Quality Control and Authentication of Argan Oils: Application of Advanced Analytical Techniques
Abstract
:1. Introduction
2. Argan Oil Extraction
3. Argan Oil Composition
4. Argan Oil Quality Control and Authentication Assessment
4.1. Spectroscopic Techniques in Quality Control
4.1.1. UV-Visible and Infrared Spectroscopy
4.1.2. Nuclear Magnetic Resonance
4.1.3. Inductively Coupled Plasma Atomic Emission Spectroscopy and Optical Emission Spectroscopy
4.1.4. Electrothermal Atomization–Atomic Absorption Spectroscopy
4.2. Spectroscopic Techniques in Authentication
4.2.1. UV-Visible, Infrared and Raman Spectroscopy
4.2.2. Nuclear Magnetic Resonance
4.2.3. Fluorescence Spectroscopy
4.2.4. Inductively Coupled Plasma Optical Emission Spectroscopy
4.3. Separation Techniques in Quality Control
4.3.1. Gas Chromatography
4.3.2. High-Performance Liquid Chromatography
4.4. Separation Techniques in Authentication
4.5. Other Techniques
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Miklavčič, M.B.; Taous, F.; Valenčič, V.; Elghali, T.; Podgornik, M.; Strojnik, L.; Ogrinc, N. Fatty acid composition of cosmetic Argan oil: Provenience and authenticity criteria. J. Mol. 2020, 25, 4080. [Google Scholar] [CrossRef] [PubMed]
- Aithammou, R.; Harrouni, C.; Aboudlou, L.; Hallouti, A.; Mlouk, M.; Elasbahani, A.; Daoud, S. Effect of clones, year of harvest and geographical origin of fruits on quality and chemical composition of Argan oil. Food Chem. 2019, 297, 124749. [Google Scholar] [CrossRef] [PubMed]
- Alaoui, K. L’arganier ou la richesse d’un patrimoine. Phytotherapie 2009, 7, 150–156. [Google Scholar] [CrossRef]
- Charrouf, Z.; Guillaume, D. Argan oil, functional food, and the sustainable development of the Argan forest. Nat. Prod. Commun. 2008, 3, 283–288. [Google Scholar] [CrossRef] [Green Version]
- Berrougui, H.; de Sotomayor, M.A.; Pérez-Guerrero, C.; Ettaib, A.; Hmamouchi, M.; Marhuenda, E.; Herrera, M.D. Argan (Argania spinosa) oil lowers blood pressure and improves endothelial dysfunction in spontaneously hypertensive rats. Br. J. Nutr. 2004, 92, 921–929. [Google Scholar] [CrossRef]
- Ben Menni, H.; Belarbi, M.; Ben Menni, D.; Bendiab, H.; Kherraf, Y.; Ksouri, R.; Djebli, N.; Visioli, F. Anti-inflammatory activity of Argan oil and its minor components. Int. J. Food Sci. Nutr. 2019, 71, 307–314. [Google Scholar] [CrossRef]
- Ouchbani, T.; Bennis, M.; Khaili, A.; Zahar, M.; Nakajima, M. Effects of the heating temperature during the press extraction process on the yield and quality of cosmetic Argan oil. Euro-Mediterr. J. Environ. Integr. 2021, 5, 3–9. [Google Scholar] [CrossRef]
- Morton, J.F.; Voss, G.L. The Argan tree (Argania sideroxylon, Sapotaceae), a desert source of edible oil. Econ. Bot. 1987, 41, 221–233. [Google Scholar] [CrossRef]
- Drissi, A.; Girona, J.; Cherki, M.; Godàs, G.; Derouiche, A.; El Messal, M.; Saile, R.; Kettani, A.; Solà, R.; Masana, L.; et al. Evidence of hypolipemiant and antioxidant properties of Argan oil derived from the Argan tree (Argania spinosa). Clin. Nutr. 2004, 23, 1159–1166. [Google Scholar] [CrossRef] [PubMed]
- Cadi, R.; Mounaji, K.; Amraoui, F.; Soukri, A. Protective and antioxidant potential of the Argan oil on induced oxidative stress in Tetrahymena pyriformis. J. Med. Plants Res. 2013, 7, 1961–1968. [Google Scholar] [CrossRef]
- Charrouf, Z.; Guillaume, D. Argan oil: Occurrence, composition and impact on human health. Eur. J. Lipid Sci. Technol. 2008, 110, 632–636. [Google Scholar] [CrossRef]
- NM 08.5.090; Corps Gras d’Origine Animale et Vegetale—Huiles d’Argan. Institut Marocain de Normalisation: Rabat, Morocco, 2003.
