRef] [PubMed]
- Tokura, Y.; Moriyama, Y.; Hiruta, Y.; Shiratori, S. Paper-based assay for ascorbic acid based on the formation of Ag nanoparticles in layer-by-layer multilayers. ACS Appl. Nano Mater. 2018, 2, 241–249. [Google Scholar] [CrossRef]
- Peng, J.; Ling, J.; Zhang, X.-Q.; Zhang, L.-Y.; Cao, Q.-E.; Ding, Z.-T. A rapid, sensitive and selective colorimetric method for detection of ascorbic acid. Sens. Actuators B Chem. 2015, 221, 708–716. [Google Scholar] [CrossRef]
- Huang, X.; Zacharia, N.S. Facile assembly enhanced spontaneous fluorescent response of Ag+ ion containing polyelectrolyte multilayer films. ACS Macro Lett. 2014, 3, 1092–1095. [Google Scholar] [CrossRef]
- Steinigeweg, D.; Schlucker, S. Monodispersity and size control in the synthesis of 20–100 nm quasi-spherical silver nanoparticles by citrate and ascorbic acid reduction in glycerol-water mixtures. Chem. Commun. 2012, 48, 8682–8684. [Google Scholar] [CrossRef] [Green Version]
- Wang, H.; Wang, F.; Wu, T.; Liu, Y. Highly active electrochemiluminescence of ruthenium complex co-assembled chalcogenide nanoclusters and the application for label-free detection of alkaline phosphatase. Anal. Chem. 2021, 93, 15794–15801. [Google Scholar] [CrossRef]
- Xiao, T.; Sun, J.; Zhao, J.; Wang, S.; Liu, G.; Yang, X. FRET effect between fluorescent polydopamine nanoparticles and MnO2 nanosheets and its application for sensitive sensing of alkaline phosphatase. ACS Appl. Mater. Interfaces 2018, 10, 6560–6569. [Google Scholar] [CrossRef]
- Wang, M.; Zhou, X.; Cheng, L.; Wang, M.; Su, X. Lysozyme-functionalized 5-methyl-2-thiouracil gold/silver nanoclusters for luminescence assay of alkaline phosphatase. ACS Appl. Nano Mater. 2021, 4, 9265–9273. [Google Scholar] [CrossRef]
- Luo, Y.; Li, J.; Li, Y.; Yang, B.; Zhou, T.; Deng, J. Lanthanide-free infinite coordination polymer nanoparticles for real-time monitoring of alkaline phosphatase and its application for digital algal bloom detection. ACS Appl. Nano Mater. 2021, 4, 11134–11144. [Google Scholar] [CrossRef]
- Lu, H.; Xu, S. CDs-MnO2-TPPS ternary system for ratiometric fluorescence detection of ascorbic acid and alkaline phosphatase. ACS Omega 2021, 6, 16565–16572. [Google Scholar] [CrossRef] [PubMed]
- Ni, P.; Liu, S.; Jiang, Y.; Chen, C.; Wang, B.; Zhang, C.; Chen, J.; Lu, Y. In situ formation of 2,3-diaminophenazine for evaluation of alkaline phosphatase activity via the inner filter effect. ACS Appl. Bio Mater. 2020, 3, 6394–6399. [Google Scholar] [CrossRef] [PubMed]
- Yang, J.; Zheng, L.; Wang, Y.; Li, W.; Zhang, J.; Gu, J.; Fu, Y. Guanine-rich DNA-based peroxidase mimetics for colorimetric assays of alkaline phosphatase. Biosens. Bioelectron. 2016, 77, 549–556. [Google Scholar] [CrossRef] [PubMed]
- Qu, F.; Pei, H.; Kong, R.; Zhu, S.; Xia, L. Novel turn-on fluorescent detection of alkaline phosphatase based on green synthesized carbon dots and MnO2 nanosheets. Talanta 2017, 165, 136–142. [Google Scholar] [CrossRef]