- Cuadros-Rodríguez, L.; Ruiz-Samblás, C.; Valverde-Som, L.; Pérez-Castaño, E.; González-Casado, A. Chromatographic fingerprinting: An innovative approach for food “identitation” and food authentication—A tutorial. Anal. Chim. Acta 2016, 909, 9–23. [Google Scholar] [CrossRef]
- Taribak, C.; Casas, L.; Mantell, C.; Elfadli, Z.; Metni, R.E.; Martínez de la Ossa, E.J.; Ossa, D. Quality of cosmetic Argan oil extracted by supercritical fluid extraction from Argania spinosa L. J. Chem. 2013, 2013, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Charrouf, Z.; Guillaume, D. Ethnoeconomical, ethnomedical, and phytochemical study of Argania spinosa (L.) Skeels. J. Ethnopharmacol. 1999, 67, 7–14. [Google Scholar] [CrossRef]
- Guillaume, D.; Charrouf, Z. Argan oil and other Argan products: Use in dermocosmetology. Eur. J. Lipid Sci. Technol. 2011, 113, 403–408. [Google Scholar] [CrossRef]
- Adlouni, A. Argan oil: From nutrition to health. Phytotherapie 2010, 8, 89–97. [Google Scholar] [CrossRef]
- González-Fernández, M.J.; Manzano-Agugliaro, F.; Zapata-Sierra, A.; Belarbi, E.H.; Guil-Guerrero, J.L. Green Argan oil extraction from roasted and unroasted seeds by using various polarity solvents allowed by the EU legislation. J. Clean. Prod. 2020, 276, 123081. [Google Scholar] [CrossRef]
- Harhar, H.; Gharby, S.; Kartah, B.E.; El Monfalouti, H.; Charrouf, Z.; Guillaume, D. Long Argan fruit drying time is detrimental for Argan oil quality. Nat. Prod. Commun. 2010, 5, 1799–1802. [Google Scholar] [CrossRef] [Green Version]
- Kharbach, M.; Kamal, R.; Bousrabat, M.; Alaoui Mansouri, M.; Barra, I.; Alaoui, K.; Cherrah, Y.; Vander Heyden, Y.; Bouklouze, A. Characterization and classification of PGI Moroccan Argan oils based on their FTIR fingerprints and chemical composition. Chemom. Intell. Lab. Syst. 2017, 162, 182–190. [Google Scholar] [CrossRef]
- Ambra, R.; Natella, F.; Lucchetti, S.; Forte, V.; Pastore, G. α-Tocopherol, β-carotene, lutein, squalene and secoiridoids in seven monocultivar Italian extra-virgin olive oils. Int. J. Food Sci. Nutr. 2017, 68, 538–545. [Google Scholar] [CrossRef] [PubMed]
- Jaselskis, B.; Stemm, N.L.; Johnston, W.D. Determination of the fatty-acids composition of soybean oil by high-pressure liquid chromatography. Talanta 1982, 29, 54–56. [Google Scholar] [CrossRef]
- Dunlap, F.G.; White, P.J.; Pollak, L.M.; Brumm, T.J. Fatty acid composition of oil from adapted, elite corn breeding materials. J. Am. Oil Chem. Soc. 1995, 72, 981–987. [Google Scholar] [CrossRef] [Green Version]
- Monfreda, M.; Gobbi, L.; Grippa, A. Blends of olive oil and sunflower oil: Characterisation and olive oil quantification using fatty acid composition and chemometric tools. Food Chem. 2012, 134, 2283–2290. [Google Scholar] [CrossRef]
- Kharbach, M.; Marmouzi, I.; Kamal, R.; Yu, H.; Barra, I.; Cherrah, Y.; Alaoui, K.; Vander Heyden, Y.; Bouklouze, A. Extra virgin Argan oils’ shelf-life monitoring and prediction based on chemical properties or FTIR fingerprints and chemometrics. Food Control 2021, 121, 107607. [Google Scholar] [CrossRef]
- Goik, U.; Goik, T.; Załęska, I. The Properties and Application of Argan Oil in Cosmetology. Eur. J. Lipid Sci. Technol. 2019, 121, 1800313. [Google Scholar] [CrossRef]
- Rohman, A.; Nugroho, A.; Lukitaningsih, E.; Sudjadi. Application of vibrational spectroscopy in combination with chemometrics techniques for authentication of herbal medicine. Appl. Spectrosc. Rev. 2014, 49, 603–613. [Google Scholar] [CrossRef]
- Kharbach, M.; Marmouzi, I.; El Jemli, M.; Bouklouze, A.; Vander Heyden, Y. Recent advances in untargeted and targeted approaches applied in herbal-extracts and essential-oils fingerprinting—A review. J. Pharm. Biomed. Anal. 2020, 177, 112849. [Google Scholar] [CrossRef] [PubMed]
- Xu, C.-J.; Liang, Y.-Z.; Chau, F.-T.; Vander Heyden, Y. Pretreatments of chromatographic fingerprints for quality control of herbal medicines. J. Chromatogr. A 2006, 1134, 253–259. [Google Scholar] [CrossRef] [PubMed]
- Craig, A.P.; Franca, A.S.; Irudayaraj, J. Vibrational spectroscopy for food quality and safety screening. In High Throughput Screening for Food Safety Assessment; Bhunia, A.K., Kim, M.S., Taitt, C.R., Eds.; Woodhead Publishing: West Lafayette, IN, USA, 2015; pp. 165–194. ISBN 9780857098016. [Google Scholar]
- Lohumi, S.; Lee, S.; Lee, H.; Cho, B. A review of vibrational spectroscopic techniques for the detection of food authenticity and adulteration. Trends Food Sci. Technol. 2015, 46, 85–98. [Google Scholar] [CrossRef]
- Bunaciu, A.; Aboul-Enein, H. Vibrational spectroscopy applications in drugs analysis. Encycl. Spectrosc. Spectrom. 2017, 4, 575–581. [Google Scholar]
- Kharbach, M.; Kamal, R.; Marmouzi, I.; Barra, I.; Cherrah, Y.; Alaoui, K.; Vander Heyden, Y.; Bouklouze, A. Fatty-acid profiling vs UV-Visible fingerprints for geographical classification of Moroccan Argan oils. Food Control 2018, 95, 95–105. [Google Scholar] [CrossRef]
- Guinda, Á.; Rada, M.; Benaissa, M.; Ourrach, I.; Cayuela, J.A. Controlling Argan seed quality by NIR. J. Am. Oil Chem. Soc. 2015, 92, 1143–1151. [Google Scholar] [CrossRef] [Green Version]
- Khallouki, F.; Mannina, L.; Viel, S.; Owen, R.W. Thermal stability and long-chain fatty acid positional distribution on glycerol of Argan oil. Food Chem. 2008, 110, 57–61. [Google Scholar] [CrossRef] [PubMed]
- Hamdouch, S.; Barkaoui, L.; Tarbaoui, M.; Ouaket, A. The use of tris (tetraphenylimidodiphosphinate) of praseodymium chemical shift reagent in proton NMR for the evaluation of the Argan oil fatty acids autoxidation and the analysis of the Argan pulp fatty acids. Mediterr. J. Chem. 2019, 8, 115–131. [Google Scholar] [CrossRef]
- Gunning, Y.; Jackson, A.J.; Colmer, J.; Taous, F.; Philo, M.; Brignall, R.M.; El Ghali, T.; Defernez, M.; Kemsley, E.K. High-throughput screening of Argan oil composition and authenticity using benchtop 1H NMR. Magn. Reson. Chem. 2020, 58, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Ennoukh, F.E.; Bchitou, R.; Mohammed, F.; Guillaume, D.; Harhar, H.; Bouhaouss, A. Study of the effects of extraction methods on Argan oil quality through its metal content. Ind. Crops Prod. 2017, 109, 182–184. [Google Scholar] [CrossRef]
- Kharbach, M.; Kamal, R.; Alaoui Mansouri, M.; Marmouzi, I.; Viaene, J.; Cherrah, Y.; Alaoui, K.; Vercammen, J.; Bouklouze, A.; Vander Heyden, Y. Selected-ion flow-tube mass-spectrometry (SIFT-MS) fingerprinting versus chemical profiling for geographic traceability of Moroccan Argan oils. Food Chem. 2018, 263, 8–17. [Google Scholar] [CrossRef] [PubMed]
- Martín-Ramos, P.; Carrión-Prieto, P.; Ruiz-Potosme, N.M.; Hernández-Navarro, S.; Martín-Gil, J. An analysis of the similarities in the ATR-FTIR spectra from Argania spinosa, Rosa rubiginosa and Elaeis guineensis oils. J. Essent. Oil Bear. Plants 2018, 20, 1651–1658. [Google Scholar] [CrossRef] [Green Version]
- Alonso-Salces, R.M.; Holland, M.V.; Guillou, C. 1H-NMR fingerprinting to evaluate the stability of olive oil. Food Control 2011, 22, 2041–2046. [Google Scholar] [CrossRef]
- Cordella, C.B.Y.; Tekye, T.; Rutledge, D.N.; Leardi, R. A multiway chemometric and kinetic study for evaluating the thermal stability of edible oils by 1H NMR analysis: Comparison of methods. Talanta 2012, 88, 358–368. [Google Scholar] [CrossRef]