- Zhang, L.; Hou, T.; Li, H.; Li, F. A highly sensitive homogeneous electrochemical assay for alkaline phosphatase activity based on single molecular beacon-initiated T7 exonuclease-mediated signal amplification. Analyst 2015, 140, 4030–4036. [Google Scholar] [CrossRef]
- Huang, H.; Bai, J.; Li, J.; Lei, L.; Zhang, W.; Yan, S.; Li, Y. Fluorometric and colorimetric analysis of alkaline phosphatase activity based on a nucleotide coordinated copper ion mimicking polyphenol oxidase. J. Mater. Chem. B. 2019, 7, 6508–6514. [Google Scholar] [CrossRef]
- Zhu, X.; Xu, H.; Zhan, Y.; Li, W.; Dong, Y.; Yu, L.; Chi, Y.; Ye, H. A simple enzyme-catalyzed reaction induced “switch” type fluorescence biosensor based on carbon nitride nanosheets for the assay of alkaline phosphatase activity. Analyst 2020, 145, 6277–6282. [Google Scholar] [CrossRef]
Method | Detection Signal Change | Linear Range (mU/mL) | LOD (mU/mL) | Refs |
---|---|---|---|---|
Fluorescence | Off→on | 10–2000 | 3 | [1] |
Fluorescence | On→off | 0.25–250 | 0.18 | [4] |
Electrochemiluminescence | On→off | 0.5–10 | 0.35 | [38] |
Fluorescence | Off→on | 1–80 | 0.34 | [39] |
Fluorescence | Off→on→off | 0.5–10 | 0.193 | [40] |
Fluorescence | Off→on | 10–100 | 3.2 | [41] |
Fluorescence | Off→on | 0.1–100 | 0.04 | [42] |
Fluorescence | On→off | 0.1–8 | 0.05 | [43] |
Colorimetric | Off→on | 20–200 | 0.84 | [44] |
Fluorescence | On→off→on | 1–100 | 0.4 | [45] |
Electrochemistry | Off→on | 0.1–10 | 0.1 | [46] |
Fluorescence | Off→on | 1–30 | 0.45 | [47] |
Fluorescence | Off→on | 0.5–20 | 0.05 | [48] |
Fluorescence | On→off | 0.2–12 | 0.07 | This work |
Samples | Added ALP (mU/mL) | Found ALP (mU/mL, n = 3) | Recoveries (%, n = 3) |
---|---|---|---|
1 | 1 | 1.01, 1.03, 0.98 | 100.7 ± 2.5 |
2 | 5 | 4.78, 5.13, 5.02 | 99.5 ± 3.6 |
3 | 10 | 9.88, 10.05, 10.43 | 101.2 ± 2.8 |
4 a | 10 | 9.66, 9.82, 10.23 | 99.0 ± 2.9 |
5 b | 10 | 9.69, 9.85, 9.70 | 97.5 ± 0.9 |
6 c | 10 | 9.65, 10.42, 10.15 | 100.7 ± 3.9 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pei, K.; Li, D.; Qi, W.; Wu, D. Ultrarapid Microwave-Assisted Synthesis of Fluorescent Silver Coordination Polymer Nanoparticles and Its Application in Detecting Alkaline Phosphatase Activity. Molecules 2023, 28, 1892. https://doi.org/10.3390/molecules28041892
Pei K, Li D, Qi W, Wu D. Ultrarapid Microwave-Assisted Synthesis of Fluorescent Silver Coordination Polymer Nanoparticles and Its Application in Detecting Alkaline Phosphatase Activity. Molecules. 2023; 28(4):1892. https://doi.org/10.3390/molecules28041892
Chicago/Turabian StylePei, Kanglin, Di Li, Wenjing Qi, and Di Wu. 2023. "Ultrarapid Microwave-Assisted Synthesis of Fluorescent Silver Coordination Polymer Nanoparticles and Its Application in Detecting Alkaline Phosphatase Activity" Molecules 28, no. 4: 1892. https://doi.org/10.3390/molecules28041892
APA StylePei, K., Li, D., Qi, W., & Wu, D. (2023). Ultrarapid Microwave-Assisted Synthesis of Fluorescent Silver Coordination Polymer Nanoparticles and Its Application in Detecting Alkaline Phosphatase Activity. Molecules, 28(4), 1892. https://doi.org/10.3390/molecules28041892