- Fang, G.; Goh, J.Y.; Tay, M.; Lau, H.F.; Li, S.F.Y. Characterization of oils and fats by 1H NMR and GC/MS fingerprinting: Classification, prediction and detection of adulteration. Food Chem. 2013, 138, 1461–1469. [Google Scholar] [CrossRef]
- Mohammed, F.A.E.; Bchitou, R.; Bouhaouss, A.; Gharby, S.; Harhar, H.; Guillaume, D.; Charrouf, Z. Can the dietary element content of virgin Argan oils really be used for adulteration detection? Food Chem. 2013, 136, 105–108. [Google Scholar] [CrossRef]
- Mohammed, F.; Guillaume, D.; Abdulwali, N.; Harhar, H.; Al-Jobory, H.J. Argan oil element content is a powerful marker of the quality of the fruit used for its preparation. Plant Foods Hum. Nutr. 2020, 75, 230–235. [Google Scholar] [CrossRef]
- Gonzálvez, A.; Ghanjaoui, M.E.; El Rhazi, M.; De La Guardia, M. Inductively coupled plasma optical emission spectroscopy determination of trace element composition of Argan oil. Food Sci. Technol. Int. 2010, 16, 65–71. [Google Scholar] [CrossRef] [PubMed]
- Marfil, R.; Cabrera-Vique, C.; Giménez, R.; Bouzas, P.R.; Martínez, O.; Sánchez, J.A. Metal content and physicochemical parameters used as quality criteria in virgin Argan oil: Influence of the extraction method. J. Agric. Food Chem. 2008, 56, 7279–7284. [Google Scholar] [CrossRef]
- Farres, S.; Srata, L.; Fethi, F.; Kadaoui, A. Argan oil authentication using visible/near infrared spectroscopy combined to chemometrics tools. Vib. Spectrosc. 2019, 102, 79–84. [Google Scholar] [CrossRef]
- Oussama, A.; Elabadi, F.; Devos, O. Analysis of Argan oil adulteration using infrared spectroscopy. Spectrosc. Lett. 2012, 45, 458–463. [Google Scholar] [CrossRef]
- El Orche, A.; Elhamdaoui, O.; Cheikh, A.; Zoukeni, B.; El Karbane, M.; Mbarki, M.; Bouatia, M. Comparative study of three fingerprint analytical approaches based on spectroscopic sensors and chemometrics for the detection and quantification of Argan oil adulteration. J. Sci. Food Agric. 2022, 102, 95–104. [Google Scholar] [CrossRef] [PubMed]
- Joshi, R.; Cho, B.-K.; Joshi, R.; Lohumi, S.; Faqeerzada, M.A.; Amanah, H.; Lee, J.; Mo, C.; Lee, H. Raman spectroscopic analysis to detect olive oil mixtures in Argan oil. Korean J. Agric. Sci. 2019, 46, 183–194. [Google Scholar] [CrossRef]
- Addou, S.; Fethi, F.; Chikri, M.; Rrhioua, A. Detection of Argan oil adulteration with olive oil using fluorescence spectroscopy and chemometrics tools. J. Mater. Environ. Sci. 2016, 7, 2689–2698. [Google Scholar]
- Stokes, T.D.; Foteini, M.; Brownfield, B.; Kalivas, J.H.; Mousdis, G.; Amine, A.; Georgiou, C. Feasibility assessment of Synchronous Fluorescence Spectral fusion by application to Argan oil for adulteration analysis. Appl. Spectrosc. 2018, 72, 1–27. [Google Scholar] [CrossRef] [Green Version]
- Gonzálvez, A.; Armenta, S.; De la Guardia, M. Adulteration detection of Argan oil by inductively coupled plasma optical emission spectrometry. Food Chem. 2010, 121, 878–886. [Google Scholar] [CrossRef]
- Taous, F.; El Ghali, T.; Marah, H.; Laraki, K.; Islam, M.; Cannavan, A.; Kelly, S. Geographical classification of authentic Moroccan Argan oils and the rapid detection of soya and sunflower oil adulteration with ATR-FTIR spectroscopy and chemometrics. Food Anal. Methods 2022. [Google Scholar] [CrossRef]
- Zougagh, M.; Salghi, R.; Dhair, S.; Rios, A. Nanoparticle-based assay for the detection of virgin Argan oil adulteration and its rapid quality evaluation. Anal. Bioanal. Chem. 2011, 399, 2395–2405. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Fang, T.; Zhu, S.; Huang, F.; Chen, Z.; Wang, Y. Detection of olive oil adulteration with waste cooking oil via Raman spectroscopy combined with iPLS and SiPLS. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2018, 189, 37–43. [Google Scholar] [CrossRef]
- Zhang, X.; Zou, M.; Qi, X.; Liu, F.; Zhang, C.; Yin, F. Quantitative detection of adulterated olive oil by Raman spectroscopy and chemometrics. J. Raman Spectrosc. 2011, 42, 1784–1788. [Google Scholar] [CrossRef]
- Huang, S.; Hu, J.; Guo, P.; Liu, M.; Wu, R. Rapid detection of chlorpyriphos residue in rice by surface-enhanced Raman scattering. Anal. Methods 2015, 7, 4334–4339. [Google Scholar] [CrossRef]
- Cserháti, T.; Forgács, E.; Deyl, Z.; Miksik, I. Chromatography in authenticity and traceability tests of vegetable oils and dairy products: A review. Biomed. Chromatogr. 2005, 19, 183–190. [Google Scholar] [CrossRef]
- Viaene, J.; Vander Heyden, Y. Introduction to herbal fingerprinting by chromatography. In Chemometrics in Chromatography; Komsta, Ł., Vander Heyden, Y., Sherma, J., Eds.; CRC Press: Boca Raton, FL, USA; Taylor & Francis Group: Boca Raton, FL, USA, 2017; pp. 351–364. [Google Scholar]
- Kamal, R.; Kharbach, M.; Imig, J.D.; Eljmeli, M.; Doukkali, Z.; Mrabti, H.N.; Elmsellem, H.; Bouklouze, A.; Cherrah, Y.; Alaoui, K. Antioxidant activities, total polyphenolic compounds and HPLC/DAD/MS phenolic profile of Argan oil derived from two different methods of extraction. J. Mater. Environ. Sci. 2017, 8, 1320–1327. [Google Scholar]
- Rezanková, T.; Rezanková, H. Characterization of fatty acids and triacylglycerols in vegetable oils by gas chromatography and statistical analysis. Anal. Chim. Acta 1999, 398, 253–261. [Google Scholar] [CrossRef]
- Matthäus, B.; Guillaume, D.; Gharby, S.; Haddad, A.; Harhar, H.; Charrouf, Z. Effect of processing on the quality of edible Argan oil. Food Chem. 2010, 120, 426–432. [Google Scholar] [CrossRef]
- Hilali, M.; El Monfalouti, H.; Kartah, B.E. Evaluation of the chemical composition of Argan (Argania spinosa L.) oil according to its extraction method, origin of production and altitude. Online J. Anim. Feed Res. 2020, 10, 111–118. [Google Scholar] [CrossRef]
- Gharby, S.; Harhar, H.; Bouzoubaâ, Z.; Elmadani, N.; Charrouf, Z. The effect of storage conditions and roasting kernels on extra virgin Argan oil quality. J. Mater. Environ. Sci. 2015, 6, 254–263. [Google Scholar]
- Atifi, H.; Bouzoubaâ, Z.; Gharby, S.; Laknifli, A.; Mamouni, R.; Rachid, M. Fruits maturity effect on the Argan oil amount, quality and chemical composition. J. Mater. Environ. Sci. 2017, 8, 512–519. [Google Scholar]
- Harhar, H.; Gharby, S.; Guillaume, D.; Charrouf, Z. Effect of Argan kernel storage conditions on Argan oil quality. Eur. J. Lipid Sci. Technol. 2010, 112, 915–920. [Google Scholar] [CrossRef]
- Harhar, H.; Gharby, S.; Kartah, B.; Pioch, D.; Guillaume, D.; Charrouf, Z. Effect of harvest date of Argania spinosa fruits on Argan oil quality. Ind. Crops Prod. 2014, 56, 156–159. [Google Scholar] [CrossRef]
- Gharby, S.; Harhar, H.; Guillaume, D.; Haddad, A.; Matthäus, B.; Charrouf, Z. Oxidative stability of edible Argan oil: A two-year study. LWT Food Sci. Technol. 2011, 44, 1–8. [Google Scholar] [CrossRef]
- Kartah, B.E.; El Monfalouti, H.; Harhar, H.; Gharby, S.S.; Charrouf, W.; Matthaus, B. Effect of filtration on virgin Argan oil: Quality and Stability. J. Mater. Environ. Sci. 2015, 6, 1624–1628. [Google Scholar]
- Harhar, H.; Gharby, S.; Guillaume, D.; Bouzoubaa, Z.; Kartah, B.E.; Charrouf, Z. Influence of Argan fruit peel on the quality and oxidative stability of Argan oil after prolonged storage. Emirates J. Food Agric. 2015, 27, 522–526. [Google Scholar] [CrossRef] [Green Version]
- Rueda, A.; Samaniego-Sánchez, C.; Olalla, M.; Giménez, R.; Cabrera-Vique, C.; Seiquer, I.; Lara, L. Combination of analytical and chemometric methods as a useful tool for the characterization of extra virgin Argan oil and other edible virgin oils. Role of polyphenols and tocopherols. J. AOAC Int. 2016, 99, 489–494. [Google Scholar] [CrossRef]
- Demnati, D.; Pacheco, R.; Martínez, L.; Sánchez, S. Effect of roasting temperature and time on the chemical composition and oxidative stability of Argan (Argania spinosa L.) oils. Eur. J. Lipid Sci. Technol. 2018, 120, 1700136. [Google Scholar] [CrossRef]
- Momchilova, S.; Taneva, S.; Dimitrova, R.D.; Totseva, I.R.; Antonova, D.V. Evaluation of authenticity and quality of Argan oils sold on the Bulgarian market. Riv. Ital. Sostanze Grasse 2016, 93, 95–103. [Google Scholar]
- Ait Aabd, N.; El Asbahani, A.; El Alem, Y.; El Finti, A.; Msanda, F.; El Mousadik, A. Variation in oil content and fatty acid composition in preselected Argan trees with morphological characters and geographical localization. Med. J. Nutr. Metab. 2013, 6, 217–225. [Google Scholar] [CrossRef]
- Demnati, D.; Pacheco, R.; Sánchez, S.; Martínez, L. Optimum roasting conditions of Argan kernels (Argania spinosa L.) for the production of high-quality edible Argan oil. J. Food Sci. Technol. 2019, 57, 840–847. [Google Scholar] [CrossRef] [PubMed]
- Zaaboul, F.; Cao, C.; Raza, H.; Jun, Z.Z.; Xu, Y.J.; Liu, Y.F. The Triacylglycerol profile of oil bodies and oil extracted from Argania spinosa using the UPLC along with the Electrospray Ionization Quadrupole-Time-of-Flight Mass Spectrometry (LC-Q-TOF-MS). J. Food Sci. 2019, 84, 762–769. [Google Scholar] [CrossRef]
- Koufan, M.; Belkoura, I.; Amine, M.; Abderrahim, M.; Amine, A. Determination of antioxidant activity, total phenolics and fatty acids in essential oils and other extracts from callus culture, seeds and leaves of Argania spinosa (L.) Skeels. Plant Cell. Tissue Organ Cult. 2020, 141, 217–227. [Google Scholar] [CrossRef]
- Salghi, R.; Armbruster, W.; Schwack, W. Detection of Argan oil adulteration with vegetable oils by high-performance liquid chromatography – evaporative light scattering detection. Food Chem. 2014, 153, 387–392. [Google Scholar] [CrossRef]
- Hilali, M.; Charrouf, Z.; Soulhi, A.E.A.; Hachimi, L.; Guillaume, D. Detection of Argan oil adulteration using quantitative campesterol GC-analysis. J. Am. Oil Chem. Soc. 2007, 84, 761–764. [Google Scholar] [CrossRef]
- Ourrach, I.; Rada, M.; Pérez-Camino, M.C.; Benaissa, M.; Guinda, Á. Detection of Argan oil adulterated with vegetable oils: New markers. Grasas Aceites 2012, 63, 355–364. [Google Scholar] [CrossRef] [Green Version]
- Pagliuca, G.; Bozzi, C.; Romana, F.; Multari, G.; Palazzino, G.; Porrà, R.; Panusa, A. Triacylglycerol “hand-shape profile” of Argan oil. Rapid and simple UHPLC-PDA-ESI-TOF/MS and HPTLC methods to detect counterfeit Argan oil and Argan-oil-based products. J. Pharm. Biomed. Anal. 2018, 150, 121–131. [Google Scholar] [CrossRef]
- Bougrini, M.; Tahri, K.; Haddi, Z.; Saidi, T.; El Bari, N.; Bouchikhi, B. Detection of adulteration in Argan oil by using an electronic nose and a voltammetric electronic tongue. J. Sens. 2014, 2014, 245831. [Google Scholar] [CrossRef] [Green Version]
- Rahmani, M. Composition chimique de l’huile d’Argane « vierge ». Cah. Agric. 2005, 14, 461–465. [Google Scholar]
- Hilali, M.; Charrouf, Z.; Soulhi, A.E.A.; Hachimi, L.; Guillaume, D. Influence of origin and extraction method on Argan oil physico-chemical characteristics and composition. J. Agric. Food Chem. 2005, 53, 2081–2087. [Google Scholar] [CrossRef] [PubMed]
- Harhar, H.; Gharby, S.; Ghanmi, M.; El Monfalouti, H.; Guillaume, D.; Charrouf, Z. Composition of the essential oil of Argania spinosa. Nat. Prod. Commun. 2010, 5, 935–936. [Google Scholar] [PubMed] [Green Version]
- Mohammed, F.; Guillaume, D.; Abdulwali, N.; Zabara, B.; Bchitou, R. Tin content is a possible marker to discriminate Argan oil against olive, sesame, mustard, corn, peanut, and sunflower oils. Eur. J. Lipid Sci. Technol. 2019, 121, 1–8. [Google Scholar] [CrossRef]
Vegetable Oil | |||||||
---|---|---|---|---|---|---|---|
Fatty Acid | Argan [17,18] | Olive [21] | Soybean [22] | Corn [23] | Sunflower [24] | Peanut [24] | Rice [24] |
Oleic C18:1 | 43.0–49.0 | 66.4–78.6 | 23.2–23.9 | 8.5–46.1 | 15.0–40.0 | 23.0–41.0 | 30.0–45.0 |
Linoleic C18:2 | 29.3–36.0 | 5.5–11.8 | 53.30–55.9 | 36.6–66.8 | 40.0–74.0 | 15.0–48.0 | 35.0–50.0 |
Stearic C18:0 | 4.2–7.2 | 1.9–3.0 | 4.0–4.4 | 0.9–4.5 | 2.5–7.0 | 2.0–5.0 | 1.0–2.5 |
Palmitic C16:0 | 11.5–15.0 | 11.6–16.5 | 9.6–10.3 | 6.3–18.2 | 5.0–8.0 | 8.0–13.5 | 17.0–22.0 |
Study Purpose | Method | Reference |
---|---|---|
Geographical origin characterization and classification of Argan oils | FT-MIR | [20] |
Shelf life of extra virgin Argan oil | FT-MIR | [25] |
Geographical origin classification of EVAO according to the extraction process/kernel type | UV-Vis | [33] |
Evaluating Argan seed quality | Vis/NIR | [34] |
Oxidative stability of Argan oil | NMR | [35] |
Evaluation of the Argan oil fatty acids auto-oxidation | NMR | [36] |
Screening the quality and authenticity of AO | ¹H NMR | [37] |
Extraction method effects on Argan oil quality | ICP-AES | [38] |
Geographic traceability of Moroccan Argan oils | SIFT-MS | [39] |
Aim | Fingerprinting Technique | Chemometric Tools | References |
---|---|---|---|
Adulteration of Argan oil with sunflower, avocado, sesame, rapeseed and sweet almond oil | ¹H-NMR | Nearest-neighbor outlier detection | [37] |
Argan oil adulteration with cheaper vegetable oils | Visible/NIR | PCA, PLS | [48] |
Analysis of Argan oil adulteration with sunflower or soybean oil | FT-MIR | PLS | [49] |
Detection and quantification of Argan oil adulteration with olive oil | FT-MIR | PLS | [50] |
Detection of olive oil in Argan oil | Raman | HLA | [51] |
Detection of Argan oil adulteration with olive oil | Fluorescence spectroscopy | PCA, PLS | [52] |
Argan oil adulteration with corn oil | Fluorescence Spectroscopy | PLS | [53] |
Oils classification based on their elemental contents for the detection of adulteration of Argan oil with sunflower, olive, seeds and soya oil | ICP-OES | PCA, HCA, DA | [54] |
Geographical classification of Moroccan Argan oils and the rapid detection of its adulteration | ATR-FT-MIR | PCA, SIMCA, DD-SIMCA, PLS | [55] |
Aims | Techniques | Data Analysis Methods | References |
---|---|---|---|
Effect evaluation of clones and age, year of harvest and geographical origin on Argan oil quality | GC-FID NP-HPLC-FLD | ANOVA PCA | [2] |
Comparison between two methods of Argan oil extraction | RP-HPLC-DAD-MS | Mean values ± standard deviation | [62] |
Fatty-acid profile to evaluate the authenticity of cosmetic Argan oil | GC-FID | ANOVA, PCA, DA, OPLS-DA | [1] |
Identification of fatty acids and triacylglycerols | GC-FID | Chi-square test | [63] |
Effect of processing on edible Argan oil quality | RP-HPLC-FD, GLC-FID | t-test | [64] |
Evaluation of extraction method, origin of production and altitude on Argan oil composition | RP-HPLC-FD, GC-FID | NA | [65] |
Effect of storage conditions and kernel roasting on Extra Virgin Argan Oil quality | RP-HPLC-FD GC-FID | ANOVA | [66] |
Effect of Argan fruit maturity (over ripe, ripe, and unripe) on the quality, quantity and chemical composition of Argan oil | GC-FID | ANOVA | [67] |
Effect of Argan kernel storage conditions on Argan oil quality | GC-FID | t-test | [68] |
Effect of harvest date on Argan oil quality | RP-HPLC-FD GC-FID | ANOVA | [69] |
Oxidative stability of edible Argan oil | RP-HPLC-FD | t-test | [70] |
Effect of filtration on virgin Argan oil quality and stability | NP-HPLC-FD | ANOVA | [71] |
Influence of Argan fruit peel on the quality and stability of Argan oil | RP-HPLC-FD GC-FID | NA | [72] |
The characterization of Extra Virgin Argan oil | RP-HPLC-FD | MFA | [73] |
Effect of roasting temperature and time on Argan oil stability | RP-HPLC-FD | ANOVA | [74] |
Evaluation of authenticity and quality of Argan oils | RP-HPLC-ELSD | PCA, clustering | [75] |
Evaluation of the fatty-acid composition and oil contents in trees with different morphological characters and geographical localization | GC-FID | GLM, ANOVA | [76] |
Optimization of roasting conditions of Argan kernels for high quality edible Argan oil | RP-HPLC- FD | ANOVA, CCD | [77] |
Determination of geographical origin of Argan oil using fatty-acid profiling | GC-FID | PCA, PLS-DA | [33] |
Comparison of triacylglycerol profiles of oils | UPLC-ESI-MS | ANOVA | [78] |
Determination of antioxidant activity, total phenolics and fatty acids | GC-FID | ANOVA | [79] |
Quality of cosmetic Argan oil extracted by supercritical fluid extraction | GC-FID, HPLC UV-Vis | NA | [14] |
Adulterants | Markers | Separation Techniques | Data Analysis Methods | References |
---|---|---|---|---|
Sunflower and olive oil | Total phenolic acids | HPLC-DAD and fluorescence detector | t-test | [56] |
Soybean, rapeseed, sunflower, apricot, arachis and hazelnut oil | Campesterol | GC-FID | ANOVA, Tukey test | [81] |
Sunflower, olive, and soybean oil | Triacylglycerols | HPLC-ELSD | t-test | [80] |
Sunflower and virgin olive oil | Fatty acids 3,5-stigmastadiene, kaurene and pheophytin-a | GC-FID HPLC-DAD | ANOVA, Dunnett’s test | [82] |
Almond, coconut, linseed, wheat germ, sunflower, peanut, olive, soybean, rapeseed, hemp oils and shea butter | Triacylglycerols | UHPLC-PDA-ESI-TOF/MS HPTLC | ANOVA, Dunnett’s test | [83] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
El Maouardi, M.; Kharbach, M.; Cherrah, Y.; De Braekeleer, K.; Bouklouze, A.; Vander Heyden, Y. Quality Control and Authentication of Argan Oils: Application of Advanced Analytical Techniques. Molecules 2023, 28, 1818. https://doi.org/10.3390/molecules28041818
El Maouardi M, Kharbach M, Cherrah Y, De Braekeleer K, Bouklouze A, Vander Heyden Y. Quality Control and Authentication of Argan Oils: Application of Advanced Analytical Techniques. Molecules. 2023; 28(4):1818. https://doi.org/10.3390/molecules28041818
Chicago/Turabian StyleEl Maouardi, Meryeme, Mourad Kharbach, Yahya Cherrah, Kris De Braekeleer, Abdelaziz Bouklouze, and Yvan Vander Heyden. 2023. "Quality Control and Authentication of Argan Oils: Application of Advanced Analytical Techniques" Molecules 28, no. 4: 1818. https://doi.org/10.3390/molecules28041818
APA StyleEl Maouardi, M., Kharbach, M., Cherrah, Y., De Braekeleer, K., Bouklouze, A., & Vander Heyden, Y. (2023). Quality Control and Authentication of Argan Oils: Application of Advanced Analytical Techniques. Molecules, 28(4), 1818. https://doi.org/10.3390/molecules28041818